
A Post-Hoc Evidential Sparsification

A.1 Evidential Theory and Logistic Regression

In evidential theory, also known as Dempster-Shafer theory [22], a mass function on set Z is a
mapping m : 2Z → [0, 1] such that m(∅) = 0 and,∑

A⊆Z

m(A) = 1. (13)

Two mass functions m1 and m2 representing independent items of evidence can be combined using
Dempster’s rule [22] as,

(m1 ⊕m2)(A) :=
1

1− κ

∑
B∩C=A

m1(B)m2(C), (14)

for all A ⊆ Z,A 6= ∅, and (m1 ⊕m2)(∅) := 0, where κ is the degree of conflict between the two
mass functions, defined as,

κ :=
∑

B∩C=∅

m1(B)m2(C). (15)

Classifiers that transform a linear combination of features through the softmax function can be
formulated as evidential classifiers as follows [23]. Suppose φ ∈ RJ is a feature vector and Z is the
set of classes, with |Z| = K, zk ∈ Z for k ∈ {1, . . . ,K}. For each zk, the evidence of feature φj is
assumed to point either to the singleton {zk} or to its complement {zk}, depending on the sign of

wjk := βjkφj + αjk, (16)
where (βjk, αjk) are parameters [23]. Then Denoeux [23] uses these weights to write mass functions

m+
kj({zk}) = 1− e−w

+
jk , m+

kj(Z) = e−w
+
jk (17)

m−
kj({zk}) = 1− e−w

−
jk , m−

kj(Z) = e−w
−
jk . (18)

These masses can be fused through Dempster’s rule to arrive at the mass function at the output of the
softmax layer as follows,

m({zk}) ∝ e−w
−
k

ew
+
k − 1 +

∏
` 6=k

(
1− e−w

−
`

) (19)

m(A) ∝

 ∏
zk 6=A

(
1− e−w

−
k

)(∏
zk ∈A

e−w
−
k

)
, (20)

where A ⊆ Z, |A| > 1, w−
k =

∑J
j=1 w

−
jk, and w+

k =
∑J
j=1 w

+
jk.

A.2 Evidential Sparsification

If no evidence directly supports class k and there is no evidence contradicting another class `, then
the belief mass for the singleton set {zk} is zero [10]. That is, if w+

k = 0 and w−
` = 0 for at least one

other class ` 6= k, then m({zk}) = 0.

Given a neural network, Itkina et al. [10] construct evidential weights from the output of the last
hidden layer in a neural network φ ∈ RJ and output linear layer weights β̂ ∈ RJ×K as follows:

wjk = βjkφj + αjk, (21)

where βjk = β̂jk − 1
K

∑K
`=1 β̂j` and αjk = 1

J

(
β0k +

∑J
j=1 βjkφj)

)
− βjkφj . These eviden-

tial weights wjk do not depend on j (i.e. w0k = w1k = . . . = wJk), which implies that
w+
k = max(0, wk) and w−

k = max(0,−wk). The singleton mass function (Eq. (19)) obtained by
fusing these weights is then used to identify latent classes to be filtered as follows:

pfiltered(zk|φ) ∝ 1{m({zk}) 6= 0}psoftmax(zk|φ), (22)
where psoftmax(zk|φ) is the kth element of the distribution obtained from applying the softmax
transformation to the vector β̂Tφ.

13

B Equivalence to Post-Hoc Evidential Sparsification Function

In this section, we derive equivalence of the evidential softmax (ev-softmax) function and the post-hoc
sparsification function introduced by Itkina et al. [10]. We begin with two definitions of the post-hoc
evidential sparsification method.

Definition B.1. Given a feature vector φ ∈ RJ , weights β̂ ∈ RJ×K , and a bias vector α̂ ∈ RK ,
the evidential weights matrix W ∈ RJ×K is defined element-wise as

wjk =
1

J

αk +

J∑
j=1

βjkφj

 , (23)

where βjk = β̂jk− 1
K

∑K
`=1 β̂j` and αk = α̂k− 1

K

∑K
`=1 α̂` are normalized weights and bias terms,

respectively.

