
A Empirical Observations on Superlinear Convergence

In this section, we empirically verify the superlinear convergence of HyperLISTA with the switch
to conjugate gradient iterations. We apply HyperLISTA to problems with a smaller size: m =
50, n = 100. The non-zero elements in the sparse vectors take value 1, instead of following Gaussian
distribution in previous experiments. Specifically, we discard support selection in this experiment.
Note that setting c3 = 0 in Equation (6), which corresponds to HyperLISTA without support selection,
is also in the search space and hence a reasonable option. In this case, we switch to conjugate gradient
iterations when the recovered sparse vectors converge to fixed supports for 10 iterations and stop the
algorithm as the error is smaller than −250 dB. The supports are estimated by filtering the non-zero
elements in the recovered vectors that are smaller than 10% of the maximal magnitudes.

In a single sample testing case shown in Figure 7, the algorithm switches to conjugate gradient itera-
tions after the 12th layer and hence we see an accelerated convergence afterwards. This superlinear
convergence rate is also observable on a set of 100 testing samples as shown in Figure 8.
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Figure 7: Convergence of HyperLISTA on a sin-
gle sample.
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Figure 8: Convergence of HyperLISTA on 100
testing samples.

B Compressive Sensing Experiments on Natural Images

In this section, we conduct a set of compressive sensing experiments on natural images, following a
similar setting in [7]. We randomly extract 16x16 patches (flatten into 256-dim vectors then) from
the BSD500 dataset [20] to form a training set of 51,200 patches, a validation and a test set of 2,048
patches respectively.

We compressively measure the image signals (256-dim vectors) using a random Gaussian matrix
Φ ∈ R128×256. We do not add measuring noises. We apply a dictionary learning algorithm in [34] to
the training patches of BSD to learn a matrix T ∈ R256×512, where we assume any patch in a natural
image can be represented by a sparse combination of the columns in T . We then use A = ΦT as the
dictionary A in (1). In summary, we denote the image patch as f . The measurement we observe,
which is also the input to the network, is generated by b = Φf . We assume that there exists a sparse
vector x∗ that satisfies f ≈ Tx∗ and hence b ≈ Ax∗ = ΦTx∗. We apply different methods to
recover x∗ from measurement b and then reconstruct the image patch by multiplying the recovered
sparse vector with T .

Because we do not have access to the underlying ground truth x∗ in this real-world scenario, we
instead use the LASSO objective function as the loss function for training (of LISTA/ALISTA) or
searching (of HyperLISTA), i.e.,

Loss = E
[

1

2
‖b−Ax̂(b)‖22 + λ‖x̂(b)‖1

]
, (26)

where x̂(b) is the sparse vector recovered from the measurement b and λ is the sparsity regularization
coefficient. We set λ = 0.05 in the experiment. We then reconstruct the image signal by f̂ = T x̂.

We train LISTA and ALISTA [18], and perform grid search to find optimal hyperparameters in
HyperLISTA. These three models all have 16 layers. The model performance is evaluated by the
average PSNR of the reconstructed images on the standard testing images in Set 11 used in Recon-Net
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Figure 9: We visually present the recovered images using 1,000 iterations of FISTA and 16-layer
ALISTA and HyperLISTA. We can see that HyperLISTA has much less artifacts at the boundaries of
patches.

Method FISTA
16 iters

FISTA
1,000 iters LISTA Recon-Net ALISTA HyperLISTA

PSNR (dB) 29.87 30.92 30.85 31.39 32.24 33.46

[17]. The results are shown in the table below, where we also compare with FISTA and Recon-Net.
HyperLISTA outperforms other baselines by clear margins. Note that the performance of LISTA
is lower than that reported in [7] where 4,000,000 patches are used for training, while we only use
51,200 training patches. We provide visual results of the recovered images in Figure 9, where we can
also see HyperLISTA has less patching artifacts compared to ALISTA and FISTA.

C Numerical Algorithm to Calculate Symmetric Dictionary

In this section, we describe how we solve the optimization problem (10):

min
G,D
‖DTD − I‖2F +

1

α
‖D −GA‖2F , s.t. diag(DTD) = 1.

Inspired by [19], we use an alternative update algorithm to solve the above problem. Specifically, we
first fix G and update D with projected gradient descent (PGD):

D ← P
(
D − ζD

(
DTD − I

)
− ζ

α
(D −GA)

)
, (27)

where P is the projection operator on the constraint diag(DTD) = 1: normalizing each column
of D. Scalar ζ > 0 is the step size. Secondly, we fix D and calculate the minimizer of G with
closed-form solution:

G←DA+, (28)

Directly using such alternative update algorithm is usually slow when α is small since the condition
number is large. However, if we choose α as a large number, the difference between D and GA
is not enough penalized. Thus, we use first set α as a large number and solve (10) with (27) and
(28). As long as we detect convergence, we tune α as a smaller number. Repeat the procedure until
D ≈ GA. The whole algorithm is described in Algorithm 2.

