
A Theoretical Results

A.1 Gaussian Case

Recall that for X ∼ N (µX , σ
2
X),

R(D) =

{
1
2 log(σ

2
X/D), 0 ≤ D ≤ σ2

X ,

0, D > σ2
X ,

(15)

and in the first case the function is attained by some pX̂|X with marginal X̂ ∼ N (µX , σ
2
X −D)[7].

Theorem 1. For X ∼ N (µX , σ
2
X), the rate-distortion-perception function under squared error

distortion and squared W2 distance is achieved by some X̂ jointly Gaussian with X and is given by

R(D,P ) =


1
2 log

σ2
X(σX−

√
P )2

σ2
X(σX−

√
P )2−(

σ2
X

+(σX−
√

P )2−D

2 )2

if
√
P < σX −

√
|σ2
X −D|,

max{ 1
2 log

σ2
X

D , 0} if
√
P ≥ σX −

√
|σ2
X −D|.

We will first need a Lemma from estimation theory. Let X̂ be a random variable with E[X̂] = µX̂ ,
Var(X̂) = σ2

X̂
and Cov(X, X̂) = θ. Let X̂G be a random variable jointly Gaussian with X with the

same first and second order statistics as X̂ .

Lemma 1. Given µX̂ , σ2
X̂

, and θ, we have that

E[(X − E[X|X̂G])
2] ≥ E[(X − E[X|X̂])2].

The proof of this result can be found in a standard estimation theory reference, e.g. Chapter 3, page
134 of the 6.432 notes by Willsky & Wornell [38].

Proof of Theorem 1. We shall show that there is no loss of optimality in assuming that X̂ is jointly
Gaussian with X . It is clear that E[(X − X̂)2] = E[(X − X̂G)

2], as the first and second order
statistics are all given. Note that by expanding outW2(pX , pX̂), one can see that the optimal coupling
is identified only through the cross-term between X and X̂; since every coupling of pX and pX̂
induces a Gaussian coupling of pX and pX̂G

with the same covariance, it follows that

W 2
2 (pX , pX̂) ≥W 2

2 (pX , pX̂G
). (16)

Finally, we have
I(X; X̂) = h(X)− h(X|X̂)

≥ h(X)− h(X − E[X|X̂])

(a)
≥ h(X)− 1

2
log(2πeE[(X − E[X|X̂])2])

(b)
≥ h(X)− 1

2
log(2πeE[(X − E[X|X̂G])

2])

= h(X)− h(X − E[X|X̂G]))

(c)
= h(X)− h(X|X̂G)

= I(X; X̂G),

(17)

where (a) is because the Gaussian distribution maximizes differential entropy for a given variance, (b)
follows from Lemma 1 and (c) is because the estimation error is independent of X̂G. Thus, it suffices
to solve the problem

R(D,P ) = min
pX̂G|X

I(X; X̂G)

s.t. E[(X − X̂G)
2] ≤ D, W 2

2 (pX , pX̂G
) ≤ P.

(18)
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Note that we can write

E[(X − X̂G)
2] = (µX − µX̂)2 + σ2

X + σ2
X̂
− 2θ, (19)

and we have from standard results (e.g. minimizing (19), or more generally [8]) that

W 2
2 (pX , pX̂G

) = (µX − µX̂)2 + (σX − σX̂)2. (20)

Finally, recall that the mutual information between the two Gaussian distributions is given by

I(X; X̂G) =
1

2
log

σ2
Xσ

2
X̂

σ2
Xσ

2
X̂
− θ2

, (21)

so there is no loss of optimality in assuming µX̂ = µX and θ ≥ 0. Now we consider when each
constraint is active. Suppose that P was active and D was inactive. Then

D > σ2
X + σ2

X̂
− 2θ

= σ2
X + (σX −

√
P )2 − 2θ.

(22)

Hence, we can decrease θ to reduce the mutual information until either D is active or the rate is zero.

If D is active, then the perception constraint is satisfied automatically when (σX̂ − σX)2 ≤ P ,
or

√
P ≥ σX −

√
|σ2
X −D| (here we have used the solution to R(D) from (15)). When

√
P <

σX −
√
|σ2
X −D|, both P and D are active, and consequently we have σ2

X̂
= (σX −

√
P )2 and

θ =
σ2
X+σ2

X̂
−D

2 . Noting that the other case is simply the solution to R(D), this concludes the
proof.

Alternatively, we may express the minimum achievable distortion in terms of P and R as

D(P,R) =

{
σ2
X + (σX −

√
P )2 − 2σX(σX −

√
P )

√
1− 2−2R, P < (σX −

√
σ2
X − σ2

X2−2R)2,

σ2
X2−2R, P ≥ (σX −

√
σ2
X − σ2

X2−2R)2.

For any fixed R, as P increases from 0 to (σX −
√
σ2
X − σ2

X2−2R)2, D(P,R) decreases from
2σ2

X − 2σ2
X

√
1− 2−2R to σ2

X2−2R; further increasing P does not affect D(P,R) anymore.

Moreover, the proof of Theorem 1 can be modified to handle to the case d(pX , pX̂) = KL(pX , pX̂),
where KL(pX , pX̂) =

∫
pX̂(x) log

pX̂(x)

pX(x)dx is the KL-divergence between pX and pX̂ . Given
(µX̂ , σ

2
X̂
), KL(pX , pX̂) is minimized when pX̂ is a Gaussian distribution. We have that

KL(pX , pX̂G
) =

σ2
X̂
− σ2

X

2σ2
X

+
1

2
log

σ2
X

σ2
X̂

,

W 2
2 (pX , pX̂G

) = (σX − σX̂)2.

When σX̂ ≤ σX , both functions are monotonically decreasing in σX̂ . This implies that the rate-
distortion-perception functions under KL(pX , ·) and W 2

2 (pX , ·) also share a one-to-one correspon-
dence in P .

A.2 Achievability of Universal Representations

Before moving on to the achievability of universal representations, we first discuss the functional
representations lemmas which play an integral part in the proof. The functional representation
lemma states that for jointly distributed random variables X and Y , there exists a random variable U
independent of X , and function ϕ such that Y = ϕ(X,U). Here, U is not necessarily unique. The
strong functional representation lemma [19] states further that there exists a U which is informative
of Y in the sense that

H(Y |U) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4.

Note that X and Y may be continuous random variables, and the entropy is still well-defined as long
as Y |U = u is discrete for each u. The construction given in [19] satisfies this property.
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Theorem 2.

(a) R∗(Θ) ≤ R(Θ) + log(R(Θ) + 1) + 5.

(b) R∗(Θ) ≥ R(Θ).

Proof of Theorem 2. (a) LetZ be jointly distributed withX such that for any (D,P ) ∈ Θ, there exists
pX̂D,P |Z satisfying E[∆(X, X̂D,P )] ≤ D and d(pX , pX̂D,P

) ≤ P . It follows by the strong functional
representation lemma that there exist a random variable V , independent of X , and a deterministic
function ϕ such that Z = ϕ(X,V ) and H(ϕ(X,V )|V ) ≤ I(X;Z) + log(I(X;Z) + 1) + 4. So
with V available at both the encoder and the decoder, we can use a class of prefix-free binary codes
indexed by V with the expected codeword length no greater than I(X;Z)+ log(I(X;Z)+ 1)+ 5 to
lossless represent Z. Now it suffices for the decoder to simulate pX̂D,P |Z . Specifically, it follows by
the functional representation lemma that there exists a random variable VD,P , independent of (X,V ),
and a deterministic function ψD,P such that X̂D,P = ψD,P (Z, VD,P ). Note that V and VD,P can be
extracted from random seed U .

