
A Omitted Proofs

Corollary 9 (Nice Hinge Function – Relative Error Coreset). Consider the setting of Thm. 8 under
the additional assumption that a2 > 0. If

∑n
i=1 pi = m and pi ≥ Cmax(τi(X),1/n)·µ(X)2

ε2 for all i,

where C = c ·max(1, L, a1, 1/a2)10 · log
(

log(nmax(1,L,a1,1/a2)·µ(X)/ε)m
δ

)
and c is a fixed constant,

with probability at least 1− δ, for all β ∈ Rd,∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤ ε ·
n∑
i=1

f(Xβ)i.

Proof. By (3) proven in Corollary 6 and using the fact that f is (L, a1, a2)-nice,
n∑
i=1

f(Xβ)i ≥
∑

i:[Xβ]i∈[0,2a1]

f(Xβ)i +
∑

i:[Xβ]i≥2a1

f(Xβ)i

≥
∑

i:[Xβ]i∈[0,2a1]

a2 +
∑

i:[Xβ]i≥2a1

ReLU(Xβ)i − a1

≥ min

(
a2
2a1

,
1

2

)
· ‖(Xβ)+‖1

≥ min

(
a2
2a1

,
1

2

)
· ‖Xβ‖1
µ(X) + 1

. (9)

Let γ def
= min

(
a2
2a1

, 12

)
. Now we claim that

∑n
i=1 f(Xβ)i ≥ na2γ

4max(1,L)·µ(X) . If
∑n
i=1 f(Xβ)i ≥

na2
4 then this holds immediately since µ(X) ≥ 1, max(1, L) ≥ 1 and γ ≤ 1. Otherwise, assume

that
∑n
i=1 f(Xβ)i ≤ na2

4 . Since f(z) ≥ a2 for all z ≥ 0 and since f is L-Lipschitz, f (z) ≥ a2
2 for

all z ≥ − a2
2L . This implies that Xβ has at most na2/4a2/2

= n
2 entries ≥ − a2

2L . Thus, Xβ has at least n2
entries ≤ − a2

2L and so ‖(Xβ)−‖1 ≥ na2
4L . Thus, by the definition of µ(X) along with (9),

n∑
i=1

f(Xβ)i ≥ γ · ‖(Xβ)+‖1 ≥
na2γ

4L · µ(X)
≥ na2γ

4 max(1, L) · µ(X)
. (10)

Combining (9) with (10) gives that
n∑
i=1

f(Xβ)i ≥
γ · ‖Xβ‖1
2µ(X) + 2

+
na2γ

8 max(1, L) · µ(X)
≥ (‖Xβ‖1 + n) · γ ·min(1, a2)

8 max(1, L) · µ(X) + 2
.

This completes the corollary after applying Thm. 8 with

ε′ = ε · γ ·min(1, a2)

8 max(1, L) · µ(X) + 2
≥ ε

8 max(1, L, a1, 1/a2)4 · µ(X) + 2
.

B Lower Bounds for Regularized Classification

We now give a lower bound showing that the results of [CIM+19] on coresets for regularized logistic
and hinge loss regression (i.e., soft margin SVM) are essentially tight. Our bound tightens a lower
bound given in [CIM+19]. It shows that, in the natural setting where the regularization parameter
is sublinear in the number of data points n, the coreset size must depend polynomially on n. This
contrasts the setting where we assume that µ(X) from Def. 1 is bounded. In this case, as shown in
Cor. 9, relative error coresets with size scaling just logarithmically in n are achievable.
Theorem 10 (Regularized Classification – Relative Error Lower Bound). Let X ∈ Rn×d have all
row norms bounded by 1. Let f be the hinge loss f(z) = max(0, 1+z) or log loss f(z) = ln(1+ez)
and for any κ ∈ (0, 1) consider the regularized loss L : Rd → R+,

L(β) =

n∑
i=1

f(Xβ)i + nκ ·R(β),

13



where κ ∈ (0, 1). There is no O(1) relative error coreset for L(β) with o
(
n1−κ

logc n

)
points where

c = 4 for R(β) = ‖β‖22, c = 5/2 for R(β) = ‖β‖2, and c = 3 for R(β) = ‖β‖1.

Note that since this is a lower bound, the assumption that X has bounded row norms only makes it
stronger. This assumption is common in prior work.