14



Algorithm 2: Dictionary Solver
Input: The original dictionary A.
Initialize :D = A,G = I . ζ = α = 0.1.

1 for j = 0, 1, 2, . . . until convergence do
2 Update D with (27).
3 Update G with (28).
4 Calculate f1 = ‖DTD − I‖2F .
5 Calculate f2 = ‖(GA)TGA− I‖2F
6 if Two consecutive f1s are close enough then
7 α← 0.1α.
8 ζ ← 0.1ζ.
9 if f1 and f2 are close enough then

10 break
11 end
12 end
13 end

Output: D

D Proof of Theorem 1

Proof. At the beginning of the proof, we define some constants depending on µ, s,B,B:

β̄ :=
(
1−

√
1− 2µs+ µ

)2
, (29)

C0 := max
(

1,
5(1 + β̄)(

4β̄ − (β̄ − µs+ µ)2
)
(2µs− µ)

)√
sB, (30)

K̃0 :=
⌈ log(B)− log(2C0)

log(2µs− µ)

⌉
+ 1, (31)

In the statement of the theorem, we assume “noise level σ small enough." Here we give the specific
condition on σ:

σ ≤ min
(B

2
,
√
sB(2µs− µ)K̃0

)1− 2µs+ µ

2sCW
. (32)

Then we define the parameters we choose in the proof:

θ(k) =µ sup
(x∗,ε)∈X (B,B,s,σ)

{
‖x(k) − x∗‖1 + CWσ

}
, (33)

γ(k) =1, (34)

β(k) =

{
0, k ≤ K̃0

β̄, k > K̃0
(35)

p(k) = min
( k

K̃0

n, n
)
, (36)

It is easy to check that the conclusion (16) in the theorem is satisfied.

The whole proof scheme consists of several steps: proving no false positives for all k; proving the
conclusion for k ≤ K̃0; and proving the conclusion for k > K̃0.

Step 1: no false positives. Firstly, we take an (x∗, ε) ∈ X (B,B, s, σ). Let S = support(x∗). We
want to prove by induction that, as long as (33) holds, x(k)

i = 0,∀i /∈ S,∀k (no false positives). The
statement in the theorem gives x(0) = 0. We follow the same proof line with that in [7] and obtain
x(1) = 0. Fixing k ≥ 1, and assuming x(t)

i = 0,∀i /∈ S, t = 0, 1, 2, · · · , k, we have

x
(k+1)
i =ηp

(k)

θ(k)

(
x

(k)
i − (W:,i)

T (Ax(k) − b) + β(k)
(
x

(k)
i − x

(k−1)
i

))
=ηp

(k)

θ(k)

(
−
∑
j∈S

(W:,i)
TA:,j(x

(k)
j − x

∗
j ) + (W:,i)

T ε
)
, ∀i /∈ S.
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By the definition of µ:

µ = max
i 6=j

∣∣∣(D:,i)
TD:,j

∣∣∣ = max
i 6=j

∣∣∣(DTD)i,j

∣∣∣ = max
i 6=j

∣∣∣(W TA)i,j

∣∣∣, (37)

we have
µ‖x(k) − x∗‖1 ≥

∣∣∣−∑
j∈S

(W:,i)
TA:,j(x

(k)
j − x

∗
j )
∣∣∣, ∀i /∈ S.

By the definition of CW , we have

CWσ ≥ max
1≤j≤m

∣∣Wj,i

∣∣ · ‖ε‖1 ≥ ∣∣∣(W:,i)
T ε
∣∣∣, ∀i = 1, · · · , n.

Then we can obtain a lower bound for the threshold θ(k):

θ(k) ≥ µ‖x(k) − x∗‖1 + CWσ ≥
∣∣∣−∑

j∈S
(W:,i)

TA:,j(x
(k)
j − x

∗
j ) + (W:,i)

T ε
∣∣∣,

which implies x(k+1)
i = 0,∀i /∈ S by the definition of ηp

(k)

θ(k) in (6). By induction, we have

x
(k)
i = 0,∀i /∈ S, ∀k. (38)

Step 2: analysis for k ≤ K̃0. Since β(k) = 0 as k ≤ K̃0, ALISTA-MM reduces to ALISTA. One
can easily follow the proof line of Theorem 3 in [7] to obtain

‖x(k) − x∗‖2 ≤ sB(2µs− µ)k +
2sCW

1 + µ− 2µs
σ

Here we introduce a new proof method to obtain a better bound:

‖x(k) − x∗‖2 ≤
√
sB(2µs− µ)k +

2sCW
1 + µ− 2µs

σ. (39)

To start our proof, we combine ALISTA-Momentum formula (12) and (38) and obtain

x
(k+1)
S = ηp

(k)

θ(k)

(
x

(k)
S − (W:,S)T (A:,Sx

(k)
S − b) + β(k)

(
x

(k)
S − x

(k−1)
S

))
.