(b) For any random variable U , encoding function fU : X → CU , and decoding functions gU,D,P :

CU → X̂ , (D,P ) ∈ Θ satisfying E[∆(X, X̂D,P )] ≤ D and d(pX , pX̂D,P
) ≤ P , we have

E[ℓ(fU (X))] ≥ H(fU (X)|U)

= I(X; fU (X)|U)

= I(X; fU (X), U)

≥ R(Θ),

where the last inequality follows by defining (fU (X), U) as Z, which satisfies the conditions in the
definition of R(Θ).

Theorem 3. Let X ∼ N (µX , σ
2
X) be a scalar Gaussian source and assume MSE and W 2

2 (·, ·) losses.
Let Θ be any non-empty set of (D,P ) pairs. Then

A(Θ) = 0. (23)

Moreover, for any representation Z jointly Gaussian with X such that

I(X;Z) = sup
(D,P )∈Θ

R(D,P ), (24)

we have
Θ ⊆ Ω(pZ|X) = Ω(I(X;Z)). (25)

Proof of Theorem 3. Let R = sup(D,P )∈ΘR(D,P ). It is clear that Θ ⊆ Ω(R). The distortion-
perception tradeoff with respect to R, i.e., the lower boundary of Ω(R), is given by

D = σ2
X + (σX −

√
P )2 − 2σX(σX −

√
P )
√
1− 2−2R, P ∈ [0, (σX −

√
σ2
X − σ2

X2−2R)2].

Every point in Ω(R) is dominated in a component-wise manner by some (D,P ) on this tradeoff.
Let Z be jointly Gaussian with X such that I(X;Z) = R. Note that I(X;Z) = R implies
ρ2XZ = 1 − 2−2R, where ρXZ = E[(X−µX)(Z−µZ)]

σXσZ
. For any (D,P ) on the tradeoff, define

X̂D,P = sign(ρXZ)σX−
√
P

σZ
(Z−µZ)+µX , where sign(ρXZ) = 1 if ρXZ ≥ 0 and sign(ρXZ) = −1

otherwise. One may verify by direct substitution that

W 2
2 (pX , pX̂D,P

) = (σX − σX̂D,P
)2 = P,

E[(X − X̂D,P )
2] = σ2

X + σ2
X̂D,P

− 2σX(σX −
√
P )|ρXZ |

= σ2
X + (σX −

√
P )2 − 2σX(σX −

√
P )
√

1− 2−2R

= D.

This shows that Ω(pZ|X) = Ω(R), which further implies A(Θ) = 0.
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Proposition 1 (Equivalence of zero rate penalty and full distortion-perception region). Suppose the
following regularity conditions hold:

1) sup(D,P )∈Ω(R)R(D,P ) = R′,

2) the infimum in the definition of R(Ω(R′)) is attainable.

Then the equality A(Ω(R′)) = 0 holds if and only if there exists some representation Z with
I(X;Z) = R′ such that Ω(pZ|X) = Ω(I(X;Z)).

Proof of Proposition 1. If there exists some representation Z with I(X;Z) = R′ such that
Ω(pZ|X) = Ω(I(X;Z)), then R(Ω(R′)) ≤ R′. Now under condition 1), we must have
A(Ω(R′)) ≤ 0, which implies A(Ω(R′)) = 0 as A(Ω(R′)) must be nonnegative.

Under condition 2), there exists some representation Z with I(X;Z) = R(Ω(R′)) such that
Ω(pZ|X) ⊇ Ω(R′). If A(Ω(R′)) = 0, then R(Ω(R′)) = sup(D,P )∈Ω(R)R(D,P ), which together
with condition 1) yields R(Ω(R′)) = R. Note that I(X;Z) = R′ implies Ω(pZ|X) ⊆ Ω(R′), and
consequently we must have Ω(pZ|X) = Ω(R′).

Theorem 4. Assume MSE loss and any perception measure d(·, ·). Let Z be any arbitrary represen-
tation of X . Then

Ω(pZ|X) ⊆
{
(D,P ) : D ≥ E[∥X − X̃∥2] + inf

pX̂ :d(pX ,pX̂)≤P
W 2

2 (pX̃ , pX̂)

}
⊆ cl(Ω(pZ|X)),

where X̃ = E[X|Z] is the reconstruction minimizing squared error distortion with X under the
representation Z and cl(·) denotes set closure. In particular, the two extreme points (D(a), P (a)) =

(E[∥X − X̃∥2], d(pX , pX̃)) and (D(b), P (b)) = (E[∥X − X̃∥2] +W 2
2 (pX̃ , pX), 0) are contained in

cl(Ω(pZ|X)).

Proof of Theorem 4. For any (D,P ) ∈ Ω(pZ|X), there exists some X̂D,P jointly distributed
with (X,Z) such that X ↔ Z ↔ X̂D,P form a Markov chain, E[∆(X, X̂D,P )]] ≤ D, and
d(pX , pX̂D,P

) ≤ P . Note that

D ≥ E[∥X − X̂D,P ∥2]
= E[∥X − X̃∥2] + E[∥X̃ − X̂D,P ∥2]
≥ E[∥X − X̃∥2] +W 2

2 (pX̃ , pX̂D,P
)

≥ E[∥X − X̃∥2] + inf
pX̂ :d(pX ,pX̂)≤P

W 2
2 (pX̃ , pX̂).

Therefore, we have Ω(pZ|X) ⊆ {(D,P ) : D ≥ E[∥X − X̃∥2] + infpX̂ :d(pX ,pX̂)≤P W 2
2 (pX̃ , pX̂)}.

On the other hand, given

(D′, P ′) ∈ {(D,P ) : D ≥ E[∥X − X̃∥2] + inf
pX̂ :d(pX ,pX̂)≤P

W 2
2 (pX̃ , pX̂)},

for any ϵ > 0, we can find some pX̂′ such that d(pX , pX̂′) ≤ P ′ and D′ + ϵ ≥ E[∥X − X̃∥2] +
W 2

2 (pX̃ , pX̂′). Let X̂ ′ be jointly distributed with (X,Z) such that X ↔ Z ↔ X̂ ′ form a Markov
chain and E[∥X̃− X̂ ′∥2] ≤W 2

2 (pX̃ , pX̂′)+ ϵ. It is possible to find such X̂ ′ by the Markov condition.
Note that

E[∥X − X̂ ′∥2] = E[∥X − X̃∥2] + E[∥X̃ − X̂ ′∥2]
≤ E[∥X − X̃∥2] +W 2

2 (pX̃ , pX̂′) + ϵ

≤ D′ + 2ϵ.

