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A Bias calculation

Our derivation of the update for IL (Eq. 3) is based on an expansion of log p̃θ
q̃θ

about p̃θq̃θ = 1:∫ [
log

p̃θ
q̃θ

]
(∇θ log q̃θ)q̃θ drds =

∫ [
p̃θ
q̃θ
− 1

]
(∇θ log q̃θ)q̃θ drds (S1)

− 1

2

∫ [ ( p̃θq̃θ − 1)

1 + ε(r, s)

]2

(∇θ log q̃θ)q̃θ drds,

for some ε(r, s) st. |ε(r, s)| < | p̃q̃ − 1|. Note that this is not a truncated Taylor series approximation –
we are instead using Taylor’s theorem, and the second term provides an exact expression for the bias.
We can use the Caucy-Schwartz inequality for expectations to bound this as follows:

|bias| = 1

2

∣∣∣∣∣∣
∫ [ ( p̃θq̃θ − 1)

1 + ε(r, s)

]2

(∇θ log q̃θ)q̃θ drds

∣∣∣∣∣∣
≤ 1

2

√√√√∫ [ ( p̃θq̃θ − 1)

1 + ε(r, s)

]4

q̃θ drds

√∫
(∇θ log q̃θ)2q̃θ drds, (S2)

We examine the consequences of this bias formula for our specific model. Consider the component of
the gradient with respect to the feedforward weight W(ij):

d

dW (ij)
log q̃θ =

∑
t

λt
(σinf
r )2

(r
(i)
t − f(Wst)

(i))f ′(Wst)
(i)s

(j)
t .

Note that f(·) < 1 and f ′(·) < 1 for the tanh function, and assume that (s
(j)
t )2 < S ∀t for some

constant S. Defining B =

√∫ [ (
p̃θ
q̃θ
−1)

1+ε(r,s)

]4

q̃θ drds, and substituting the gradient component gives:
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|bias| ≤ B

2

√√√√∫ (∑
t

λt
(σinf
r )2

(r
(i)
t − f(Wst)(i))f ′(Wst)(i)s

(j)
t

)2

q̃θ drds

=
B

2

√∫ ∑
t

∑
t′

λtλt′

(σinf
r )4

(r
(i)
t − f(Wst)(i))(r

(i)
t′ − f(Wst′)(i))f ′(Wst)(i)f ′(Wst′)(i)s

(j)
t s

(j)
t′ q̃θ drds

=
B

2

√∫ ∑
t

λ2
t

(σinf
r )4

(r
(i)
t − f(Wst)(i))2(f ′(Wst)(i)s

(j)
t )2q̃θ drds,

where this second equality follows from the fact that r(i)
t − f(Wst)

(i) ∼ N (0, σinf
r ) without

any temporal correlation, so that E
[
(r

(i)
t − f(Wst)

(i))(r
(i)
t′ − f(Wst′)

(i))
]
r|s

= 0 for t 6= t′.

Continuing our derivation, we have:

|bias| ≤ B

2

√∑
t

λ2
t

(σinf
r )4

∫
(r

(i)
t − f(Wst)(i))2(f ′(Wst)(i)s

(j)
t )2q̃θ(r, s) drds

=
B

2

√∑
t

λ2
t

(σinf
r )2

∫
(f ′(Wst)(i)s

(j)
t )2q̃θ(s) ds

≤ B

2

√
S

(σinf
r )2

∑
t

λ2
t

=
B

2

√
ST

2(σinf
r )2

, (S3)

where T is the total time. Thus, for our particular choice of neural model, the bias is proportional to
B, which vanishes as performance improves. Note that the update term in Eq. (S1) is O(| p̃q̃ − 1|), so
its magnitude is expected to be much larger than the bias in the vicinity of a global optimum. The√
T/(σinf

r )2 proportionality constant also should not be a cause for concern: the gradient itself scales
with T/(σinf

r )2, and thus small values of (σinf
r )2 will not make the relative error explode.

B Comparison to other algorithms

In this section, we explore the relationships between impression learning (IL) and other stochastic
learning algorithms. Specifically, we consider a variant of neural variational inference (NVI∗),
backpropagation (BP), and Wake-Sleep (WS).

B.1 Neural Variational Inference

Neural variational inference is a learning algorithm for neural networks that optimizes the evidence
lower bound (ELBO) objective function. Here, we modify the algorithm by incorporating our novel
loss (Eq. 2), producing a variant that we call NVI∗. We first take the derivative of our loss, without
approximations. These steps are identical to the initial steps in our derivation of IL, up to the Taylor
expansion:

−∇θL =−∇θEλ,z
[∫

[log q̃θ − log p̃θ] q̃θ drds

]
=− Eλ,z

[∫
[∇θ(log q̃θ − log p̃θ)] q̃θ drds +

∫
[log q̃θ − log p̃θ]∇θ q̃θ drds

]
=− Eλ,z

[∫
[∇θ log q̃θ −∇θ log p̃θ] q̃θ drds +

∫
[log q̃θ − log p̃θ] (∇θ log q̃θ)q̃θ drds

]
=Eλ,z

[∫
[∇θ log p̃θ] q̃θ drds +

∫ [
log

p̃θ
q̃θ

]
(∇θ log q̃θ)q̃θ drds

]
(S4)
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Updates calculated by these samples will be unbiased in expectation, because there are no approxima-
tions. However, we will show in Appendix C that these updates may have high variance.