With b = Ax∗ + ε, we have

x
(k+1)
S = ηp

(k)

θ(k)

(
x

(k)
S − (W:,S)TA:,S(x

(k)
S − x∗S) + (W:,S)T ε+ β(k)

(
x

(k)
S − x

(k−1)
S

))
.

To analyze the thresholding operator ηp
(k)

θ(k) , we define v(k) elementwisely as (The set Sp
(k)

is defined
in (7).):

v
(k)
i


∈ [−1, 1] if i ∈ S, x(k+1)

i = 0

= sign
(
x

(k+1)
i

)
if i ∈ S, x(k+1)

i 6= 0, i /∈ Sp(k)(
x(k+1)

)
,

= 0 if i ∈ S, x(k+1)
i 6= 0, i ∈ Sp(k)(

x(k+1)
)
.

(40)

Given (40), we have

x
(k+1)
S = x

(k)
S − (W:,S)TA:,S(x

(k)
S − x∗S) + β(k)

(
x

(k)
S − x

(k−1)
S

)
+ (W:,S)T ε− θ(k)v(k), ∀k ≥ 1.

(41)

Subtracting x∗ from the both sides of (41), we obtain

x
(k+1)
S − x∗S =

(
(1 + β(k))IS − (W:,S)TA:,S

)
(x

(k)
S − x∗S)− β(k)

(
x

(k−1)
S − x∗S

)
+ (W:,S)T ε− θ(k)v(k).

(42)

The first term of the above line can be bounded by∥∥∥(W:,S)T ε
∥∥∥

2
≤
∥∥∥(W:,S)T ε

∥∥∥
1
≤
∑
i∈S

∣∣∣(W:,i)
T ε
∣∣∣ ≤ sCWσ.

16



To analyze the norm of vector v(k), we define

S(k)(x∗, ε) =
{
i|i ∈ S, x(k+1)

i 6= 0, i ∈ Sp
(k)

(x(k+1))
}
,

S
(k)

(x∗, ε) =S\S(k),

(43)

where S(k) depends on x∗ and ε because x(k+1) depends on x∗ and ε. Given this definition, we have

‖v(k)‖2 ≤
√
|S(k)

(x∗, ε)|.

As k ≤ K̃0, β(k) = 0 (35), equation (42) implies

‖x(k+1)
S −x∗S‖2 ≤

∥∥IS−(W:,S)TA:,S

∥∥
2
‖x(k)

S −x∗S‖2 +sCWσ+θ(k)

√
|S(k)

(x∗, ε)|, k ≤ K̃0.

The definition of µ (37) means each off-diagonal element of matrix W TA is no greater than µ.
Thus, the sum of all off-diagonal elements of matrix (W TA)S,S is no greater than µ(|S| − 1). The
diagonal elements of matrix IS− (W TA)S,S are actually zeros by the definition of W in (10). Then
Gershgorin circle theorem [14] implies

‖IS − (W TA)S,S‖2 ≤ µ(|S| − 1) ≤ µ(s− 1). (44)

Since x(k)
i = 0,∀i /∈ S, we have ‖x(k) −x∗‖2 = ‖x(k)

S −x∗S‖2 for all k. Taking supremum on both
sides of inequality (41) over (x∗, ε) ∈ X (B,B, s, σ), we have

sup
(x∗,ε)∈X (B,B,s,σ)

‖x(k+1) − x∗‖2 ≤
(
µ(s− 1)

)
sup

(x∗,ε)∈X (B,B,s,σ)

‖x(k) − x∗‖2 + sCWσ

+ θ(k)

√
sup

(x∗,ε)∈X (B,B,s,σ)

|S(k)
(x∗, ε)|.