Therefore, we have

{(D,P ) : D ≥ E[∥X − X̃∥2] + inf
pX̂ :d(pX ,pX̂)≤P

W 2
2 (pX̃ , pX̂)} ⊆ cl(Ω(pZ|X)).
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Choosing pX̂ = pX̃ and pX̂ = pX shows respectively that (D(a), P (a)) and (D(b), P (b)) are
contained in {(D,P ) : D ≥ E[∥X − X̃∥2] + infpX̂ :d(pX ,pX̂)≤P W 2

2 (pX̃ , pX̂)}.

Quantitative results for the additive and multiplicative gaps. Since P3 = 0 (i.e., pX̂D3,P3
= pX ),

it follows that

D3 = E[∥X − X̂D3,P3∥2] = 2σ2
X − 2E[(X − µX)T (X̂D3,P3 − µX)]. (26)

Note that I(X;E[X|X̂D3,P3
]) ≤ I(X; X̂D3,P3

) = R(D1,∞), which implies E[∥X −
E[X|X̂D3,P3

]∥2] ≥ D1. Let c = 2σ2
X−D3

2σ2
X

. We have

D1 ≤ E[∥X − E[X|X̂D3,P3
]∥2]

≤ E[∥X − µX − c(X̂D3,P3
− µX)∥2]

= (1 + c2)σ2
X − 2cE[(X − µX)T (X̂D3,P3 − µX)]

(a)
=

4σ2
XD3 −D2

3

4σ2
X

,

where (a) is due to (26). So

D3 ≥ 2σ2
X − 2σX

√
σ2
X −D1,

which together with the fact that D(b) ≤ 2D1 implies

D(b) −D3 ≤ 2D1 − 2σ2
X + 2σX

√
σ2
X −D1,

D(b)

D3
≤ D1

σ2
X − σX

√
σ2
X −D1

.

It is easy to verify that

1

2
σ2
X ≥ 2D1 − 2σ2

X + 2σX

√
σ2
X −D1

D1≈0 or σ2
X≈ 0,

2 ≥ D1

σ2
X − σX

√
σ2
X −D1

D1≈σ2
X≈ 1.

A similar argument can be used to bound the gap between (D1, P1) and the upper-left extreme point
(D̃(a), P̃ (a)) of blue curve. Note that

D̃(a) = E[∥X − E[X|X̂D3,P3
]∥2] ≤ 4σ2

XD3 −D2
3

4σ2
X

,

which together with the fact that D1 ≥ 1
2D3 implies

D̃(a) −D1 ≤ 1

2
D3 −

D2
3

4σ2
X

,

D̃(a)

D1
≤ 2− D3

2σ2
X

.

Finally, this implies

1

4
σ2
X ≥ 1

2
D3 −

D2
3

4σ2
X

D3≈0 or 2σ2
X≈ 0, (27)

2 ≥ 2− D3

2σ2
X

D3≈2σ2
X≈ 1. (28)

We have previously dealt with the one-shot setting. Now we consider the case where we jointly
encode an i.i.d. sequence Xn where each symbol has marginal distribution pX . Here we assume that
d(·, ·) is convex in its second argument.
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Definition 4. Let Θ be an arbitrary set of (D,P ) pairs. A Θ-universal representation of asymptotic
rate R is said to exist if we can find a sequence of random variables U (n), encoding functions
f
(n)

U(n) : Xn → C(n)
U and decoding functions g(n)

U(n),D,P
: C(n)

U(n) → X̂n, (D,P ) ∈ Θ, satisfying

1

n

n∑
i=1

E[∆(X(i), X̂D,P (i))] ≤ D, (29)

d

(
pX ,

1

n

n∑
i=1

pX̂D,P (i)

)
≤ P (30)

such that

lim sup
n→∞

1

n
E[ℓ(f (n)

U(n)(X
n))] ≤ R,

where X̂n
D,P ≜ g

(n)

U(n),D,P
(f

(n)

U(n)(X
n)). The minimum of such R with respect to Θ is denoted as

R(∞)(Θ).

Theorem 5. R(∞)(Θ) = R(Θ).

Remark 1. The same conclusion holds if constraint (29) is replaced with

E[∆(X(i), X̂D,P (i))] ≤ D, i = 1, · · · , n, (31)

and/or constraint (30) is replaced with

d(pX , pX̂D,P (i)) ≤ P, i = 1, · · · , n. (32)

Note that (31) and (32) are more restrictive than (29) and (30), respectively, as

(31) ⇒ (29),

(32) ⇒ 1

n

n∑
i=1

d(pX , pX̂D,P (i)) ≤ P ⇒ (30).

Moreover, it is easy to verify that under constraints (31) and (32), Theorem 5 holds without the
convexity assumption on d(·, ·).

Proof of Theorem 5. Let Z be jointly distributed with X such that for any (D,P ) ∈ Θ, there exists
pX̂D,P |Z satisfying E[∆(X, X̂D,P )] ≤ D and d(pX , pX̂D,P

) ≤ P . Construct

pZn|Xn ≜
n∏
i=1

pZ(i)|X(i)

with pZ(i)|X(i) = pZ|X , i = 1, · · · , n. It follows by the strong functional representation lemma that
there exists a random variable V (n), independent of Xn, and a deterministic function ϕ(n) such that
Zn = ϕ(Xn, V (n)) and H(ϕ(Xn, V (n))|V (n)) ≤ I(Xn;Zn) + log(I(Xn;Zn) + 1) + 4. So with
V (n) available at both the encoder and the decoder, we can use a class of prefix-free binary codes
indexed by V (n) with the expected codeword length no greater than I(Xn;Zn) + log(I(Xn;Zn) +
1) + 5 to lossless represent Zn. Moreover, by the functional representation lemma, there exist a
random variable VD,P , independent of (Xn;V (n)), and a deterministic function ψD,P such that
pψD,P (Z(i),VD,P )|Z(i) = pX̂D,P |Z . Note that V (n) and VD,P can be extracted from random seed U (n).

Define X̂D,P (i) = ψD,P (Z(i), VD,P ), i = 1, · · · , n. It is easy to verify that

1

n

n∑
i=1

E[∆(X(i), X̂D,P (i))] = E[∆(X, X̂D,P )] ≤ D,

d

(
pX ,

1

n

n∑
i=1

pX̂D,P (i)

)
= d(pX , pX̂D,P

) ≤ P.
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Moreover, notice that

1

n
I(Xn;Zn) +

1

n
log(I(Xn;Zn) + 1) +

5

n

= I(X;Z) +
1

n
log(nI(X;Z) + 1) +

5

n
n→∞→ I(X;Z).

This proves that R(∞)(Θ) ≤ R(Θ).