Definition B.2. Define the evidential class weights w,w+,w− ∈ RK element-wise as

wk =

J∑
j=1

wjk = αk +

J∑
j=1

βjkφj (24)

w+
k =

J∑
j=1

max(0, wjk) = max

0, αk +
J∑
j=1

βjkφj

 = max(0, wk) (25)

w−
k =

J∑
j=1

max(0,−wjk) = max

0,−αk −
J∑
j=1

βjkφj

 = max(0,−wk). (26)

In matrix notation, we write this as w+ = max(0,α+ βTφ),w− = max(0,−α− βTφ), where
the max operator is applied at each index independently. Note this is the same formulation as defined
in Appendix A.

We prove a lemma showing an equivalent definition that involves centering the output class weights
w instead of centering the input weights α̂, β̂.

Lemma B.1. For φ ∈ RJ , β̂ ∈ RJ×K , α̂ ∈ RK , and w ∈ RK as defined in Definition B.1,

wk = α̂k +
J∑
j=1

β̂jkφj −
1

K

K∑
`=1

(
α̂` +

J∑
m=1

β̂m`φm

)
. (27)

Proof. We substitute the definitions of α and β into Eq. (23) to obtain

wk = αk +

J∑
j=1

βjkφj

=

(
α̂k −

1

K

K∑
`=1

α̂`

)
+

J∑
j=1

(
β̂jk −

1

K

K∑
`=1

β̂j`

)
φj

= α̂k −
1

K

K∑
`=1

α̂` +

J∑
j=1

(
β̂jk

)
− 1

K

K∑
`=1

J∑
m=1

β̂m`φm

= α̂k +

J∑
j=1

β̂jkφj −
1

K

K∑
`=1

(
α̂` +

J∑
m=1

β̂m`φm

)
.

(28)

14

Note as a consequence that the sum of the evidential weights is zero. That is,

K∑
k=1

wk =

K∑
k=1

α̂k +

J∑
j=1

β̂jkφj −
1

K

K∑
`=1

(
α̂` +

J∑
m=1

β̂m`φm

)
=

K∑
k=1

α̂k +

J∑
j=1

β̂jkφj

−
K∑
`=1

(
α̂` +

J∑
m=1

β̂m`φm

)
= 0.

(29)

We define the mass function m and post-hoc evidential sparsification function f as in Eqs. (19)
and (22). Next we prove a key lemma, which is a condition for determining which terms in the
probability function f are set to 0 in the post-hoc evidential sparsification function.
Lemma B.2. For fixed k ∈ {1, . . . ,K} and w,m as defined in Definition B.2 and Eq. (19), m{zk} =
0 if and only if wk ≤ 0.

Proof. Take fixed k ∈ {1, . . . ,K}. For both directions, we rely on the key observation that
m({zk}) = 0 if and only if the following two conditions are both true [10]:

w+
k = 0 (30)

w−
` = 0 for some ` 6= k. (31)

We first prove the forward direction, that m({zk}) = 0 implies wk ≤ 0. Using the observation
above, m({zk}) implies that w+

k = 0. Since w+
k = max(0, wk) by definition, we see that wk ≤ 0 as

desired.

To prove the reverse, note that wk ≤ 0 implies that w+
k = max(0, wk) = 0. Now since the evidential

class weights have a sum of 0 (Eq. (29)). If wk ≤ 0, then either w is the zero vector or w must
contain some positive element w` > 0, where ` 6= k. In either case, there must exist ` 6= k such that
w−
` = 0. Hence, w+

k = 0 and the existance of ` 6= k such that w−
` = 0 implies that m({zk}) = 0 as

desired.

