A Omitted Proofs

Corollary 9 (Nice Hinge Function - Relative Error Coreset). Consider the setting of Thm. 8 under the additional assumption that $a_{2}>0$. If $\sum_{i=1}^{n} p_{i}=m$ and $p_{i} \geq \frac{C \max \left(\tau_{i}(X), 1 / n\right) \cdot \mu(X)^{2}}{\epsilon^{2}}$ for all i, where $C=c \cdot \max \left(1, L, a_{1}, 1 / a_{2}\right)^{10} \cdot \log \left(\frac{\log \left(n \max \left(1, L, a_{1}, 1 / a_{2}\right) \cdot \mu(X) / \epsilon\right) m}{\delta}\right)$ and c is a fixed constant, with probability at least $1-\delta$, for all $\beta \in \mathbb{R}^{d}$,

$$
\left|\sum_{i=1}^{m}[S f(X \beta)]_{i}-\sum_{i=1}^{n} f(X \beta)_{i}\right| \leq \epsilon \cdot \sum_{i=1}^{n} f(X \beta)_{i} .
$$

Proof. By (3) proven in Corollary 6 and using the fact that f is $\left(L, a_{1}, a_{2}\right)$-nice,

$$
\begin{align*}
\sum_{i=1}^{n} f(X \beta)_{i} & \geq \sum_{i:[X \beta]_{i} \in\left[0,2 a_{1}\right]} f(X \beta)_{i}+\sum_{i:[X \beta]_{i} \geq 2 a_{1}} f(X \beta)_{i} \\
& \geq \sum_{i:[X \beta]_{i} \in\left[0,2 a_{1}\right]} a_{2}+\sum_{i:[X \beta]_{i} \geq 2 a_{1}} \operatorname{ReLU}(X \beta)_{i}-a_{1} \\
& \geq \min \left(\frac{a_{2}}{2 a_{1}}, \frac{1}{2}\right) \cdot\left\|(X \beta)^{+}\right\|_{1} \\
& \geq \min \left(\frac{a_{2}}{2 a_{1}}, \frac{1}{2}\right) \cdot \frac{\|X \beta\|_{1}}{\mu(X)+1} . \tag{9}
\end{align*}
$$

Let $\gamma \stackrel{\text { def }}{=} \min \left(\frac{a_{2}}{2 a_{1}}, \frac{1}{2}\right)$. Now we claim that $\sum_{i=1}^{n} f(X \beta)_{i} \geq \frac{n a_{2} \gamma}{4 \max (1, L) \cdot \mu(X)}$. If $\sum_{i=1}^{n} f(X \beta)_{i} \geq$ $\frac{n a_{2}}{4}$ then this holds immediately since $\mu(X) \geq 1, \max (1, L) \geq 1$ and $\gamma \leq 1$. Otherwise, assume that $\sum_{i=1}^{n} f(X \beta)_{i} \leq \frac{n a_{2}}{4}$. Since $f(z) \geq a_{2}$ for all $z \geq 0$ and since f is L-Lipschitz, $f(z) \geq \frac{a_{2}}{2}$ for all $z \geq-\frac{a_{2}}{2 L}$. This implies that $X \beta$ has at most $\frac{n a_{2} / 4}{a_{2} / 2}=\frac{n}{2}$ entries $\geq-\frac{a_{2}}{2 L}$. Thus, $X \beta$ has at least $\frac{n}{2}$ entries $\leq-\frac{a_{2}}{2 L}$ and so $\left\|(X \beta)^{-}\right\|_{1} \geq \frac{n a_{2}}{4 L}$. Thus, by the definition of $\mu(X)$ along with (9),

$$
\begin{equation*}
\sum_{i=1}^{n} f(X \beta)_{i} \geq \gamma \cdot\left\|(X \beta)^{+}\right\|_{1} \geq \frac{n a_{2} \gamma}{4 L \cdot \mu(X)} \geq \frac{n a_{2} \gamma}{4 \max (1, L) \cdot \mu(X)} \tag{10}
\end{equation*}
$$

Combining (9) with (10) gives that

$$
\sum_{i=1}^{n} f(X \beta)_{i} \geq \frac{\gamma \cdot\|X \beta\|_{1}}{2 \mu(X)+2}+\frac{n a_{2} \gamma}{8 \max (1, L) \cdot \mu(X)} \geq\left(\|X \beta\|_{1}+n\right) \cdot \frac{\gamma \cdot \min \left(1, a_{2}\right)}{8 \max (1, L) \cdot \mu(X)+2}
$$