Since S
(k)

is a subset of S, it holds that∣∣∣S(k)
(x∗, ε)

∣∣∣ ≤ |S| ≤ s.
By the definition of θ(k) in (22), it holds that

θ(k) = sup
(x∗,ε)∈X (B,B,s,σ)

{
µ‖x(k) − x∗‖1

}
+ CWσ

≤ sup
(x∗,ε)∈X (B,B,s,σ)

{
µ
√
s‖x(k) − x∗‖2

}
+ CWσ

Combining the above inequalities, we get

sup
x∗∈X (B,B,s)

‖x(k+1) − x∗‖2 ≤
(
2µs− µ

)
sup

x∗∈X (B,B,s)

‖x(k) − x∗‖2 + 2sCWσ.

Denoting e(k) = sup(x∗,ε)∈X (B,B,s,σ) ‖x(k) − x∗‖2, applying the above inequality repeatedly as
k = 0, 1, 2, · · · , we obtain

e(k) ≤
(
2µs− µ

)k
e(0) + 2sCWσ

( k∑
t=0

(2µs− µ)t
)

≤
(
2µs− µ

)k
e(0) +

2sCW
1 + µ− 2µs

σ.

Since x(0) = 0, the term e(0) can be bounded by

e(0) = sup
(x∗,ε)∈X (B,B,s,σ)

‖x∗‖2 ≤
√
sB ≤ C0.

Then we conclude with

‖x(k) − x∗‖2 ≤ C0(2µs− µ)k +
2sCW

1 + µ− 2µs
σ, ∀k ≤ K̃0.
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Step 3: analysis for k > K̃0.

Define
δxS =

(
(W:,S)TA:,S

)−1

(W:,S)T ε, xS = x∗S + δxS . (45)

It can be proved that

‖δxS‖2 ≤
1

1 + µ− µs
‖(W:,S)T ε‖2 ≤

1

1 + µ− µs
‖(W:,S)T ε‖1 ≤

sCW
1 + µ− µs

σ. (46)

Then (41) can be rewritten as

x
(k+1)
S = x

(k)
S − (W:,S)TA:,S(x

(k)
S − xS) + β(k)

(
x

(k)
S − x

(k−1)
S

)
− θ(k)v(k).

Subtracting xS from both sides of the above formula, we obtain

x
(k+1)
S − xS =

(
(1 + β(k))IS − (W:,S)TA:,S

)
(x

(k)
S − xS)− β(k)

(
x

(k−1)
S − xS

)
− θ(k)v(k).

Plug β(k) = β̄ for k > K̃0 (35) into the above equation. We obtain[
x

(k+1)
S − xS
x

(k)
S − xS

]
︸ ︷︷ ︸

z(k)

=

[
(1 + β̄)IS − (W:,S)TA:,S −β̄IS

IS 0

]
︸ ︷︷ ︸

M

[
x

(k)
S − xS

x
(k−1)
S − xS

]
︸ ︷︷ ︸

z(k−1)

−θ(k)

[
v(k)

0

]
. (47)

We claim that M can be decomposed with

M = TΛMT−1, (48)

where T ∈ C2|S|×2|S| is nonsingular and ΛM ∈ C2|S|×2|S| is diagonal and they satisfy

‖ΛM‖2 =

√
β̄,

‖T‖2 ≤
√

2 + 2β̄,

‖T−1‖2 ≤
√

2 + 2β̄

2(4β̄ − (β̄ − µs+ µ)2)
.

(49)

We will prove claims (48) and (49) later in step 4. Note that matrix M and its decomposition (48)
are not uniform for different instances that satisfy Assumption 1, but the upper bounds in (49) are
uniform for all instances that satisfy |S| ≤ s and s ≤ (1 + 1/µ)/2. This is why we do not only
calculate the spectral norm of M as the standard heavy-ball momentum proof: we want to get an
uniform bound for all instances but not a specific bound for each instance.

Since M is not symmetric, (47) indicates that ‖x(k)
S −xS‖2 is NOT monotonically decreasing due to

the momentum term. Thus, v(k) = 0 cannot imply v(k+1) = 0. We have to estimate the upperbound
of ‖x(k)

S − xS‖2 by induction:

• First we prove that v(k) = 0 as k = K̃0.

• Then we prove that, if we assume v(t) = 0 for all t satisfies K̃0 ≤ t ≤ k(k > K̃0), we have

‖x(k+1)
S − xS‖2 ≤ C0(2µs− µ)K̃0

(
1−

√
1− 2µs+ µ

)k+1−K̃0

and v(k+1) = 0.

Now we prove the above two points one-by-one.

First we want to show that v(k) = 0 as k = K̃0. The definition of K̃0 (31) implies

C0(2µs− µ)K̃0 < B/2.