Lemma B.2 leads to the following natural definition for the ev-softmax function EVSOFTMAX′.
Definition B.3. Given a vector v̂ ∈ R

K , define the evidential softmax function EVSOFTMAX′ :
R
K → ∆K as

EVSOFTMAX′(v̂)k =

{
1
K if v = 0

1{vk>0}evk∑K
`=1 1{vk>0}ev` otherwise (32)

where v = v̂ − 1
K

∑K
k=1 v̂k is centered to have a mean of 0.

We now define a function which is equivalent under certain conditions. If the marginal probability
measure of vk is non-atomic for each k, then the following function is equal to Eq. (32) with
probability 1:

EVSOFTMAX(v) =
1{vk ≥ 0}evk∑K
`=1 1{vk ≥ 0}ev`

. (33)

EVSOFTMAX’ is nearly equivalent to EVSOFTMAX, with the difference lying in the equality condition
in the indicator function.

We formalize the equivalence of Eq. (32) and Eq. (33) with the following lemma.
Lemma B.3. With v̂ and v defined as in Definition B.3, if the marginal probability measure of vk is
non-atomic for each k, then Equations Eq. (32) and Eq. (33) are equal with probability 1.

Proof. We can see that the expressions for EVSOFTMAX(v) and EVSOFTMAX′(v) are equal for all
v such that vk 6= 0 for all k. Now we can apply the union bound to this event as follows:

P (∩k{vk 6= 0}) = 1− P (∪k{vk = 0}) ≥ 1−
∑
k

P ({vk = 0}) = 1

where the last equality follows from the assumption that each vk has a non-atomic distribution.

15

We are now ready to prove the main result.

Theorem B.4. Given a feature vector φ ∈ R
J , weights β̂ ∈ R

J×K , and bias vector α̂ ∈ R
K ,

define the evidential class weights w,w+,w− ∈ RK as in Definition B.1, the post-hoc evidential
sparsification function f : RK → ∆K as in Eq. (22), and EVSOFTMAX as in Eq. (33).

If the marginal distributions of the weights wk are non-atomic for all k ∈ {1, . . . ,K}, then the
following equality holds with probability 1:

f(w) = EVSOFTMAX(β̂
T
φ+ α̂). (34)

Proof. Let v̂ = β̂
T
φ+ α̂. Then Lemma B.1 shows that w is equivalent to the normalization of v̂

(e.g. wk = v̂k − 1
K

∑K
j=1 v̂j), hence we have

EVSOFTMAX(β̂
T
φ+ α̂)k =

1{wk ≥ 0}ewk∑K
`=1 1{wk ≥ 0}ew`

. (35)

Now Lemma B.2 and Lemma B.3 combined with the assumption that the marginal distributions of
wk are non-atomic imply that 1{m{zk} 6= 0} = 1{wk ≥ 0} for all k ∈ {1, . . . ,K} with probability
1, and the result follows.

Thus we show that the ev-softmax function of Eq. (33) is equivalent to the post-hoc evidential
sparsification function detailed in Appendix A.

C Properties of Evidential Softmax

We prove the following properties of the ev-softmax transformation (Eq. (7)):

1. Monotonicity: If vi ≥ vj , then EVSOFTMAX(v)i ≥ EVSOFTMAX(v)j .

Proof. If vi ≥ vj then 1{vi ≥ 0} ≥ 1{vj ≥ 0} ≥ 0 and evi ≥ evj ≥ 0. Multiplying the
two inequalities gives the desired result.

2. Full domain: dom(EVSOFTMAX) = R
K .

Proof. Since the input vector is normalized,
∑K
k=1 1{vk ≥ v}evk is guaranteed to be

positive, so the function is defined for all w ∈ RK and always maps onto the simplex.