Proof. We focus on the case when f is the hinge loss for simplicity. An identical argument applies
when f is the log loss, with some adjustments of the constants. We also focus on the case when
R(β) = ‖β‖22. Again, essentially an identical argument proves the claim when R(β) = ‖β‖2 or
R(β) = ‖β‖1. We prove the lower bound via a reduction from the INDEX problem in communication
complexity. Alice has a string a ∈ {0, 1}n and Bob has an index b ∈ {1, . . . , n}, and they wish to
compute the bit a(b). It is well known that the randomized 1-way communication complexity of this
problem is Ω(n) [Rou15]. We will show that the existence of a relative error coreset for L(x) with
o
(
n1−κ

log4 n

)
points would contradict this lower bound, giving the result.

Assume without loss of generality that n1−κ is a power of two. Let d = log2 n
1−κ. Our reduction

is to the INDEX problem with input size n0 = n1−κ

d(d+1)2 = Θ
(
n1−κ

log3 n

)
. Let Alice construct the

matrix X0 ∈ Rn0×(d+1) which has the first d entries of row i equal to the binary representation
of i if a(i) = 1 and equal to 0 otherwise. In the binary representation, have 0 represented by −1
and 1 represented by 1. Let every row have d in the last column. Finally, scale the matrix by a
γ = 1/

√
d2 + d factor so each row has Euclidean norm exactly 1. Let X ∈ Rn×(d+1) be equal to

nκ · d(d + 1)2 copies of X0 stacked on top of each other (assume without loss of generality that
nκ · d(d+ 1)2 is an integer).

Bob will let β ∈ Rd+1 be the binary representation for b (again written using −1s and 1s) with a
−1 in the last entry. He will scale β by a 1/γ factor so ‖β‖22 = (d+ 1) · (d2 + d) = d(d+ 1)2. If
a(b) = 1 we have:

L(β) = nκ · d(d+ 1)2 ·

∑
j 6=b

h(Xβ)j + h(Xβ)b

+ nκ‖β‖22

= nκ · d(d+ 1)2 + nκ · d(d+ 1)2 = 2nκ · d(d+ 1)2, (11)

where the second line holds since for j 6= b, [Xβ]j ≤ d − 1 − d ≤ −1 and so h(Xβ)j = 0.
[Xβ]b = d− d = 0 and so h(Xβ)b = 1. Otherwise, by the same logic, if a(b) = 0 we have:

L(β) = nκ · d(d+ 1)2 ·

∑
j 6=b

h(Xβ)j + h(Xβ)b

+ nκ‖β‖22 = nκ · d(d+ 1)2. (12)

From (11) and (12), we can see that a coreset with relative error ε = 1/2 can distinguish the two
cases of a(b) = 1 and a(b) = 0. Assume that there is such a relative error coreset consisting of m
rows of X , along with m corresponding weights w1, . . . , wm. We can assume that all wj ≤ nc1 for
some large constant c1. If a(ij) = 1 any wj larger than this would lead to the coreset cost being a
large over estimate when b = ij . If a(ij) = 0, then scaling the ithj row by any wj will have no effect
since for all β that Bob may generate, h(Xβ)ij = 0. So again, we can assume wj ≤ nc1 .

Additionally, if we round each wj to the nearest integer multiple of 1/nc1 we will not change the
coreset cost by more than a n/nc1 factor in all our input cases, since we always have h(Xβ)i ∈ [0, 1].
Thus, Alice can represent each rounded wj using log n bits and send the full coreset and weights
to Bob using O(m · (log n + d)) = O(m log n) bits of communication. Since Bob can then use
this coreset to solve the INDEX with input size n0 = Θ

(
n1−κ

log3 n

)
, we must have m = Ω

(
n1−κ

log4 n

)
,

proving the theorem.

In the case that R(β) = ‖β‖2 we have ‖β‖2 = d1/2(d + 1) = Θ(d3/2) and so can set
n0 = Θ

(
n1−κ

log3/2 n

)
instead of n0 = Θ

(
n1−κ

log3 n

)
, which gives the final lower bound of Ω

(
n

log5/2 n

)
.

Similarly, for R(β) = ‖β‖1, we have ‖β‖1 = d1/2(d + 1)3/2 = Θ(d2), yielding a final bound of
Ω
(

n
log3 n

)
.
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Finally, we compare our lower bound with the the bound in [TBFR21]. We first note that the lower
bound in the referenced paper is a lower bound on the sum of sensitivities, rather than directly on the
coreset size, as we have given. We are not aware of a general result which lower bounds coreset size
via the sum of sensitivities, although perhaps such a result could be shown, at least for reasonable
classes of loss functions.

If we set λ in [TBFR21] to n−κ, then we are in the same setting as our lower bound, with regular-
ization nκ‖β‖. In this setting, assuming that d < n1−κ, then the lower bound given in Lemma 1 of
[TBFR21] is O(nλ/d2) = O(n1−κ/d2). This is loose by a d2 factor, as compared to our tight lower
bound.
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