For any random variable U (n), encoding function f (n)
U(n) : Xn → C(n)

U(n) and decoding function

g
(n)

U(n),D,P
: C(n)

U(n) → X̂n, (D,P ) ∈ Θ satisfying (29) and (30), we have

1

n
E[ℓ(f (n)

U(n)(X
n))] ≥ 1

n
H(f

(n)

U(n)(X
n)|U (n))

=
1

n
I(Xn; f

(n)

U(n)(X
n)|U (n))

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n)|U (n), Xi−1)

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), U (n), Xi−1)

≥ 1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), U (n))

= I(X(T ); f
(n)

U(n)(X
n), U (n)|T )

= I(X(T ); f
(n)

U(n)(X
n), U (n), T ),

where T is uniformly distributed over {1, · · · , n} and is independent of Xn and U (n). Note that
X̂D,P (T ) is a function of (f (n)

U(n)(X
n), U (n), T ) for any (D,P ) ∈ Θ. Since

pX(T ) = pX ,

E[∆(X(T ), X̂D,P (T ))] =
1

n

n∑
i=1

E[∆(X(i), X̂D,P (i))] ≤ D,

d(pX(T ), pX̂D,P (T )) = d

(
pX ,

1

n

n∑
i=1

pX̂D,P (i)

)
≤ P,

it follows that

I(X(T ); f
(n)
U (Xn), U, T ) ≥ R(Θ).

This completes the proof.

A.3 Successive Refinement

We now study the case where the rate is not fixed in advance. Bits are sent in two stages as opposed
to all at once, with the hope that the reconstructions produced at both stages perform near-optimally
in both perception and distortion compared to what can be achieved by one-stage communication
at both the lower rate and the higher rate. Two-stage procedures arise frequently under practical
constraints, and previous works have considered this only under distortion losses. We address the
extension of universal representations to this setting within the successive refinement [9] framework.

Definition 5 (Two-stage Coding). Given two sets of (D,P ) pairs Θ1 and Θ2, we say rate pair
(R1, R2) is (operationally) achievable if there exists random variable U , encoding functions

fU : X → CU , fU,fU (X) : X → CU,fU (X),
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and decoding functions

gU,D1,P1 : CU → X̂ , gU,fU (X),D2,P2
: CU,fU (X) → X̂

for each (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, such that

E[ℓ(fU (X))] ≤ R1, E[ℓ(fU,fU (X)(X))] ≤ R2,

E[∆(X, X̂1,D1,P1
)] ≤ D1, E[∆(X, X̂2,D2,P2

)] ≤ D2,

d(pX , pX̂1,D1,P1
) ≤ P1, d(pX , pX̂2,D2,P2

) ≤ P2,

where X̂1,D1,P1 = gU,D1,P1(fU (X)) and X̂2,D2,P2 = gU,fU (X),D2,P2
(fU,fU (X)(X)). The closure

of the set of such (R1, R2) is denoted as R∗(Θ1,Θ2).

Here, fU acts with each gU,D1,P1
forming a low rate encoder-decoder pair to meet each constraint

(D1, P1) ∈ Θ1. Thereafter, fU,fU (X) encodes additional information about the source which is
combined with the low rate encoding to produce a high rate reconstruction through gU,fU (X),D2,P2

meeting each constraint (D2, P2) ∈ Θ2.

Definition 6 (Inner and outer bounds). Define

R(Θ1,Θ2) =
⋃

pZ1,Z2|X

{(R1, R2) ∈ R2
+ : R1 ≥ I(X;Z1) + log(I(X;Z1) + 1) + 5,

R1 +R2 ≥ I(X;Z1, Z2) + log(I(X;Z1) + 1) + log(I(X;Z2|Z1) + 1) + 10},
R(Θ1,Θ2) =

⋃
pZ1,Z2|X

{(R1, R2) ∈ R2
+ : R1 ≥ I(X;Z1), R1 +R2 ≥ I(X;Z1, Z2)}

with the unions taken over pZ1,Z2|X such that for any (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, there
exists

pX̂1,D1,P1
|Z1

and pX̂2,D2,P2
|Z2

satisfying

E[∆(X, X̂1,D1,P1
)] ≤ D1, E[∆(X, X̂2,D2,P2

)] ≤ D2,

d(pX , pX̂1,D1,P1
) ≤ P1, d(pX , pX̂2,D2,P2

) ≤ P2.

We now characterize the operational definition in terms of these information rate regions.

Theorem 6. cl(R(Θ1,Θ2)) ⊆ R∗(Θ1,Θ2) ⊆ cl(R(Θ1,Θ2)).

Proof of Theorem 6. (a) Let Z1 and Z2 be jointly distributed withX such that for any (D1, P1) ∈ Θ1

and (D2, P2) ∈ Θ2, there exist pX̂1,D1,P1
|Z1

and pX̂2,D2,P2
|Z2

satisfying E[∆(X, X̂1,D1,P1)] ≤ D1,

E[∆(X, X̂2,D2,P2
)] ≤ D2, d(pX , pX̂1,D1,P1

) ≤ P1, and d(pX , pX̂2,D2,P2
) ≤ P2. It follows

by the strong functional representation lemma that there exist a random variable V1, indepen-
dent of X , and a deterministic function ϕ1 such that Z1 = ϕ1(X,V1) and H(ϕ1(X,V1)|V1) ≤
I(X;Z1)+log(I(X;Z1)+1)+4; moreover, there exist a random variable V2, independent of (X,V1),
and a deterministic function ϕ2 such that Z2 = ϕ2(X,Z1, V2) and H(ϕ2(X,Z1, V2)|Z1, V2) ≤
I(X;Z2|Z1) + log(I(X;Z2|Z1) + 1) + 4. So with (V1, V2) available at both the encoder and the
decoder, we can use a class of prefix-free binary codes indexed by V1 with the expected codeword
length no greater than I(X;Z1) + log(I(X;Z1) + 1) + 5 to lossless represent Z1 and then use a
class of prefix-free binary codes indexed by (Z1, V2) with the expected codeword length no greater
than I(X;Z2|Z1) + log(I(X;Z2|Z1) + 1) + 5 to lossless represent Z2. Note that in the first stage
we can send the codeword used to represent Z1 and with a certain probability the codeword used to
represent Z2.

Now it suffices for the decoder to simulate pX̂1,D1,P1
|Z1

and pX̂2,D2,P2
|Z2

. Specifically, it follows by
the functional representation lemma that there exist random variables

V1,D1,P1
and V2,D2,P2

,
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independent of (X,V1, V2), and deterministic functions

ψ1,D1,P1 and ψ2,D2,P2

such that

X̂1,D1,P1
= ψ1,D1,P1

(Z1, V1,D1,P1
),

X̂2,D2,P2 = ψ2,D2,P2(Z2, V2,D2,P2).

This proves the desired result.

(b) For any random variable U , encoding functions fU : X → CU , fU,fU (X) : X → CU,fU (X) and de-
coding functions gU,D1,P1

: CU → X̂ , (D1, P1) ∈ Θ1, gU,fU (X),D2,P2
: CU,fU (X) → X̂ , (D2, P2) ∈

Θ2, satisfying E[∆(X, X̂1,D1,P1
)] ≤ D1, E[∆(X, X̂2,D2,P2

)] ≤ D2, d(pX , pX̂1,D1,P1
) ≤ P1, and

d(pX , pX̂2,D2,P2
) ≤ P2, we have

E[ℓ(fU (X))] ≥ H(fU (X)|U)

= I(X; fU (X)|U)

≥ I(X; fU (X), U)

= I(X;Z1)

and

E[ℓ(fU (X))] + E[ℓ(fU,fU (X)(X))] ≥ H(fU (X)|U) +H(fU,fU (X)(X)|U, fU (X))

≥ I(X; fU (X)|U) + I(X; fU,fU (X)(X)|U, fU (X))

= I(X; fU (X), fU,fU (X)(X)|U)

= I(X; fU (X), fU,fU (X)(X), U)

= I(X;Z1, Z2),

where we defineZ1 = (fU (X), U) andZ2 = (fU (X), fU,fU (X)(X), U). So (R1, R2) ∈ R(Θ1,Θ2)
for any (R1, R2) with R1 ≥ E[ℓ(fU (X))] and R2 ≥ E[ℓ(fU,fU (X)(X))]. This completes the
proof.