3. Existence of Jacobian: The Jacobian is defined for all v ∈ RK such that vk 6= 1
K

∑
j vj

for all k, and it has the form

∂EVSOFTMAX(v)i
∂vj

=
1{v̂i ≥ 0}1{v̂j ≥ 0}

(
δije

v̂i
∑
k 1{v̂k ≥ 0}ev̂k − ev̂iev̂j

)
(
∑
k 1{v̂k ≥ 0}ev̂k)2

(36)

= EVSOFTMAX(v)i(δij − EVSOFTMAX(v)j) (37)

where v̂ = vk − 1
K

∑
k vk.

Furthermore, if the marginal probability measure of v̂k is non-atomic for each k, then the
Jacobian is defined with probability 1.

Proof. Let A := {k | v̂k ≥ 0}. Then equivalently we can write Eq. (36) as

∂EVSOFTMAX(v)i
∂vj

=

0 if i 6∈ A or j 6∈ A
δije

v̂i
∑

k∈A e
v̂k−ev̂iev̂j(∑

k∈A e
vk

)2 otherwise.
(38)

Take arbitrary i 6∈ A, then EVSOFTMAX(v)i = 0, and since by assumption v̂k 6= 0 for all k,
there must exist some ε > 0 such that we have EVSOFTMAX(v′)i = 0 for all v′ within a
radius of ε from v. This implies that ∂EVSOFTMAX(v)i

∂vj
= 0 for all j ∈ {1, . . . ,K}.

16

Now take arbitrary i ∈ A and j 6∈ A. Then by assumption, v̂j < 0 which implies that there
exists ε > 0 such that for all v′j within ε of vj , we have 1{v′j ≥ 0} = 0. This means that

EVSOFTMAX(v)i is independent of v′j in this neighborhood, giving ∂EVSOFTMAX(v)i
∂vj

= 0 as
desired for all i ∈ {1, . . . ,K}.

We prove the final case, where both i, j ∈ A. In this case, the expression for gi(v) is exactly
that of softmax over variables in A, so the Jacobian over all variables j ∈ A must also
match that of softmax (i.e. ∂SOFTMAX(v)i

∂vj
= SOFTMAX(v)i(δij − SOFTMAX(v)j)), and

Eq. (38) follows.

Next, we show the equivalence of Eq. (38) to Eq. (37). If i 6∈ A or j 6∈ A, we can check by
inspection that EVSOFTMAX(v)i(δij − EVSOFTMAX(v)j) = 0. Otherwise, EVSOFTMAX
simply reduces to softmax over the indices in A, and the result follows from the analogous
equation for softmax (i.e. ∂SOFTMAX(v)i

∂vj
= SOFTMAX(v)i(δij − SOFTMAX(v)j)).

Finally, we show that the Jacobian is defined with probability 1, assuming that the probability
measure of v̂k for each k is nonatomic. The above shows the Jacobian is defined for all v such
that v̂k 6= 0 for all k. Observe by the union bound that P (∩k{v̂k 6= 0}) ≥ 1−

∑
k P ({v̂k =

0}). For each k, the measure of v̂k is non-atomic, so P ({v̂k = 0}) = 0 and the result
follows.

4. Lipschitz continuity: There exists L ≥ 0 such that for any v1, v2, ||EVSOFTMAX(v1) −
EVSOFTMAX(v2)||2 ≤ L||v1 − v2||2. The evidential softmax function is Lipschitz with
Lipschitz constant 1 provided the two outputs EVSOFTMAX(v1), EVSOFTMAX(v2) have
the same support.

Proof. This follows from the Lipschitz continuity of the softmax function with Lipschitz
constant 1 [17].

5. Translation invariance: Adding a constant to evidential softmax does not change the output
since the input is normalized around its mean.

Proof. This follows since all input vectors v are normalized by their mean 1
K

∑K
j=1 vj .

6. Permutation invariance: Like softmax, evidential softmax is permutation invariant.

Proof. This follows from the coordinate-symmetry in the equations in Eq. (7).

D Gradient of the Evidential Softmax Loss

In this section, we prove Eq. (12), which amounts to the claim that the gradient of the log likelihood
of EVSOFTMAXtrain,ε (Eq. (10)) approaches the same form as that of softmax as ε approaches 0.