To provide a fair comparison to IL, we have added two additional features that have been shown to
reduce the variance of sample estimates [1, 2]. The first involves subtracting a control variate from
our second term:

−∇θL = Eλ,z
[∫

[∇θ log p̃θ] q̃θ drds +

∫ (
log

p̃θ
q̃θ
− E

[
log

p̃θ
q̃θ

])
(∇θ log q̃θ)q̃θ drds

]
. (S5)

The subtracted term, E
[
log p̃θ

q̃θ

] ∫
(∇θ log q̃θ)q̃θ drds, is zero because it is a constant times the

expectation of the score function. As such, it keeps the weight updates unbiased, but can still
significantly reduce the variance.

The original NVI method employs a dynamic baseline estimated with a neural network as a function
of inputs s. It is likely that this more flexible control variate can further reduce the variance of
parameter estimates beyond the baseline that we explore here. However, this baseline was trained
with backpropagation, and as such, would not provide a biologically-plausible comparison. We can
approximate Eq. S5 by summing over samples from q̃θ, and updating our weights at every time point:

∆θ ∝ [∇θ log p̃t(rt, st; θ)] +

[
log

p̃t
q̃t
− L̄

] t∑
s=0

(∇θ log q̃t(rt, st; θ))

∝ [∇θ log p̃t(rt, st; θ)] +

[
log

p̃t
q̃t
− L̄

]
gθ, (S6)

where L̄ is approximated online according to a running average of the loss at each time step, and gθ,
called an ‘eligibility trace’ [3], is computed by a running integral. These quantities are both computed
online as follows:

L̄t = γL log
p̃t
q̃t

+ (1− γL)L̄t−1 (S7)

gθt = ∇θ log q̃t(rt, st; θ) + γgg
θ
t−1, (S8)

where γL � 1, so that L̄t is a weighted average of past losses. If we want an unbiased estimate of
the gradient, then we would take γg = 1, so that gθt =

∑t
s=0(∇θ log q̃t(rt, st; θ)). However, the

variance of this eligibility trace grows without bound as T →∞, which makes online learning using
this algorithm nearly impossible without approximation. For this reason, we take γe as a constant
less than, but close to 1 when we compare NVI∗ to IL performance, which introduces a small bias,
with the benefit of allowing for online learning. This is a technique commonly employed in the
three-factor plasticity literature [4, 5], and can be thought of as an analog to temporal windowing in
backpropagation through time [6]. For our numerical gradient comparisons (Fig. 2), however, we
used a short number of time steps, but took γg = 1 to remove all bias.

This method of differentiation is particularly important to compare to IL, because it can be thought of
as a three-factor synaptic plasticity rule, where for a neural network, the parameter update becomes a
global ‘loss’ signal log p̃t

q̃t
− L̄ combined with synaptically local terms gθ and ∇θ log p̃t(rt, st; θ),

the second of which comprises the entirety of the IL update. Typically for reinforcement learning,
the global ‘reward’ signal is justified by referencing neuromodulatory signals that project broadly to
synapses throughout the cortex and carry information about reward [7, 4, 8, 9]. However, the origins
of the global ‘loss’ in our unsupervised case are unclear. Furthermore, as we show in Appendix
C, the term

[
log p̃t

q̃t
− L̄

]
gθ is high variance, and requires orders of magnitude more samples (or

lower learning rates) in order to get a useful gradient estimate. A technical way of viewing our
contribution in this paper is that we have shown that the

[
log p̃t

q̃t
− L̄

]
gθ term is largely redundant

and unnecessary for effective learning on our unsupervised objective, and that discarding it produces
substantial performance increases while allowing the parameter update to remain a completely local
synaptic plasticity rule for neural networks.

B.2 Backpropagation

Backpropagation (BP) cannot be performed for stochastic variables rt, because under an expectation,
these are integration variables with no explicit dependency on any parameters. For this reason, when
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computing a derivative of our loss using NVI∗, we differentiate the probability distribution, which
depends on network parameters. However, as we will show below, this straightforward method
can result in high variance parameter estimates. The classical alternative to NVI∗ is to perform the
‘reparameterization trick,’ in which a change of variables allows the use of stochastic gradient descent
with BP. This trick is largely responsible for the success of the variational autoencoder [10, 11],
though it is well known that BP does not produce synaptically local parameter updates. Here, we
use BP as an upper bound for comparison, with the understanding that local learning algorithms are
unlikely to be able to completely match its performance. Below, we review its calculation, starting
with changing our variable of integration.