The assumption on σ (32) implies

2sCW
1− 2µs+ µ

σ ≤ B/2.
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As k = K̃0, it holds that, for all i ∈ S

|x(k)
i − x

∗
i | ≤ ‖x(k) − x∗‖2 ≤ C0

(
2µs− µ

)k
+

2sCW
1− 2µs+ µ

σ < B. (50)

Definition of p(k) in (36) implies p(k) = n for k ≥ K̃0. Based on the definition of η operator (6) and
(7), we have Sp

(k)

= {1, 2, · · · , n} and the operator ηp
(k)

θ(k) is actually a hard thresholding. The above

inequality (50), combined with |x∗|i ≥ B > 0, implies x(k)
i 6= 0, i ∈ S. Since p(k) = n, we have

i ∈ S(k)(x∗, ε) for all i ∈ S according to (43). In another word, v(k) = 0 as k = K̃0.

Second, we assume assume v(t) = 0 for all K̃0 ≤ t ≤ k and analyze the variables for k+1. Equation
(47) and the assumption v(t) = 0 and the matrix decomposition (48) lead to

T−1z(t) = ΛMT−1z(t−1), K̃0 ≤ t ≤ k.

Then we have

T−1z(k) =
(

ΛM

)k+1−K̃0

T−1z(K̃0−1).

Thus, it holds that

‖z(k)‖2 ≤ ‖ΛM‖k+1−K̃0
2 ‖T‖2‖T−1‖2‖z(K̃0−1)‖2 ≤

(1 + β̄)‖z(K̃0−1)‖2
4β̄ − (β̄ − µs+ µ)2

(√
β̄
)k+1−K̃0

.

By (46), (39) and (32), we have

‖z(K̃0−1)‖2 ≤ 2‖x(K̃0−1) − x‖2 ≤ 2‖x(K̃0−1) − x∗‖2 + 2‖δxS‖2 ≤ 5
√
sB(2µs− µ)K̃0−1.

Consequently,

‖x(k+1)
S − xS‖2 ≤ ‖z(k)‖2 ≤ C0(2µs− µ)K̃0

(
1−

√
1− 2µs+ µ

)k+1−K̃0

.

The definition of K̃0 (31) gives

C0(2µs− µ)k < B/2, ∀k ≥ K̃0.

It’s easy to check that the following inequality holds for all s ≤ (1 + 1/µ)/2:

1−
√

1− 2µs+ µ < 2µs− µ.

We conclude that

|x(k+1)
i − xi| ≤ ‖x(k+1)

S − xS‖2 ≤ C0(2µs− µ)k+1 < B/2, ∀i ∈ S.

With similar arguments as (50), we obtain

|x(k+1)
i − x∗i | ≤ |x

(k+1)
i − xi|+ |δxi| < B/2 +B/2 = B, ∀i ∈ S

and then v(k+1) = 0.

The induction proof is finished and we conclude that, for all k > K̃0,

‖x(k) − x∗‖2 ≤‖x(k)
S − xS‖2 + ‖δxS‖2

≤C0(2µs− µ)K̃0

(
1−

√
1− 2µs+ µ

)k+1−K̃0

+
sCW

1 + µ− µs
σ.

As long as we prove (48) and (49), we can finish the whole proof. Proofs of (48) and (49) are actually
an estimate of the spectrum of matrix M and given in “Step 4."

Step 4: spectrum analysis for M. Since W TA is parameterized in a symmetric way (Section
3.1), its submatrix (W:,S)TA:,S is a real symmetric matrix and, consequently, it is orthogonal
diagonalizable in the real space:

(W:,S)TA:,S = UΛUT
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where U ∈ R|S|×|S| is orthogonal and Λ ∈ R|S|×|S| is diagonal. The matrix Λ is defined as
Λ = diag(λ1, λ2, · · · , λ|S|) and its elements are singular values of (W:,S)TA:,S . Thus, it holds that

M =

[
U
(
(1 + β̄)IS −Λ

)
UT −U

(
β̄IS

)
UT

U
(
IS
)
UT 0

]
=

[
U 0
0 U

] [
(1 + β̄)IS −Λ −β̄IS

IS 0

] [
UT 0
0 UT

]
.