This completes the corollary after applying Thm. 8 with

$$
\epsilon^{\prime}=\epsilon \cdot \frac{\gamma \cdot \min \left(1, a_{2}\right)}{8 \max (1, L) \cdot \mu(X)+2} \geq \frac{\epsilon}{8 \max \left(1, L, a_{1}, 1 / a_{2}\right)^{4} \cdot \mu(X)+2} .
$$

B Lower Bounds for Regularized Classification

We now give a lower bound showing that the results of [CIM ${ }^{+}$19] on coresets for regularized logistic and hinge loss regression (i.e., soft margin SVM) are essentially tight. Our bound tightens a lower bound given in $\left[\mathrm{CIM}^{+}\right.$19]. It shows that, in the natural setting where the regularization parameter is sublinear in the number of data points n, the coreset size must depend polynomially on n. This contrasts the setting where we assume that $\mu(X)$ from Def. 1 is bounded. In this case, as shown in Cor. 9, relative error coresets with size scaling just logarithmically in n are achievable.
Theorem 10 (Regularized Classification - Relative Error Lower Bound). Let $X \in \mathbb{R}^{n \times d}$ have all row norms bounded by 1 . Let f be the hinge loss $f(z)=\max (0,1+z)$ or $\log \operatorname{loss} f(z)=\ln \left(1+e^{z}\right)$ and for any $\kappa \in(0,1)$ consider the regularized loss $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$,

$$
L(\beta)=\sum_{i=1}^{n} f(X \beta)_{i}+n^{\kappa} \cdot R(\beta),
$$

where $\kappa \in(0,1)$. There is no $O(1)$ relative error coreset for $L(\beta)$ with $o\left(\frac{n^{1-\kappa}}{\log ^{c} n}\right)$ points where $c=4$ for $R(\beta)=\|\beta\|_{2}^{2}, c=5 / 2$ for $R(\beta)=\|\beta\|_{2}$, and $c=3$ for $R(\beta)=\|\beta\|_{1}$.

Note that since this is a lower bound, the assumption that X has bounded row norms only makes it stronger. This assumption is common in prior work.

Proof. We focus on the case when f is the hinge loss for simplicity. An identical argument applies when f is the log loss, with some adjustments of the constants. We also focus on the case when $R(\beta)=\|\beta\|_{2}^{2}$. Again, essentially an identical argument proves the claim when $R(\beta)=\|\beta\|_{2}$ or $R(\beta)=\|\beta\|_{1}$. We prove the lower bound via a reduction from the INDEX problem in communication complexity. Alice has a string $a \in\{0,1\}^{n}$ and Bob has an index $b \in\{1, \ldots, n\}$, and they wish to compute the bit $a(b)$. It is well known that the randomized 1-way communication complexity of this problem is $\Omega(n)$ [Rou15]. We will show that the existence of a relative error coreset for $L(x)$ with $o\left(\frac{n^{1-\kappa}}{\log ^{4} n}\right)$ points would contradict this lower bound, giving the result.
Assume without loss of generality that $n^{1-\kappa}$ is a power of two. Let $d=\log _{2} n^{1-\kappa}$. Our reduction is to the INDEX problem with input size $n_{0}=\frac{n^{1-\kappa}}{d(d+1)^{2}}=\Theta\left(\frac{n^{1-\kappa}}{\log ^{3} n}\right)$. Let Alice construct the matrix $X_{0} \in \mathbb{R}^{n_{0} \times(d+1)}$ which has the first d entries of row i equal to the binary representation of i if $a(i)=1$ and equal to 0 otherwise. In the binary representation, have 0 represented by -1 and 1 represented by 1 . Let every row have d in the last column. Finally, scale the matrix by a $\gamma=1 / \sqrt{d^{2}+d}$ factor so each row has Euclidean norm exactly 1 . Let $X \in \mathbb{R}^{n \times(d+1)}$ be equal to $n^{\kappa} \cdot d(d+1)^{2}$ copies of X_{0} stacked on top of each other (assume without loss of generality that $n^{\kappa} \cdot d(d+1)^{2}$ is an integer).
Bob will let $\beta \in \mathbb{R}^{d+1}$ be the binary representation for b (again written using -1 s and 1 s) with a -1 in the last entry. He will scale β by a $1 / \gamma$ factor so $\|\beta\|_{2}^{2}=(d+1) \cdot\left(d^{2}+d\right)=d(d+1)^{2}$. If $a(b)=1$ we have:

$$
\begin{align*}
L(\beta) & =n^{\kappa} \cdot d(d+1)^{2} \cdot\left(\sum_{j \neq b} h(X \beta)_{j}+h(X \beta)_{b}\right)+n^{\kappa}\|\beta\|_{2}^{2} \\
& =n^{\kappa} \cdot d(d+1)^{2}+n^{\kappa} \cdot d(d+1)^{2}=2 n^{\kappa} \cdot d(d+1)^{2} \tag{11}
\end{align*}
$$

where the second line holds since for $j \neq b,[X \beta]_{j} \leq d-1-d \leq-1$ and so $h(X \beta)_{j}=0$. $[X \beta]_{b}=d-d=0$ and so $h(X \beta)_{b}=1$. Otherwise, by the same logic, if $a(b)=0$ we have:

$$
\begin{equation*}
L(\beta)=n^{\kappa} \cdot d(d+1)^{2} \cdot\left(\sum_{j \neq b} h(X \beta)_{j}+h(X \beta)_{b}\right)+n^{\kappa}\|\beta\|_{2}^{2}=n^{\kappa} \cdot d(d+1)^{2} \tag{12}
\end{equation*}
$$

From (11) and (12), we can see that a coreset with relative error $\epsilon=1 / 2$ can distinguish the two cases of $a(b)=1$ and $a(b)=0$. Assume that there is such a relative error coreset consisting of m rows of X, along with m corresponding weights w_{1}, \ldots, w_{m}. We can assume that all $w_{j} \leq n^{c_{1}}$ for some large constant c_{1}. If $a\left(i_{j}\right)=1$ any w_{j} larger than this would lead to the coreset cost being a large over estimate when $b=i_{j}$. If $a\left(i_{j}\right)=0$, then scaling the $i_{j}^{t h}$ row by any w_{j} will have no effect since for all β that Bob may generate, $h(X \beta)_{i_{j}}=0$. So again, we can assume $w_{j} \leq n^{c_{1}}$.
Additionally, if we round each w_{j} to the nearest integer multiple of $1 / n^{c_{1}}$ we will not change the coreset cost by more than a $n / n^{c_{1}}$ factor in all our input cases, since we always have $h(X \beta)_{i} \in[0,1]$. Thus, Alice can represent each rounded w_{j} using $\log n$ bits and send the full coreset and weights to Bob using $O(m \cdot(\log n+d))=O(m \log n)$ bits of communication. Since Bob can then use this coreset to solve the INDEX with input size $n_{0}=\Theta\left(\frac{n^{1-\kappa}}{\log ^{3} n}\right)$, we must have $m=\Omega\left(\frac{n^{1-\kappa}}{\log ^{4} n}\right)$, proving the theorem.
In the case that $R(\beta)=\|\beta\|_{2}$ we have $\|\beta\|_{2}=d^{1 / 2}(d+1)=\Theta\left(d^{3 / 2}\right)$ and so can set $n_{0}=\Theta\left(\frac{n^{1-\kappa}}{\log ^{3 / 2} n}\right)$ instead of $n_{0}=\Theta\left(\frac{n^{1-\kappa}}{\log ^{3} n}\right)$, which gives the final lower bound of $\Omega\left(\frac{n}{\log ^{5 / 2} n}\right)$. Similarly, for $R(\beta)=\|\beta\|_{1}$, we have $\|\beta\|_{1}=d^{1 / 2}(d+1)^{3 / 2}=\Theta\left(d^{2}\right)$, yielding a final bound of $\Omega\left(\frac{n}{\log ^{3} n}\right)$.

Finally, we compare our lower bound with the the bound in [TBFR21]. We first note that the lower bound in the referenced paper is a lower bound on the sum of sensitivities, rather than directly on the coreset size, as we have given. We are not aware of a general result which lower bounds coreset size via the sum of sensitivities, although perhaps such a result could be shown, at least for reasonable classes of loss functions.
If we set λ in [TBFR21] to $n^{-\kappa}$, then we are in the same setting as our lower bound, with regularization $n^{\kappa}\|\beta\|$. In this setting, assuming that $d<n^{1-\kappa}$, then the lower bound given in Lemma 1 of [TBFR21] is $O\left(n \lambda / d^{2}\right)=O\left(n^{1-\kappa} / d^{2}\right)$. This is loose by a d^{2} factor, as compared to our tight lower bound.