It is worth noting that this ‘reparameterization’ will work only for additive Gaussian noise. As such,
applying BP to our network will only be possible for a restricted set of noise models, and can fail
in particular for Poisson-spiking network models, where IL, NVI∗, and WS will not. For each time
point, we define ηt = rt − r̄qt (θ, λ,η0:t−1, ξ0:t−1), where r̄qt (θ, λ,η0:t−1, ξ0:t−1) is the mean firing
rate conditioned on noise, stimulus, and λ values from previous time steps (given by q̃). Similarly,
we define ξt = st − s̄qt (θ, λ,η0:t−1, ξ0:t−1). This defines ηt and ξt as the noise added on top of
every firing rate and stimulus at time t. Instead of integrating over the rates and stimuli, we integrate
over these fluctuations, replacing each instance of rt with r̄qt (θ, λ,η0:t−1, ξ0:t−1) + ηt and st with
s̄qt (θ, λ,η0:t−1, ξ0:t−1) + ξt. We will refer to the mean parameters of p̃θ where these substitutions
have been made as r̄pt (θ, λ,η0:t−1, ξ0:t−1) and s̄qt (θ, λ,η0:t−1, ξ0:t−1). Our new random variables
have the probability distributions: p(ηt) = N (0, λtσ

inf
r + (1−λt)σgen

r ) and p(ξt) = N (0, λtσ
inf
s +

(1− λt)σgen
s ). Performing our change of variables gives:

−∇θL =−∇θ
∫

[log q̃θ − log p̃θ] q̃θ drds

=−∇θ
∫ [

log
∏
t

1

Z
exp(

−η2
t

2(λtσinf
s + (1− λt)σgen

s )2
)

]
p(η, ξ) dηdξ

−∇θ
∫ [

log
∏
t

1

Z
exp(

−ξ2
t

2(λtσinf
s + (1− λt)σgen

s )2
)

]
p(η, ξ) dηdξ

+∇θ
∫ [

log
∏
t

1

Z
exp(

−(r̄qt + ηt − r̄pt )
2

2((1− λt)σinf
r + λtσ

gen
r )2

)

]
p(η, ξ) dηdξ

+∇θ
∫ [

log
∏
t

1

Z
exp(

−(s̄qt + ξt − s̄pt )
2

2((1− λt)σinf
s + λtσ

gen
s )2

)

]
p(η, ξ) dηdξ

=Eη,ξ

[
∇θ
∑
t

− (r̄qt (θ,η, ξ) + ηt − r̄pt (θ,η, ξ))
2

2((1− λt)σinf
r + λtσ

gen
r )2

− (s̄qt (θ,η, ξ) + ξt − s̄pt (θ,η, ξ))
2

2((1− λt)σinf
s + λtσ

gen
s )2

]
,

(S9)

where the last equality follows from the fact that ηt and ξt have no dependence on the network
parameters. Now, the parameter dependence is contained in r̄qt , r̄

p
t , s̄qt , and s̄pt , all of which depend

on the mean firing rates at each previous time step: using BP to compute the gradients of these
mean parameters leads to nonlocal updates, which is the key reason BP is a biologically-implausible
algorithm [12]. For our simulations, we set λt = 1 ∀t, so that our parameter updates were equivalent
to minimizing the negative ELBO, and gradients were computed using Pytorch [13]. In subsequent
sections, we will show that weight updates computed using samples from this expectation will
generally have much lower variance than NVI∗.

B.3 Wake-Sleep

As already mentioned, WS can be viewed as a special case of IL. To show this, we can take λt = λ0 ∀t,
with p(λ0 = 0) = p(λ0 = 1) = 0.5 (for IL, λt alternates with phase duration K = 2). For this
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choice of λ, we follow our IL derivation (Eq. 5), and get:

−∇θL ≈ 2Eλ0,z

[∫ [∑
t

(1− λt)∇θ log qt + (λt)∇θ log pmt

]
q̃θ drds

]

= Ez

[∫ [∑
t

∇θ log qt

]
pm(r, s) drds +

∫ [∑
t

∇θ log pmt

]
q(r|s)p(s|z) drds

]
.

(S10)

Since WS is a special case of IL, the bias properties of its individual samples are identical. However,
typically WS weight updates are computed coordinate-wise, updating parameters for pm and q
separately, whose updates are computed after averaging over many samples. This can lead to behavior
that approximates the EM algorithm under restrictive conditions, a fact that is used in the proofs of
convergence of the WS algorithm for simple models [14]. Because our algorithm does not perform
coordinate descent, it is best viewed as an approximation to gradient descent with a well-behaved
bias, rather than an approximation of the EM algorithm.