By properly permuting the index, we obtain

M =

[
U 0
0 U

]
P

B1

B2

· · ·
B|S|

P−1

[
UT 0
0 UT

]
(51)

where P is a permutation operator with ‖P‖2 = 1 and the blocks Bi is defined as

Bi =

[
1 + β̄ − λi −β̄

1 0

]
, ∀i = 1, 2, · · · , |S|. (52)

The two eigenvalues and eigenvectors of Bi can be calculated explicitly:

λBi,1 =
1

2
(1 + β̄ − λi +

√
(1 + β̄ − λi)2 − 4β̄)

λBi,2 =
1

2
(1 + β̄ − λi −

√
(1 + β̄ − λi)2 − 4β̄)

vBi,1 =

[
λBi,1

1

]
, vBi,2 =

[
λBi,2

1

]
Define

δ(λ; β̄) = (1 + β̄ − λ)2 − 4β̄

that is a one dimensional quadratic function for λ. It is convex and its critical point is λ? = 1 + β̄. It
has two zero points (1 ±

√
β̄)2. According to (44), the eigenvalues of (W:,S)TA:,S are bounded

within the following interval

1− µ(s− 1) ≤ λi ≤ 1 + µ(s− 1), ∀i = 1, 2, · · · , |S|.
It’s easy to check that the maximum of δ(λ; β̄) function is taken at the left boundary:

arg max
λ∈[1−µ(s−1),1+µ(s−1)]

δ(λ; β̄) = 1− µ(s− 1).

Since it holds that
1− µ(s− 1) > 1− 2µs+ µ = (1−

√
β̄)2,

we obtain
δ
(

1− µ(s− 1); β̄
)
< δ
(

(1−
√
β̄)2; β̄

)
= 0.

Thus,
δ(λi; β̄) < 0,∀i = 1, 2, · · · , |S|,

which implies that eigenvalues of Bi has nonzero imaginary part and the two eigenvalues are complex
conjugate. The magnitudes of the two eigenvalues can be calculated with

|λBi,1|2 = |λBi,2|2 =
1

4

(
(1 + β̄ − λi)2 − (1 + β̄ − λi)2 + 4β̄

)
= β̄.

Define the imaginary part of λBi,1 and λBi,2 as ∆i = −δ(λi; β̄), that can be lower bounded by

∆i ≥ 4β̄ − (β̄ − µs+ µ)2 > 0.

Concatenate the two eigenvectors together: Vi = [vBi,1,vBi,2] and the two eignevalues: ΛBi =[
λBi,1

λBi,2

]
. Then we have

Bi = ViΛBi
(Vi)

−1
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Upper bounds for ‖Vi‖2 and ‖(Vi)
−1‖2:

‖Vi‖2 =

∥∥∥∥ [λBi,1 λBi,2

1 1

] ∥∥∥∥
2

≤
√

2 + 2β̄

‖(Vi)
−1‖2 ≤

1

|λBi,1 − λBi,2|

∥∥∥∥ [ 1 −λBi,2

−1 λBi,1

] ∥∥∥∥
2

≤
√

2 + 2β̄

2(4β̄ − (β̄ − µs+ µ)2)

Concatenate the blocks together:

B =

[
B1

· · ·
B|S|

]
,ΛM =

ΛB1

· · ·
ΛB|S|

 ,V =

[
V1

· · ·
V|S|.

]
We have

M =

[
U 0
0 U

]
PV︸ ︷︷ ︸

T

ΛM (V)−1P−1

[
UT 0
0 UT

]
︸ ︷︷ ︸

T−1

and upper bounds for 2-norms of T and T−1:

‖T‖2 ≤ ‖V‖2 ≤ max
i=1,2,··· ,|S|

‖Vi‖2 ≤
√

2 + 2β̄,

‖T−1‖2 ≤ ‖V−1‖2 ≤ max
i=1,2,··· ,|S|

‖(Vi)
−1‖2 ≤

√
2 + 2β̄

2(4β̄ − (β̄ − µs+ µ)2)
.

Claims (48) and (49) are proved. With the analysis in step 3, we finish the whole proof.

E Proof of Theorem 2

To start the proof, we define some constants depending on µ, s,B,B:

C1 := max
(
C0,

1 + µs− µ
1− µs+ µ

√
sB
)
, (53)

K̃1 :=
⌈ log(B)− log(2C1)

log(2µs− µ)

⌉
+ 2, (54)

In the statement of the theorem, we assume “noise level σ is small enough." Here we give the specific
condition on σ:

σ ≤ min
(B

2
,
√
sB(2µs− µ)K̃1

)1− 2µs+ µ

2sCW
. (55)

Proof. We first define parameters we choose in the proof:

θ(k) =γ(k)
(
µ‖x(k) − x∗‖1 + CWσ

)
, (56)

p(k) = min
( k

K̃0

n, n
)
, (57)

The other two parameters γ(k), β(k) follow (34), (35) respectively as k ≤ K̃1; γ(k), β(k) follow the
step size and momentum rules in Conjugate Gradient (CG) respectively as k > K̃1:

r(k) =(W:,S)T
(
A:,Sx

(k)
S − b

)
α(k) =‖r(k)‖22/‖r(k−1)‖22

d(k) =

{
r(k), k = K̃1 + 1

r(k) + α(k)d(k−1), k > K̃1 + 1

γ(k) =‖r(k)‖22/
((

W:,Sd
(k)
)T

A:,Sd
(k)
)

β(k) =

{
0, k = K̃1 + 1

α(k)γ(k)/γ(k−1), k > K̃1 + 1.