Definition 7 (Asymptotic rate region). Given two sets of (D,P ) pairs Θ1 and Θ2, we say rate pair
(R1, R2) is asymptotically achievable if there exists a sequence of random variables U (n), encoding
functions

f
(n)

U(n) : Xn → C(n)

U(n) , f
(n)

U(n),f
(n)
U (Xn)

: Xn → C(n)

U(n),f
(n)

U(n)
(Xn)

and decoding functions

g
(n)

U(n),D1,P1
: C(n)

U(n) → X̂n, g
(n)

U(n),f
(n)

U(n)
(Xn),D2,P2

: C(n)

U(n),f
(n)

U(n)
(Xn)

→ X̂n

(D1, P1) ∈ Θ1, (D2, P2) ∈ Θ2, satisfying

1

n

n∑
i=1

E[∆(X(i), X̂1,D1,P1
(i))] ≤ D1,

1

n

n∑
i=1

E[∆(X(i), X̂2,D2,P2
(i))] ≤ D2, (33)

d

(
pX ,

1

n

n∑
i=1

pX̂1,D1,P1
(i)

)
≤ P1, d

(
pX ,

1

n

n∑
i=1

pX̂2,D2,P2
(i)

)
≤ P2 (34)

such that

lim sup
n→∞

1

n
E[ℓ(f (n)

U(n)(X
n))] ≤ R1, lim sup

n→∞

1

n
E[ℓ(f (n)

U(n),f(n)(Xn)
(Xn))] ≤ R2,

where
X̂n

1,D1,P1
= g

(n)

U(n),D1,P1
(f

(n)

U(n)(X
n))

and
X̂n

2,D2,P2
= g

(n)

U(n),f
(n)

U(n)
(Xn),D2,P2

(f
(n)

U(n),f(n)(Xn)
(Xn)).

The set of such (R1, R2) is denoted as R(∞)(Θ1,Θ2).
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Theorem 7. R(∞)(Θ1,Θ2) = cl(R(Θ1,Θ2)).

Remark 2. Remark 1 is applicable here as well.

Proof of Theorem 7. Let Z1 and Z2 be jointly distributed with X such that for any (D1, P1) ∈ Θ1

and (D2, P2) ∈ Θ2, there exist pX̂1,D1,P1
|Z1

and pX̂2,D2,P2
|Z2

satisfying E[∆(X, X̂1,D1,P1
)] ≤ D1,

E[∆(X, X̂2,D2,P2
)] ≤ D2, d(pX , pX̂1,D1,P1

) ≤ P1, and d(pX , pX̂2,D2,P2
) ≤ P2. Construct

pZn
1 Z

n
2 |Xn ≜

n∏
i=1

pZ1(i)Z2(i)|X(i)

with pZ1(i)Z2(i)|X(i) = pZ1Z2|X , i = 1, · · · , n. It follows by the strong functional representation
lemma that there exist a random variable V (n)

1 , independent of Xn, and a deterministic function ϕ1
such that Zn1 = ϕ1(X

n, V
(n)
1 ) andH(ϕ1(X

n, V
(n)
1 )|V (n)

1 ) ≤ I(Xn;Zn1 )+log(I(Xn;Zn1 )+1)+4;
moreover, there exist a random variable V (n)

2 , independent of (Xn, V
(n)
1 ), and a deterministic function

ϕ2 such that Zn2 = ϕ2(X
n, Zn1 , V

(n)
2 ) and H(ϕ2(X

n, Zn1 , V
(n)
2 )|Zn1 , V (n)

2 ) ≤ I(Xn;Zn2 |Zn1 ) +
log(I(Xn;Zn2 |Zn1 ) + 1) + 4. So with (V

(n)
1 , V

(n)
2 ) available at both the encoder and the decoder,

we can use a class of prefix-free binary codes indexed by V (n)
1 with the expected codeword length no

greater than I(Xn;Zn1 ) + log(I(Xn;Zn1 ) + 1) + 5 to lossless represent Zn1 and then use a class of
prefix-free binary codes indexed by (Zn1 , V

(n)
2 ) with the expected codeword length no greater than

I(Xn;Zn2 |Zn1 ) + log(I(Xn;Zn2 |Zn1 ) + 1) + 5 to lossless represent Zn2 .

Note that in the first stage we can send the codeword used to represent Zn1 and with a certain
probability the codeword used to represent Zn2 . Moreover, by the functional representation lemma,
there exist random variables V1,D1,P1 and V2,D2,P2 , independent of (Xn;V

(n)
1 , V

(n)
2 ), and deter-

ministic functions ψ1,D1,P1 and ψ2,D2,P2 such that pψ1,D1,P1
(Z1(i),V1,D1,P1

)|Z1(i) = pX̂1,D1,P1
|Z1

and

pψ2,D2,P2
(Z2(i),V2,D2,P2

)|Z2(i) = pX̂2,D2,P2
|Z2

. Define X̂1,D1,P1
(i) = ψ1,D1,P1

(Z1(i), V1,D1,P1
) and

X̂2,D2,P2(i) = ψ2,D2,P2(Z2(i), V2,D2,P2), i = 1, · · · , n. It is easy to verify that

1

n

n∑
i=1

E[∆(X(i), X̂k,Dk,Pk
(i))] = E[∆(X, X̂k,Dk,Pk

)] ≤ Dk, k = 1, 2,

d

(
pX ,

1

n

n∑
i=1

pX̂k,Dk,Pk
(i)

)
= d(pX , pX̂k,Dk,Pk

) ≤ Pk, k = 1, 2.

Furthermore,

1

n
I(Xn;Zn1 ) +

1

n
log(I(Xn;Zn1 ) + 1) +

5

n

= I(X;Z1) +
1

n
log(nI(X;Z1) + 1) +

5

n
n→∞→ I(X;Z1)

and

1

n
I(Xn;Zn1 ) +

1

n
log(I(Xn;Zn1 ) + 1) +

5

n
+

1

n
I(Xn;Zn2 |Zn1 ) +

1

n
log(I(Xn;Zn2 |Zn1 ) + 1) +

5

n

=
1

n
I(Xn;Zn1 , Z

n
2 ) +

1

n
log(I(Xn;Zn1 ) + 1) +

1

n
log(I(Xn;Zn2 |Zn1 ) + 1) +

10

n

= I(X;Z1, Z2) +
1

n
log(nI(X;Z1) + 1) +

1

n
log(nI(X;Z2|Z1) + 1) +

10

n
n→∞→ I(X;Z1, Z2).