The WS parameter updates can also be interpreted as synaptic plasticity at apical and basal dendrites
of pyramidal neurons, as with IL. The key difference is that WS requires lengthy phases where
λt = 1 ∀t (Wake) and where λt = 0 ∀t (Sleep). The requirement that the network remain in a
generative state while training the inference parameters θq would require a biological organism to
explicitly hallucinate while training its parameters. Though such generative states may be possible in
some restricted form, and WS could perfectly coexist with IL in a biological organism, we believe
the more general perspective afforded by IL is much more likely to correspond to biology than the
phase distinctions required by WS. The benefits to perceptual continuity given by IL over WS come
from its ability to leverage temporal predictability in both network states and stimuli by only staying
in a generative state for a brief period of time. However, for static images and neural architectures, IL
and WS are much more similar, effectively amounting to different schedules for updating generative
and inference parameters in alternating sequence.

C Estimator variance

In Appendix A, we explored the bias introduced by the approximations used in the derivation of IL.
Here, we consider the variance of sample weight updates, and compare to the variability of samples
obtained from more standard methods, in particular BP and NVI∗, whose sampling-based estimates
have can have very different variances [11].

To keep the analysis tractable, we will study a simple example: maximizing our modified KL diver-
gence between two time series composed of temporally-uncorrelated univariate normal distributions
with identical variance and different means: p(rt) ∼ N (µp, σ

2), q(rt) ∼ N (µq, σ
2). We define λt

such that p(λt = 0) = p(λt = 1) = 0.5 ∀t. This produces the two hybrid distributions:

p̃(r|λt) =

T∏
t=0

p(rt)
λtq(rt)

(1−λt) (S11)

q̃(r|λt) =

T∏
t=0

p(rt)
(1−λt)q(rt)

λt . (S12)

Using these hybrid distributions, we can write our objective function as:

L = Eλt [KL(q̃||p̃)] =

∫ [∫
(log q̃(r|λt)− log p̃(r|λt))q̃(r|λt)dr

]
p(λt)dλt. (S13)

We will show that our three methods: NVI∗, BP, and IL (which here will coincide exactly with WS),
all produce unbiased stochastic gradient estimates, with very different variance properties.

It is worth explicitly outlining why variance is such an important quantity for stochastic gradient
estimates. Suppose we obtain N independent samples of a weight update ∆µq , and want to compute
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the MSE of our estimated weight update to the true gradient, in expectation over samples:

MSE(∆µq) = E
∆µ

(n)
q

(− d

dµq
L − 1

N

N∑
n=0

∆µ(n)
q

)2


=

(
− d

dµq
L − E

∆µ
(n)
q

[
1

N

N∑
n=0

∆µ(n)
q

])2

+ V ar

[
1

N

N∑
n=0

∆µ(n)
q

]
. (S14)

Here, the equality follows from bias-variance decomposition of the mean-squared error. In our toy
example (but not in general) the biases for IL, BP, and NVI∗ will all be 0. This gives:

MSE(∆µq) = V ar

[
1

N

N∑
n=0

∆µ(n)
q

]
=
V ar

[
∆µ

(n)
q

]
N

. (S15)

Suppose we want the mean-squared error to be less than some value ε� 1. How many samples (N )
do we need to take to bring ourselves below this error on average? We have:

V ar
[
∆µ

(n)
q

]
N

< ε ⇒
V ar

[
∆µ

(n)
q

]
ε

< N. (S16)

This means that increases in the variance of a weight estimate require proportionate increases in the
number of samples required to reduce the error of the estimate. In practice, this requires high variance
methods to process more data and to have lower learning rates, in some cases by several orders of
magnitude. Even if a stochastic weight update is ‘local’ in a biologically-plausible sense, it may still
require so much data for learning to occur as to be completely impractical.

C.1 Comparing Variances

Analytic variance calculations are only possible for the simplest of examples, but the intuitions they
provide are nevertheless valuable. In the sections that follow, we will show that samples from all three
methods have exactly the same expectation (the ‘signal’), but only IL and BP agree on their variance,
while NVI∗ typically has much higher variance. For univariate normal distributions with identical
variance, the loss L = Eλ [KL(q̃||p̃)] = KL[q||p] = T (µp − µq)2/2σ2. Writing the variances in
terms of the loss, we have:

V arIL = V arBP =
T

σ2
(S17)

V arNVI =
T

2σ2
+
L

8σ2
(3T + 5) (S18)

This shows that for the most part, IL and BP hugely outperform NVI∗. However, it is possible for
NVI∗ to outperform these methods in the limit as L → 0 (a regime only achieved after successful
optimization). Here, as with our numerical results, we have incorporated two methods that partially
ameliorate the high variance of the NVI∗ estimate, which for reasonably low-dimensional tasks, can
still allow it to perform comparably to BP; however, NVI∗ is unlikely to scale well to high dimensions,
even with these additions. The purpose for our analysis is to show that these high variance difficulties
do not apply to IL, whose scaling properties are much closer to BP.