(58)
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As k ≤ K̃1, we follow the same proof line with Theorem 1 and obtain that x(k) is close enough to x∗

as k = K̃1 and it enters a small neighborhood of x∗ where supp(x(k)) = supp(x∗). Moreover, the
‘no false positive” conclusion also holds with the new instance-adaptive thresholds (56). Consequently,
plugging (58) into (12), one can easily check that (12) is equivalent with applying a conjugate gradient
(CG) method starting from k = K̃1 + 1 on the linear system

(W:,S)T
(
A:,SxS − b

)
= 0. (59)

We parameterize our system in a symmetric way (Section 3.1): (W:,S)TA:,S = (DTD)S,S . And
(DTD)S,S is positive definite according to (44) and s < (1 + 1/µ)/2. Thus, the linear system (59)
is a symmetric and positive definite system with solution xS . It is well known that the conjugate
gradient method on a symmetric and positive definite system has some important properties:

1. ‖x(k)
S − xS‖2 is not monotone, but ‖D:,S(x

(k)
S − xS)‖2 is monotonic nonincreasing.

2. x
(k)
S stops at the solution in finite steps.

With the first property, we use the same techniques with those in Step 3 in the proof of Theorem 1
and obtain ∥∥∥x(k)

S − xS

∥∥∥
2
≤ 1 + µs− µ

1− µs+ µ

∥∥∥x(K̃1)
S − xS

∥∥∥
2
, ∀k > K̃1,

and v(k) = 0 for all k > K̃1. Consequently, supp(x(k)) = supp(x∗) holds for all k > K̃1.

The second property indicates that there is a large enough K̃2 such that x(k) = xS for all k > K̃2.
In another word, there is a sequence {c̄(k)} such that

‖x(k) − xS‖2 ≤ ‖x(0) − xS‖2
k∏
t=0

c̄(t)

and it holds that
c̄(k) = 0, ∀k > K̃2.

Finally, ‖x(k) − x∗‖ ≤ ‖x(k) − xS‖+ ‖xS − x∗‖2. Combining the above upper bound and (46),
we obtain (17). Theorem 2 is proved.

F Instance-Adaptive Parameters for ALISTA without Momentum

Actually we can prove that ALISTA without momentum (setting β(k) = 0 for all k in (12)) also
converge superlinearly if the parameters are taken in an instance-adaptive way. We list the theorem
bellow and will discuss why we choose ALISTA-momentum rather than ALISTA without momentum
following Theorem 3 and its proof.

Theorem 3. Let x(0) = 0 and {x(k)}∞k=1 be generated by (12) and set β(k) = 0 for all k. If
Assumption 1 holds and s < (1 + 1/µ)/2 and σ is small enough, then there exists a sequence of
parameters {θ(k), p(k), γ(k)}∞k=1 for each instance (x∗, ε) ∈ X (B,B, s, σ) so that we have:

‖x(k) − x∗‖2 ≤
√
sB

k∏
t=0

ĉ(t)+
2sCW

1− 2µs+ µ
σ, ∀k = 1, 2, · · · , (60)

where the convergence rate ĉ(k) satisfies

ĉ(k) → 0 as k →∞. (61)

Proof. Similar with the previous two proofs, we introduce some constants to facilitate the proof.

K̃3 :=
⌈ log(B)− log(2

√
sB)

log(2µs− µ)

⌉
+ 1. (62)

22



We assume that

σ ≤ min
(B

2
,
√
sB(2µs− µ)K̃3

)1− 2µs+ µ

2sCW
. (63)

The parameters are taken as

θ(k) =γ(k)
(
µ‖x(k) − x∗‖1 + CWσ

)
, ∀k (64)

p(k) = min
( k

K̃3

n, n
)
, ∀k (65)

γ(k) =


1, k ≤ K̃3

1/λi, k = K̃3 + i, 1 ≤ i ≤ |S|
any real number, k ≥ K̃3 + |S|

(66)

where λi is the i-th singular value of (W:,S)TA:,S .

With (62), (63), (64), (65), (66), and following the same proof line as Theorem 1, one can prove that

• No false positive: x(k)
i = 0 for all i ∈ S and k ≥ 0.