Proof. The existence of the Jacobian in Eq. (37) gives,

∂EVSOFTMAX(v)i
∂vj

= EVSOFTMAX(v)i(δij − EVSOFTMAX(v)j) (39)

for each input v and each i, j. Now by the continuity of the exponential function, and therefore the
continuity of the EVSOFTMAX function, it follows that

lim
ε→0

EVSOFTMAXtrain,ε(v)i = EVSOFTMAX(v)i

lim
ε→0

δij − EVSOFTMAXtrain,ε(v)j = δij − EVSOFTMAX(v)j

lim
ε→0

∂EVSOFTMAXtrain,ε(v)i
∂vj

=
∂EVSOFTMAX(v)i

∂vj
.

(40)

17

Therefore,

lim
ε→0

∂EVSOFTMAXtrain,ε(v)i
∂vj

= lim
ε→0

EVSOFTMAXtrain,ε(v)i(δij − EVSOFTMAXtrain,ε(v)j)

= EVSOFTMAX(v)i(δij − EVSOFTMAX(v)j).
(41)

To compute the gradient, we use the chain rule:

lim
ε→0

∂

∂vj
log EVSOFTMAXtrain,ε(v)i

= lim
ε→0

1

EVSOFTMAXtrain,ε(v)i
∂EVSOFTMAXtrain,ε(v)i

∂vj

= lim
ε→0

1

EVSOFTMAXtrain,ε(v)i
lim
ε→0

∂EVSOFTMAXtrain,ε(v)i
∂vj

= lim
ε→0

1

EVSOFTMAXtrain,ε(v)i
lim
ε→0

EVSOFTMAXtrain,ε(v)i(δij − EVSOFTMAXtrain,ε(v)j)

= lim
ε→0

1

EVSOFTMAXtrain,ε(v)i
EVSOFTMAXtrain,ε(v)i(δij − EVSOFTMAXtrain,ε(v)j)

= lim
ε→0

δij − EVSOFTMAXtrain,ε(v)j

= δij − EVSOFTMAX(v)j .

(42)

E Further Experimental Details

All experiments were performed on a single local NVIDIA GeForce GTX 1070 or Tesla K40c GPU.

E.1 MNIST CVAE

We train a CVAE architecture [19] with two multi-layer perceptrons (MLPs) for the encoder and
one MLP for the decoder. For the MLPs of the encoder and decoder, we use two fully connected
layers per MLP. For the encoder, we use hidden unit dimensionalities of 30 for pθ(z | y) and 256
for qφ(z | x, y), and for the decoder, we use hidden unit dimensionality of 256 for p(x′ | z). We use
the ReLU nonlinearity with stochastic gradient descent and a learning rate of 0.001. During training
time, the Gumbel-Softmax reparameterization was used to backpropagate loss gradients through
the discrete latent space [14], [15]. We train for 20 epochs with a batch size of 64. The standard
conditional evidence lower bound (ELBO) of Eq. (2) was maximized to train the model.

For each normalization function f (softmax, sparsemax, entmax-1.5, post-hoc evidential, and
ev-softmax), we use the corresponding decoder to generate one image x̂

(f)
k for each latent class

z
(f)
k ∈

{
z
(f)
0 , . . . , z

(f)
9

}
. For each image x̂

(f)
k , we use the trained classifier to calculate the proba-

bility distribution Q
(
z̃ | x̂(f)

k

)
, which represents the probability distribution over the ten classes of

handwritten digits inferred from the decoded image. Let pθ(z | y; f) denote the prior distribution
over the latent classes generated by normalization function f with model parameterized by θ. We
define p(z̃ | y; f) =

∑10
k=1 Q

(
z̃ | x̂(f)

k

)
pθ(zk | y; f) as the probability distribution over the ten

classes of handwritten digits marginalized over the prior distribution. Then the Wasserstein distance
is calculated between p(z̃ | y; f) and the uniform distribution over z̃1, z̃3, z̃5, z̃7, z̃9 for y = odd, and
z̃0, z̃2, z̃4, z̃6, z̃8 for y = even.