C.2 Backpropagation

Expectation We will focus only on d
dµq

for simplicity. Because the entropy of q̃ is constant with
respect to the mean µq, we don’t have to worry about the second term in the objective function.
Instead, we focus on:

− d

dµq
L =

d

dµq

∫ [∫
(log p̃(r|λ))q̃(r|λ)dr

]
p(λ)dλ

=
d

dµq

∑
t

[∫
1

2
(log p(rt))q(rt)drt +

∫
1

2
(log q(rt))p(rt)drt

]
= − d

dµq

∑
t

[∫
1

4σ2
((rt − µp)2)q(rt)drt +

∫
1

4σ2
((rt − µq)2)p(rt)drt

]
. (S19)
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At this point, we employ the ‘reparameterization trick,’ which reduces the variance of the weight
update relative to NVI∗. For the first integral we use the change of variables rt = µq + ηt, and for
the second integral we use the change of variables rt = µp + ηt, where ηt ∼ N (0, σ2). This gives:

− d

dµq
L = − d

dµq

T∑
t=0

[∫
1

4σ2
((µq + ηt − µp)2)p(ηt)dηt +

∫
1

4σ2
((µp + ηt − µq)2)p(ηt)dηt

]

= − d

dµq

T∑
t=0

∫
1

2σ2
((µq + ηt − µp)2)p(ηt)dηt

=

T∑
t=0

∫
1

σ2
(µp + ηt − µq)p(ηt)dηt. (S20)

Computing this expectation analytically, we have: − d
dµq
L = T

σ2 (µp−µq), which is unbiased, because
we have not employed any approximations. If we were to compute this expectation using samples
from p(ηt), each individual parameter update would be given by ∆µq ∝

∑T
t=0

1
σ2 (µp + ηt − µq) for

a given sample from η. Given our expected weight update, we now ask for the variance.

Variance The variance of a sample,
∑T
t=0

1
σ2 (µp + ηt − µq), is given by:

V ar(∆µq) =

∫ (
1

σ2
(

T∑
t=0

(µp + ηt − µq − (µp − µq)))

)2

p(ηt)dηt

=

∫ T∑
t=0

η2
t

σ4
p(ηt)dηt

=
T

σ2
. (S21)

C.3 Impression learning

Expectation We can use our previous derivation of the IL weight update to write:

− d

dµq
L ≈ 2

T∑
t=0

[∫ [
(1− λt)

d

dµq
log q(rt) + (λt)

d

dµq
log p

]
q̃(rt|λt)drt

]
p(λt)dλt

= 2

T∑
t=0

[∫
(1− λt)

d

dµq
log q(rt)]q̃(rt|λ)drt

]
p(λt)dλt

=

T∑
t=0

∫
d

dµq
log q(rt)p(rt)drt (S22)

where this last equality follows from the fact that q̃(rt|λ) = p(rt) whenever 1− λt = 1. Continuing
our derivation by substituting in log q(rt) and discarding constants, we have:

− d

dµq
L ≈

T∑
t=0

∫
− d

dµq

1

2σ2
(rt − µq)2p(rt)drt

=

T∑
t=0

∫
1

σ2
(rt − µq)p(rt)drt. (S23)

Computing this expectation analytically gives: − d
dµq
L ≈ T

σ2 (µp−µq). Interestingly, in this case, the
expected weight update coincides directly with the update given by BP, meaning that for this contrived
example, IL is unbiased. This is clearly not the case in general, but works because our simplified
network has no temporal interdependencies between variables and lacks hierarchical structure. In
fact, the IL update also directly corresponds to the WS update in this case for the same reason. As
with BP, we can ask about the variance of an individual sample of an update given by IL, assuming
∆µq ∝

∑T
t=0

1
σ2 (rt − µq).
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Variance The variance of a sample,
∑T
t=0

1
σ2 (rt − µq), is given by:

V ar(∆µq) =

∫ (
1

σ2
(

T∑
t=0

rt − µq − (µp − µq))

)2

p(rt)drt

=

∫
1

σ4
(

T∑
t=0

(rt − µp))2p(rt)drt

=

∫
1

σ4

T∑
t=0

T∑
t′=0

(rt − µp)(rt′ − µp)p(rt)drt

=

∫
1

σ4

T∑
t=0

(rt − µp)2p(rt)drt

=
T

σ2
, (S24)

where here we have exploited the fact that E[(rt − µp)(rt′ − µp)] = 0 ∀t 6= t′. This shows that for
this simple example, there is a perfect correspondence between both the expectation and the variance
of IL compared to BP.