This proves that cl(R(Θ1,Θ2)) ⊆ R(∞)(Θ1,Θ2).
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For any random variable U (n), encoding functions f (n)
U(n) : Xn → C(n)

U(n) , f
(n)

U(n),f
(n)

U(n)
(Xn)

:

Xn → C(n)

U(n),f
(n)

U(n)
(Xn)

and decoding functions g(n)
U(n),D1,P1

: C(n)

U(n) → X̂n, (D1, P1) ∈ Θ1,

g
(n)

U(n),f
(n)
U (Xn),D2,P2

: C
U(n),f

(n)
U (Xn)

→ X̂n, (D2, P2) ∈ Θ2, satisfying (33) and (34), we have

1

n
E[ℓ(f (n)

U(n)(X
n))] ≥ 1

n
H(f

(n)

U(n)(X
n)|U (n))

=
1

n
I(Xn; f

(n)

U(n)(X
n)|U (n))

=
1

n
I(Xn; f

(n)

U(n)(X
n), U (n))

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), U (n)|Xi−1)

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), U (n), Xi−1)

≥ 1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), U (n))

= I(X(T ); f
(n)

U(n)(X
n), U (n)|T )

= I(X(T ); f
(n)

U(n)(X
n), U (n), T )

= I(X(T );Z1)

and

1

n
E[ℓ(f (n)

U(n)(X
n))] +

1

n
E[ℓ(f (n)

U(n),f
(n)

U(n)
(Xn)

(Xn))]

≥ 1

n
H(f

(n)

U(n)(X
n)|U (n)) +

1

n
H(f

(n)

U(n),f
(n)
U (Xn)

(Xn)|U (n), f
(n)

U(n)(X
n))

≥ 1

n
I(Xn; f

(n)

U(n)(X
n)|U (n)) +

1

n
I(Xn; f

(n)
U,fU (Xn)(X

n)|U (n), f
(n)

U(n)(X
n))

=
1

n
I(Xn; f

(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn)|U (n))

=
1

n
I(Xn; f

(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n))

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n)|Xi−1)

=
1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n), Xi−1)

≥ 1

n

n∑
i=1

I(X(i); f
(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n))

= I(X(T ); f
(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n)|T )

= I(X(T ); f
(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n), T )

= I(X(T );Z1, Z2),
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where T is uniformly distributed over {1, · · · , n} and is independent of (Xn, U (n)), and we define
Z1 = (f

(n)

U(n)(X
n), U (n), T ) and Z2 = (f

(n)

U(n)(X
n), f

(n)

U(n),f
(n)

U(n)
(Xn)

(Xn), U (n), T ). Since

pX(T ) = pX ,

E[∆(X(T ), X̂k,Dk,Pk
(T ))] =

1

n

n∑
i=1

E[∆(X(i), X̂k,Dk,Pk
(i))] ≤ Dk, k = 1, 2,

d(pX(T ), pX̂k,Dk,Pk
(T )) = d

(
pX ,

1

n

n∑
i=1

pX̂k,Dk,Pk
(i)

)
≤ Pk, k = 1, 2,

and X̂k,Dk,Pk
(T ) is a function of Zk, k = 1, 2, we must have (R1, R2) ∈ R(Θ1,Θ2) for any

(R1, R2) with R1 ≥ 1
nE[ℓ(f

(n)
U (Xn))] and R2 ≥ 1

nE[ℓ(f
(n)

U,f
(n)
U (Xn)

(Xn))]. This completes the

proof.

Definition 8. We say that Θ1 can be successively refined to Θ2 if (R(Θ1), R(Θ2) − R(Θ1)) ∈
cl(R(Θ1,Θ2))

Remark 3. To show the asymptotic feasibility of successive refinement from Θ1 to Θ2, it suffices to
find pZ1,Z2|X such that

I(X;Z1) = R(Θ1), I(X;Z1, Z2) = R(Θ2),

and for any (D1, P1) ∈ Θ1 and (D2, P2) ∈ Θ2, there exists
pX̂1,D1,P1

|Z1
and pX̂2,D2,P2

|Z2

satisfying

E[∆(X; X̂1,D1,P1)] ≤ D1, E[∆(X; X̂2,D2,P2)] ≤ D2,

d(pX , pX̂1,D1,P1
) ≤ P1, d(pX , pX̂2,D2,P2

) ≤ P2.

In the Gaussian case, it is easy to show that successive refinement from Θ1 to Θ2 is always asymptot-
ically feasible for R(Θ2) ≥ R(Θ1).

Theorem 8. Let X ∼ N (µX , σ
2
X) be a scalar Gaussian source and assume MSE and W 2

2 (·, ·)
losses. Let Θ1 and Θ2 be arbitrary non-empty sets of (D,P ) pairs with R(Θ1) ≤ R(Θ2). Then
(R(Θ1), R(Θ2)−R(Θ1)) ∈ R(∞)(Θ1,Θ2), i.e., successive refinement from Θ1 to Θ2 is feasible.

Proof of Theorem 8. Let Z2 = Z1 +N1 and X = Z2 +N2, where

Z1 ∼ N (µX , σ
2
X(1− 2−2R(Θ1))),

N1 ∼ N (0, σ2
X(2−2R(Θ1) − 2−2R(Θ2))),

N2 ∼ N (0, σ2
X2−2R(Θ2))

are mutually independent. It is easy to verify that I(X;Z1) = R(Θ1) and I(X;Z1, Z2) =
I(X;Z2) = R(Θ2). In view of Theorem 3, we have Θi ⊆ Ω(pZi|X) = Ω(R(Θi)), i = 1, 2.
So successive refinement from Θ1 to Θ2 is indeed asymptotically feasible.

Theorem 9 (Approximate refinability under the iRDPF). Assume MSE loss and any perception
measure d(·, ·). Let m be the dimension of X and

δR(σ
2
N ) = R(Θ1)−R(

σ2
Xσ

2
N

σ2
X + σ2

N

,∞) +
m

2
log

(D∗
1 + σ2

N )(D∗
2 + σ2

N )

σ4
N

,

where
D∗

1 = inf{D′
1 : (D′

1, P
′
1) ∈ Θ1 for some P ′

1},
D∗

2 = inf{D′
2 : (D′

2, P
′
2) ∈ Θ1 for some P ′

2}.
Then for any non-empty Θ1 and Θ2,

(R(Θ1), R(Θ2)−R(Θ1) + inf
σ2
N>0

δR(σ
2
N )) ∈ R(∞)(Θ1,Θ2).
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Remark 4. We have

δR(
σ2
XD

∗
1

σ2
X −D∗

1

) = R(Θ1)−R(D∗
1 ,∞) +

m

2
log

(σ2
X(D∗

1 +D∗
2)−D∗

1D
∗
2)(2σ

2
X −D∗

1)

σ4
XD

∗
1

.

In particular, δR(
σ2
XD

∗
1

σ2
X−D∗

1
) ≤ m when R(Θ1) = R(D∗

1 ,∞) and D∗
2 ≤ D∗

1 . In the scalar case, this
shows that the penalty for refinement (as opposed to sending all bits at once) is not more than 1 bit.

Proof of Theorem 9. This proof is an adaptation of the result from Lastras and Berger [18].