E.2 Semi-supervised VAE

We use a classification network consisting of three fully connected hidden layers of size 256, using
ReLU activations. The generative and inference network both consist of one hidden layer of size
128 with ReLU activations. The multivariate Gaussian has 8 dimensions with a diagonal covariance
matrix. We use the Adam optimizer with a learning rate of 5 · 10−4. For the labeled loss component

18

Figure 5: Generated images for the queries “cauliflower”, “jellyfish”, and “mashed potato” with the model
using ev-softmax.

of the semi-supervised objective, we use the sparsemax loss and Tsallis loss for the models using
sparsemax and entmax-1.5, respectively, and we use the negative log-likelihood loss for the models
using softmax and ev-softmax. Following Liu et al. [21], we pretrain the network with only labeled
data prior to training with the whole training set.

E.3 VQ-VAE

We train the VQ-VAE [1] network on tinyImageNet data normalized to [−1, 1]. The tinyImageNet
dataset consists of 10,000 images and 200 classes. We use tinyImageNet due to its more computational
feasible size for training on a single NVIDIA GeForce GTX 1070 GPU. We train the VQ-VAE with
the default parameters from https://github.com/ritheshkumar95/pytorch-vqvae. We use
a batch size of 128 for 100 epochs, K = 512 for the number of classes for each of the 16 × 16
latent variables, a hidden size of 128, and a β of one. The network was trained with the Adam
optimizer [48] with a starting learning rate of 2 × 10−4. We then train PixelCNN [30] priors for
each normalization function (softmax, sparsemax, entmax-1.5, post-hoc evidential, and ev-softmax)
over the latent space with 10 layers, hidden dimension of 128, and batch size of 32 for 100 epochs.
The networks for each function were trained with the Adam optimizer over learning rates of 10−5

and 10−6. For each normalization function, the network was chosen by selecting the one with the
lowest loss on the validation set. We generate a new dataset by sampling from the trained prior, and
decoding the images using the VQ-VAE decoder. We sample 25 latent encodings from the prior for
each of the 200 tinyImageNet training classes to build a dataset for each normalization function.

We then train Wide Residual Networks (WRN) [31] for classification on tinyImageNet. Each
WRN is trained for 100 epochs with a batch size of 128. The optimizers are Adam with learning
rates of 10−4, 10−5, and 10−6. The best WRN was selected through validation accuracy. The
inference performance of the WRN classifier on the datasets generated with the softmax, sparsemax,
entmax-1.5, and ev-softmax distributions are compared, demonstrating that our distribution yields the
best performance while significantly reducing the size of the latent sample space.

Fig. 5 shows sampled images generated using the proposed evidential softmax normalization function.
The spatial structure of the queries is demonstrated in the generated samples.

E.4 Transformer

We train transformer models [2] on the English-German corpus of IWSLT 2014 [34]. The models
were pretrained on the WMT 2016 English-German corpus [35]. We use the OpenNMT implemen-
tation [30]. For each normalization function, we use a batch size of 1024, word vector size of 512,
and inner-layer dimensionality of 2048. We train with Adam with a total learning rate of 0.5 using
the same learning rate decay of Vaswani et al. [2], and we train over 50000 iterations. We report
tokenized test BLEU scores across five random seeds.

19

	Post-Hoc Evidential Sparsification
	Evidential Theory and Logistic Regression
	Evidential Sparsification

	Equivalence to Post-Hoc Evidential Sparsification Function
	Properties of Evidential Softmax
	Gradient of the Evidential Softmax Loss
	Further Experimental Details
	MNIST CVAE
	Semi-supervised VAE
	VQ-VAE
	Transformer