C.4 Neural Variational Inference

Expectation The difference between NVI∗ and BP is that we do not use a change of variables.
Given our previous derivation of the NVI∗ update (Eq. S4), we have:

− d

dµq
L =

∫ [∫
d

dµq
log p̃(r|λt)q̃(r|λ) + (log p̃− log q̃) (

d

dµq
log q̃(r|λ))q̃(r|λ)dr

]
p(λt)dλt

=

∫ [∫ ( T∑
t=0

(1− λt)
σ2

(rt − µq) + (log p̃− log q̃)

T∑
t=0

λt
σ2

(rt − µq)

)
q̃(r|λ)dr

]
p(λt)dλt,

where the second equality follows from substituting in d
dµq

log p̃(r|λt) and d
dµq

log q̃(r|λ). Noting
that log p̃− log q̃ = log p− log q when λt = 1, we continue:

− d

dµq
L =

∫ [∫ ( T∑
t=0

(1− λt)
σ2

(rt − µq) + (log p− log q)

T∑
t=0

λt
σ2

(rt − µq)

)
q̃(r|λ)dr

]
p(λt)dλt

= Er,λ

[
T∑
t=0

(1− λt)
σ2

(rt − µq)−

(
T∑
t=0

(rt − µp)2 − (rt − µq)2

)
T∑
t=0

λt
2σ4

(rt − µq)

]

= Er,λ

[
T∑
t=0

(1− λt)
σ2

(rt − µq)−

(
T∑
t=0

2rt(µq − µp) + µ2
p − µ2

q

)
T∑
t=0

λt
2σ4

(rt − µq)

]
.

(S25)

At this point, we’ll allow ourselves to exploit the structure of our problem in two ways commonly
employed in NVI∗. First, we observe that the loss at a particular time step, 2rt(µq − µp) + µ2

p − µ2
q

is independent of rt′ −µq for t′ > t, i.e. fluctuations in variables at future time steps do not influence
the current loss. Incorporating this fact modifies our update to give:

− d

dµq
L = Er,λ

 T∑
t=0

(1− λt)
σ2

(rt − µq)−
T∑
t=0

∑
t′≤t

λt
2σ4

(
2rt(µq − µp) + µ2

p − µ2
q

)
(r′t − µq)

 .
(S26)
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Next, we notice that E
[∑

t′≤t
λt

2σ4 (r′t − µq)
]

= 0, so we can subtract from our update a ×∑
t′≤t

λt
2σ4 (r′t − µq) for some constant a, without modifying the expectation of our loss. Choosing

a constant a that will reduce the variance of the parameter update is a common technique used in
NVI∗, called using a ‘control variate’ [1, 2]. We notice that the average loss contributes nothing to
the expectation, so we take a = 2µq(µq − µp) + µ2

p − µ2
q , giving the improved-variance update:

− d

dµq
L = Er,λ

 T∑
t=0

(1− λt)
σ2

(rt − µq)−
T∑
t=0

∑
t′≤t

λt
σ4

(rt − µq)(µq − µp)(r′t − µq)

 . (S27)

Individual samples from this method of differentiation are more complicated (and higher variance)
than IL or BP. An individual sample would give:

∑T
t=0

(1−λt)
σ2 (rt − µq) −

∑T
t=0

∑
t′≤t

λt
σ4 (rt −

µq)(µq − µp)(r′t − µq). We’ll first compute the expectation of this expression (to verify that it is
equivalent to BP and IL), and then we’ll compute its variance. Continuing our calculation, we get:

− d

dµq
L = Er,λ

 T∑
t=0

1− λt
σ2

(rt − µq)−
T∑
t=0

∑
t′≤t

λt
σ4

(rt − µq)(µq − µp)(r′t − µq)


=

∫ T∑
t=0

(1− λt)
σ2

(rt − µq)p(r)dr +

∫
1

2σ4

T∑
t=0

∑
t′≤t

(rt − µq)(µp − µq)(r′t − µq)q(r)dr

=
T

2σ2
(µp − µq) +

∫
(µp − µq)

2σ4

T∑
t=0

∑
t′≤t

(rt − µq) (r′t − µq)q(r)dr

=
T

2σ2
(µp − µq) +

∫
(µp − µq)

2σ4

T∑
t=0

∑
t′≤t

(ηt) (ηt′)p(η)dη

=
T

2σ2
(µp − µq) +

∫
(µp − µq)

2σ4

T∑
t=0

η2
t p(η)dη

=
T

σ2
(µp − µq), (S28)

where the fourth equality comes from reparameterizing with the transformation ηt = rt − µq and
the fifth equality stems from the fact that E [ηt] = 0 and E [ηtηt′ ] = 0. This verifies that whether we
sample over r using the black-box differentiation method, or over η using the reparameterization
trick, or use IL, we will arrive at the same weight update in expectation. The variance of sample
estimates thus distinguishes IL from NVI∗ (on this example at least).