For any ϵ > 0, we can find Zk with I(X;Zk) ≤ R(Θk) + ϵ such that for any (Dk, Pk) ∈ Θk, there
exists pX̂k,Dk,Pk

|Zk
satisfying E[∥X − X̂k,Dk,Pk

∥2] ≤ Dk and d(pX , pX̂k,Dk,Pk
) ≤ Pk, k = 1, 2.

We define X , Z1, and Z2 in the same probability space such that Z1 ↔ X ↔ Z2 form a Markov
chain. It suffices to show that I(X;Z1, Z2) ≤ R(Θ2) + δR(σ

2
N ) + 2ϵ for any σ2

N > 0.

Let N ∼ N (0,
σ2
N

m Im) be an m-dimensional (multivariate) Gaussian random variable independent of
(X,Z1, Z2). We have

I(X;Z1, Z2)− I(X;Z2) = I(X;Z1|Z2)

≤ I(X;Z1, X +N |Z2)

= I(X;X +N |Z2) + I(X;Z1|Z2, X +N). (35)
Note that

I(X;X +N |Z2) = I(X − E[X|Z2];X − E[X|Z2] +N |Z2)

≤ I(Z2, X − E[X|Z2];X − E[X|Z2] +N)

= I(X − E[X|Z2];X − E[X|Z2] +N)

≤ m

2
log

D∗
2 + σ2

N

σ2
N

(36)

and
I(X;Z1|Z2, X +N)

≤ I(X,Z2;Z1|X +N)

= I(X;Z1|X +N)

= I(X;Z1, X +N)− I(X;X +N)

= I(X;X +N |Z1) + I(X;Z1)− I(X;X +N)

≤ I(X;X +N |Z1) +R(Θ1) + ϵ− I(X;X +N)

(β)

≤ I(X;X +N |Z1) +R(Θ1) + ϵ−R(
σ2
Xσ

2
N

σ2
X + σ2

N

,∞)

= I(X − E[X|Z1];X − E[X|Z1] +N |Z1) +R(Θ1)−R(
σ2
Xσ

2
N

σ2
X + σ2

N

,∞) + ϵ

≤ I(Z1, X − E[X|Z1];X − E[X|Z1] +N) +R(Θ1)−R(
σ2
Xσ

2
N

σ2
X + σ2

N

,∞) + ϵ

= I(X − E[X|Z1];X − E[X|Z1] +N) +R(Θ1)−R(
σ2
Xσ

2
N

σ2
X + σ2

N

,∞) + ϵ

≤ m

2
log

D∗
1 + σ2

N

σ2
N

+R(Θ1)−R(
σ2
Xσ

2
N

σ2
X + σ2

N

,∞) + ϵ, (37)

where (β) is because E[∥X − σ2
X

σ2
X+σ2

N
(X + N) − σ2

N

σ2
X+σ2

N
µX∥2] =

σ2
Xσ

2
N

σ2
X+σ2

N
and consequently

I(X;X +N) ≥ R(
σ2
Xσ

2
N

σ2
X+σ2

N
,∞). Substituting (36) and (37) into (35) gives

I(X;Z1, Z2)− I(X;Z2) ≤ δR(σ
2
N ) + ϵ,

which further implies
I(X;Z1, Z2) ≤ R(Θ2) + δR(σ

2
N ) + 2ϵ.

This completes the proof.
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B Experiments

Training lasted 30 epochs for MNIST and 80 epochs for SVHN, and alternates between training the
encoder and decoder with the critic fixed and training the critic with the encoder and decode fixed.
The learning rate was decayed by a factor of 5 after 20 epochs for MNIST, and after 25 epochs for
SVHN. All models were trained with the Adam optimizer. The batch size used was 64. All training
was performed on a Tesla V100 GPU. Training a single model takes about 10 minutes and 30 minutes
for MNIST and SVHN, respectively. We used the standard train/test splits.

B.1 Comparison of Quantizers
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Figure 5: (a) (c) Rate-distortion-perception tradeoffs for NQ. (b) (d) The visual quality of both the end-
to-end and universal models are on average comparable for each λi (MNIST:R = 6, SVHN:R = 60.)

Let C be the set of quantization centers, each containing L levels distributed uniformly between
[−1,+1] along each dimension d. Let x be the input and f(x) the output of the encoder before
quantization. We compare the performance of deterministic quantization (DQ), universal quantization
(UQ), and noisy quantization (NQ). All quantizers use a soft gradient estimator (equation (3) of
Mentzer et al. [21]) during backpropogation.

Deterministic quantization (DQ). The sender computes

z = argmin
c∈C

∥f(x)− c∥

and sends z to the receiver. The receiver decodes the image by passing z through the decoder. This
is the most straightforward method of quantization but lacks the stochasticity required to train an
effective generative model.
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Quantization with noise added (NQ). The sender computes

z = argmin
c∈C

∥f(x)− c∥

and sends z to the receiver. The receiver samples u ∼ U [−1/(L− 1),+1/(L− 1)]d and decodes the
image by passing z + u through the decoder. Note that there is no information loss as the noise range
is almost surely below the quantization interval. This scheme was used by Blau and Michaeli [5].

Universal quantization (UQ) [30, 42]. We assume the sender and receiver have access to u ∼
U [−1/(L− 1),+1/(L− 1)]d. The sender computes

z = argmin
c∈C

∥f(x) + u− c∥

and sends z to the receiver. The receiver decodes the image by passing z − u through the decoder.
This quantization scheme produces stochastic input for the decoder while reducing the quantization
error incurred by NQ. This is also known as a subtractive dither [12, 29] in literature.

We demonstrate in Figure 5 that the NQ scheme is still able to produce universal representations
within the operational tradeoff it achieves. The results of the comparison when optimizing only for
MSE loss are given in Table 1. Both DQ and UQ perform better than NQ. Although DQ performs
slightly better, UQ is still highly effective.

Table 1: Comparison of MSE distortion losses using deterministic quantization (DQ), universal
quantization (UQ), and noisy quantization (NQ) when optimizing an end-to-end model only for
distortion loss (λ = 0) on MNIST.

R MSE (DQ) MSE (UQ) MSE (NQ)
4.75 0.0442 0.0459 0.0484

6 0.0412 0.0426 0.0443
8 0.0358 0.0362 0.0391
10 0.0315 0.0324 0.0351

B.2 Error Intervals

We provide error intervals across 5 trials for a subset of the universality experiments given in Figure
4 on MNIST here. Each trial consists of training a new end-to-end model (λ = 0.015, R = 4.75),
then using the resultant encoder to train universal models across all tradeoff points. The results are
very consistent across each trial.