• Linear convergence: ‖x(k) − x∗‖2 ≤
√
sB(2µs− µ)k + 2sCW

1−2µs+µσ for all k ≤ K̃3.

Since β(k) = 0, the metric ‖x(k) − x∗‖2 must be monotone and, consequently, v(k) = 0 for all
k ≥ K̃3 because x(k) will stay in the neighborhood that supp(x(k)) = supp(x∗) once it enters the
neighborhood. Thus, for k > K̃3, formula (12) reduces to

x
(k+1)
S = x

(k)
S − γ

(k)
(
W:,S

)T(
A:,Sx

(k)
S − b

)
.

Denoting Q = (W:,S)TA:,S , plugging in (45), we obtain

x
(k+1)
S =x

(k)
S − γ

(k)Q(x
(k)
S − xS)

x
(k+1)
S − xS =x

(k)
S − xS − γ(k)Q(x

(k)
S − xS)

x
(k+1)
S − xS =

(
I− γ(k)Q

)
(x

(k)
S − xS)

Since Q is real symmetric, it can be orthogonal diagonalized: Q = UΣUT , where U is an orthogonal
matrix and Σ = diag(σ1, σ2, · · ·σn). Then,

x
(k+1)
S − xS =

(
UUT − γ(k)UΣUT

)
(x

(k)
S − xS)

UT (x
(k+1)
S − xS) =(I− γ(k)Σ)UT (x

(k)
S − xS)

Denoting y(k) = UT (x
(k)
S − xS), we have

y(k+1) =(I− γ(k)Σ)y(k).

y
(k+1)
i =(1− γ(k)σi)y

(k)
i , i = 1, 2, · · · , |S|.

Plugging in the parameters γ(k) = 1/σi for k = K̃3 + i, we have

y
(k)
1 =0, as k ≥ K̃3 + 2

y
(k)
2 =0, as k ≥ K̃3 + 3

· · ·

y
(k)
|S| =0, as k ≥ K̃3 + |S|+ 1

That is, y(k) = 0 for k ≥ K̃3 + |S| + 1. Consequently, x(k) = x for k ≥ K̃3 + |S| + 1. This
conclusion, combined with (46), implies (60) and (61) and finishes the proof.
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F.1 Some discussions

Although both ALISTA and ALISTA-momentum acheives superlinear convergence, ALISTA-
momentum performs better than ALISTA. To achieve superlinear convergence, ALISTA has to
take step size as γ(k) = 1/λi (66) where λi is one of the eigenvalues of W T

:,SA:,S . Such step
size rule is not easy to calculate in practice and numerically unstable compared with the conjugate
gradient in HyperLISTA. This is why we choose ALISTA-momentum and its instance-adaptive
variant: HyperLISTA.

Theorem 3 itself shows that ALISTA with adaptive parameters converges faster than that with uniform
parameters over instances. NA-ALISTA [4] learns instance-adaptive parameter rule with LSTMs and
shows good numerical performance. Theorem 3 actually provides a theoretical explanation for this
approach.

G Derivation of the Support Selection Formula

In this section, we provide the derivation of p(k) formula (24).

2e(k)

p(k)

Sorted |x∗i |

Possible Area
of |x(k)

i |

y ≈ l exp(−cx)

Figure 10: Choice of support selection (with more details)

We put the diagram of support selection (Figure 2) with more details in Figure 10. To estimate
p(k), one should make assumptions on the distribution of the magnitudes of x∗i . We assume that the
nonzero entries of x∗ follows normal distribution. The possibility of x∗i having a large magnitude
is smaller than the possibility of x∗i having a small magnitude. Thus, the curve connecting “sorted
|x∗i |” in Figure 10 should be a convex function. Here we take exponential function y = l exp(−cx)
to approximate the distribution. The intersection of the curve y = l exp(−cx) and the y-axis is
l = maxi(x

∗
i ), i.e., l = ‖x∗‖∞. The lower bound of the gray area in Figure 10 is a shift of

y = l exp(−cx). Thus, the relationship between e(k), p(k) can be formulated as

‖x∗‖∞ exp(−cp(k))− e(k) = 0.

Equivalently,

p(k) =
1

c
log

(
‖x∗‖∞
e(k)

)
=

1

c
log

(
‖x∗‖∞

‖x(k) − x∗‖∞

)
.

Constant c depends on the distribution of x∗. In practice, we use c3 = 1/c as the hyperparameter
to tune. Furthermore, we use ‖A+b‖1 to estimate ‖x∗‖ and use residual ‖A+(Ax(k) − b)‖1 to
estimate the error ‖x(k) − x∗‖. Then formula (25) is obtained. With an upper bound of n, (24) is
obtained.
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