Variance Because of the NVI∗ sample estimate’s increased complexity, the variance calculation is
also much more involved:

V ar(∆µq) =Er,λ

[(
∆µq −

T

σ2
(µp − µq)

)2
]

=Er,λ


 T∑
t=0

(1− λt)
σ2

(rt − µq)−
T∑
t=0

∑
t′≤t

λt
2σ4

(rt − µq)(µq − µp)(r′t − µq)−
T

σ2
(µp − µq)

2


=
1

2

∫
1

σ4

T∑
t=0

(rt − µp)2p(r)dr

+
1

2

∫  1

2σ4

T∑
t=0

∑
t′≤t

(rt − µq)(µp − µq)(r′t − µq)−
T

σ2
(µp − µq)

2

q(r)dr,

(S29)
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where in this last step we have taken an expectation over λ, observing that the first term is only nonzero
if λt = 0, and the second term is only nonzero if λt = 1. Now we apply the reparameterization,
taking rt = ηt + µp in the first integral, and rt = ηt + µq in the second integral, giving:

V ar(∆µq) =
T

2σ2
+

1

2

∫  1

2σ4

T∑
t=0

∑
t′≤t

(ηt(µp − µq)) (ηt′)−
T

σ2
(µp − µq)

2

p(η)dη

=
T

2σ2
+

(µp − µq)2

2σ4

∫  1

2σ2

T∑
t=0

∑
t′≤t

ηtηt′ − T

2

p(η)dη

=
T

2σ2
+

(µp − µq)2

2σ4
Eηt


 1

2σ2

T∑
t=0

∑
t′≤t

ηtηt′

2

− T

σ2

 T∑
t=0

∑
t′≤t

ηtηt′

+ T 2


=

T

2σ2
+

(µp − µq)2

2σ4
Eηt


 1

2σ2

T∑
t=0

∑
t′≤t

ηtηt′

2

− T

σ2

(
T∑
t=0

η2
t

)
+ T 2


=

T

2σ2
+

(µp − µq)2

2σ4
Eηt


 1

2σ2

T∑
t=0

∑
t′≤t

ηtηt′

2


=
T

2σ2
+

(µp − µq)2

8σ8
Eηt

 T∑
t=0

T∑
t′=0

∑
t′′≤t

∑
t′′′≤t′

ηtηt′ηt′′ηt′′′


=

T

2σ2
+

(µp − µq)2

8σ8

T∑
t=0

T∑
t′=0

∑
t′′≤t

∑
t′′′≤t′

Eηt [ηtηt′ηt′′ηt′′′ ] . (S30)

Now, we notice that there are three mutually exclusive and exhaustive conditions under which this
expectation is nonzero, using the the fact that only the even moments of the normal distribution are
nonzero:

Eηt [ηtηt′ηt′′ηt′′′ ] =


σ4 if t = t′ and t′′ = t′′′ and t 6= t′′

σ4 if t = t′′ and t′ = t′′′ and t 6= t′

3σ4 if t = t′ = t′′ = t′′′

0 otherwise.

(S31)

These three different conditions result in three different sums:

V ar(∆µq) =
T

2σ2
+

(µp − µq)2

8σ8

 T∑
t=1

∑
t′<t

σ4 +

T∑
t=0

∑
t′ 6=t

σ4 +

T∑
t=0

3σ4


=

T

2σ2
+

(µp − µq)2

8σ8

(
σ4

T∑
t=1

(t) + T (T − 1)σ4 + 3Tσ4

)

=
T

2σ2
+

(µp − µq)2

8σ8

(
1

2
T (T + 1)σ4 + T (T − 1)σ4 + 3Tσ4

)
=

T

2σ2
+

(µp − µq)2

16σ4

(
3T 2 + 5T

)
=

T

2σ2
+
L

8σ2
(3T + 5) , (S32)

where the third equality follows from the arithmetic series identity:
∑T
t=1(t) = 1

2T (T + 1).
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D Multilayer Network Architecture

Here we outline the architecture for the 2-layer network used for processing the Free Spoken Digits
dataset [15] in Figure 4.

D.1 Model structure

Our inference architecture simply adds an additional feedforward layer of neurons to the network:

sinf
t = zt + σinf

s ξt (S33)

rinf1
t = f(W1st + a) + σinf

1 η1
t (S34)

rinf2
t = f(W2r

inf1
t ) + σinf

2 η2
t , (S35)

where Wl denotes the feedforward weights from layer l− 1 to layer l, a is an additive bias parameter,
η1
t ,η

2
t , ξt ∼ N (0, 1) are independent white noise samples, σinf

1 , σinf
2 , and σinf

s denote the inference
standard deviations for their respective layers, and the nonlinearity f(·) is the tanh function. The
multilayer generative model includes an additional feedforward decoder step:

rgen2
t = ((1− kt)D2 + ktI)) rt−1 + σgen

2 η2
t (S36)

rgen1
t = f(D1r

gen2
t + b) + σgen

1 η1
t (S37)

sgen
t = f(Dsr

gen1
t ) + σgen

s ξt, (S38)

where D2 is a diagonal transition matrix, D1 and Ds are prediction weights to their layers from
higher layers, b is an additive bias parameter, I is the identity matrix, and σgen

1 , σgen
2 , and σgen

s denote
the generative standard deviations for their layers. We define kt as in the 1-layer network. Also in
keeping with the basic model, during simulation, samples are determined by a combination of pm
and q, given by q̃θ:

r2
t = λtr

inf2
t + (1− λt)rgen2

t (S39)

r1
t = λtr

inf1
t + (1− λt)rgen1

t (S40)

st = λts
inf
t + (1− λt)sgen

t . (S41)

D.2 Parameter updates

Adding additional layers to our model does not change the fact that the parameter updates can be
interpreted as local synaptic plasticity rules at the basal (for q) or apical (for p) compartments of our
neuron model. Plugging our probability models into the equation for the IL parameter update (Eq.
5), calculating derivatives, and updating our parameters stochastically at every time step as with our
basic model gives:

∆W
(ij)
1 ∝ 1− λt

(σinf
1 )2

((r1
t )

(i) − f(W1st + a)(i))f ′(W1st + a)(i)s
(j)
t (S42)

∆a(i) ∝ 1− λt
(σinf

1 )2
((r1

t )
(i) − f(W1st + a)(i))f ′(W1st + a)(i) (S43)

∆W
(ij)
2 ∝ 1− λt

(σinf
2 )2

((r2
t )

(i) − f(W2r
1
t )

(i))f ′(W2r
1
t )

(i)(r1
t )

(j) (S44)

∆D
(ii)
2 ∝ λt(1− kt)

(σgen
2 )2

((r2
t )

(i) − (D2r
2
t−1)(i))(r2

t−1)(i) (S45)

∆D
(ij)
1 ∝ λt

(σgen
s )2

((r1
t )

(i) − f(D1r
2
t + b)(i))f ′(D1r

2
t + b)(i)(r2

t )
(j) (S46)

∆b(i) ∝ λt
(σgen
s )2

((r1
t )

(i) − f(D1r
2
t + b)(i))f ′(D1r

2
t + b)(i) (S47)

∆D(ij)
s ∝ λt

(σgen
s )2

(sit − f(Dsr
1
t )

(i))f ′(Dsr
1
t )

(i)(r1
t )

(j). (S48)
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Figure S1: Additional variations on the phase duration. a. Comparison of ELBO loss for IL
(black) to WS with a 1000 time step phase duration (gray) over training. b. Comparison of an
example neuron’s activity through time when the network is in inference mode (green, λt = 1) and
when the network is alternating phase, spending 2 time steps in the inference phase, and two time
steps the generative phase (blue); the random seed and stimuli are identical in both cases. c. Same as
b, but the alternating network spends 32 time steps in the inference phase. d. The correlation across
time between neurons in inference mode vs. while alternating phase, for identical random seeds. The
inference duration is incremented, while the generative duration is kept constant at 2 time steps. Inset
shows the loss for an inference duration of 2 (blue) compared to the loss for an inference duration of
32 (pink).
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contributions and scope? [Yes] We provide a derivation of our online learning algorithm
(Section 2), and demonstrate its relationships (Appendix B) and relative performance
(Fig. 2) to existing algorithms (WS, BP, NVI∗). We also demonstrate impression
learning’s online learning capabilities (Fig. 3) and scalability to naturalistic stimuli
(Fig. 4).

(b) Did you describe the limitations of your work? [Yes] We describe several limitations
and possible extensions of our work in the Discussion (Section 4).

(c) Did you discuss any potential negative societal impacts of your work? [N/A] IL is a
theoretical development intended to provide insight into brain function; as such, we
do not foresee it having any substantial negative societal impacts. Our hope is that
by demonstrating how artificial neural networks of pyramidal neurons can use their
dendritic compartments and synaptic plasticity to learn models of their sensory data
online, we have come closer to an understanding of how unsupervised learning can
occur in early sensory systems in the brain, and will inform experiments attempting to
further elucidate the brain’s learning processes.).
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(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] The
code used to produce the main experimental results can be found here: https:
//github.com/colinbredenberg/Impression-Learning-Camera-Ready

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
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simulations.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the Free
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(b) Did you mention the license of the assets? [Yes] The Free Spoken Digit Dataset uses a

Creative Commons Attribution-ShareAlike 4.0 International license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code and the data used for training are linked in the main text.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
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