Table 2: MSE distorion losses across 5 trials.
λ 0.0000 0.0025 0.0040 0.0050 0.0060 0.0080 0.0090 0.0100 0.0110 0.0130

max 0.0470 0.0477 0.0493 0.0507 0.0531 0.0583 0.0614 0.0648 0.0681 0.0729
min 0.0466 0.0474 0.0490 0.0504 0.0526 0.0577 0.0606 0.0640 0.0665 0.0715

average 0.0468 0.0475 0.0491 0.0506 0.0528 0.0579 0.0609 0.0643 0.0670 0.0720

Table 3: Wasserstein-1 perception losses across 5 trials.
λ 0.0000 0.0025 0.0040 0.0050 0.0060 0.0080 0.0090 0.0100 0.0110 0.0130

max 5.8014 5.1464 4.6482 4.2692 3.7672 2.9855 2.5596 2.1221 1.9033 1.3256
min 5.5787 5.0612 4.5815 4.1812 3.7576 2.8928 2.5105 2.0020 1.6842 1.1958

average 5.7123 5.1087 4.6177 4.2211 3.7636 2.9446 2.5259 2.0778 1.8296 1.2718

B.3 Refinement Experiments

So far, we have enforced the decoders in universal models to use only the representations produced
by the universal encoder, producing a tradeoff curve along perception and distortion at fixed rate. We
now consider the scenario where the rate is varied by designing refinement models which generalize
the universal models in the previous section by taking in extra bits through a (trainable) refining
encoder in addition to the bits produced by the initial encoder.
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Like the universal models, training the refinement models is broken into two analogous stages. The
objective and procedure of the first stage is identical to that of the universal models and produces a
universal encoder f to be used across multiple models with frozen weights, and a low-rate decoder
g. In the second stage, the refinement model introduces a new high-rate decoder g+1 building upon
representations from both the universal encoder f and a secondary refining encoder f+1 . The refining
encoder and decoder are both trained along with a critic h+1 , while the universal encoder is held fixed.
We use the alternating training procedure as with the universal models. Bits are sent in two stages so
that either low rate or high rate reconstructions

X̂
(1)
1 = g(f(X)), (38)

X̂
(2)
1 = g+1 (f(X), f+1 (X)) (39)

are possible. One may take the view that f+1 will embed auxiliary details about the input to supplement
the information extracted by f . Since f is held fixed while g+1 is being trained, we expect that there
should be a performance gap between the refinement model and an end-to-end model with full
flexibility in training an encoder. In Figure 6, we find that the gap is not sizeable in practice, with the
visual quality of the refinement models similar to the end-to-end models of the same rate.
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Figure 6: (a) (c) Rate refinability of MNIST and SVHN. Points with black outline are losses for
the end-to-end models. Points without outline are the losses for the refinement models, which were
trained with a encoder optimized for only distortion loss (λ = 0). For fair comparison, the parameter
count of an end-to-end encoder at high rate is approximately equal to the sum of the parameter
counts for the universal encoder and refining encoder in the refinement model. Refinement from
λ = 0 performs closest to end-to-end models of the same rate, but any λ > 0 can be refined. (b) (d)
Outputs of selected models. Visual reconstruction of refinement models is similar to that of high-rate
end-to-end models across all tradeoffs.
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B.4 Architecture

The architectures used for the experiments are given as follows. Here each row represents a group of
layers. d denotes the latent dimension and L the number of quantization levels per dimension, with
R = d logL. The widths of the layers may be varied for some experiments (e.g. to facilitate fair
comparison in parameter count between the refinement models and end-to-end models). The quantizer
performs hard nearest-neighbour quantization on the forward pass and uses a soft relaxation given by
Equation (3) in [21] during the backward pass. The bin centers for quantization are spaced evenly in
[−1, 1] for each dimension. The type of compression systems are denoted by E for end-to-end, U for
(perception-distortion) universal and R for refinement.

B.4.1 MNIST

The universality experiments build off of the encoders produced by the end-to-end experiments of
the same rate with λ = 0.015. The refinement experiment in row 2 of the right table builds off the
universal encoder produced by the end-to-end model of row 1 with λ = 0, 0.015. For fair comparison,
the parameter count of an end-to-end encoder at R = 9.51 is approximately equal to the sum of the
parameter counts for the universal encoder and refining encoder in the refinement model at R = 9.51.

Table 4: Network and quantizer settings for MNIST. Left table: models shown in Figure 4(a). Right
table: models shown in Figure 6(a).

System R d L
E+U 4.75 3 3
E+U 6 3 4
E+U 8 4 4
E+U 10 5 4

System R d L
E 4.75 3 3
R 9.51 3 + 3 3
E 9.51 6 3

Table 5: The tradeoff coefficients used across all rates in each experiment for MNIST.
System Tradeoff coefficients

E (Figure 4(a)) λ = 0, 0.0033, 0.005, 0.0066, 0.008,
0.01, 0.011, 0.013, 0.015

U (Figure 4(a)) λi = 0, 0.0025, 0.004, 0.005, 0.006,
0.008, 0.009, 0.01, 0.011, 0.013

E (Figure 6(a)) λ = 0, 0.0033, 0.005, 0.0066, 0.008,
0.01, 0.011, 0.013, 0.015

R (Figure 6(a)) λi = 0, 0.0025, 0.004, 0.005, 0.006,
0.008, 0.009, 0.01, 0.013, 0.015

Table 6: Model architectures for MNIST. l-ReLU denotes Leaky ReLU. Refer to code for parameter
settings.

Encoder
Input

Flatten
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU

Linear, BatchNorm2D, Tanh
Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear
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Table 7: Hyperparameters used for training MNIST models across all rates, including for univer-
sal/refining encoders. α is the learning rate, (β1, β2) are the parameters for Adam, and λGP is the
gradient penalty coefficient.

α β1 β2 λGP
Encoder 10−2 0.5 0.9 -
Decoder 10−2 0.5 0.9 -

Critic 2× 10−4 0.5 0.9 10

B.4.2 SVHN

The experiments are similar to MNIST, with the main difference being in the encoder architecture.
The universality experiments build off of the encoders produced by the end-to-end experiments of
the same rate with λ = 0.002. The refinement experiment in row 2 of the right table builds off the
universal encoder produced by the end-to-end model of row 1 with λ = 0, 0.002. For fair comparison,
the parameter count of an end-to-end encoder at R = 60 is approximately equal to the sum of the
parameter counts for the universal encoder and refining encoder in the refinement model at R = 30.

Table 8: Network and quantizer settings for SVHN. Left table: models shown in Figure 4(c). Right
table: models shown in Figure 6(c).

System R d L
E+U 30 10 8
E+U 45 15 8
E+U 60 20 8

System R d L
E 30 10 8
R 60 10 + 10 8
E 60 20 8

Table 9: The tradeoff coefficients used across all rates in each experiment for SVHN.
System Tradeoff coefficients

E (Figure 4(c)) λ = 0, 0.00025, 0.0005, 0.00075, 0.001,
0.00125, 0.0015, 0.002

U (Figure 4(c)) λi = 0, 0.0003, 0.0005, 0.0008, 0.001,
0.0012, 0.0017

E (Figure 6(c)) λ = 0, 0.00025, 0.0005, 0.00075, 0.001,
0.00125, 0.0015, 0.002

R (Figure 6(c)) λi = 0, 0.00025, 0.0005, 0.00075,
0.001, 0.00125, 0.0015, 0.002

Table 10: Model architectures for SVHN. Refer to code for parameter settings.
Encoder

Input
Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, Tanh

Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear

Table 11: Hyperparameters used for training. α is the learning rate, (β1, β2) are the parameters for
Adam, and λGP is the gradient penalty coefficient.

α β1 β2 λGP
Encoder 10−4 0.5 0.999 -
Decoder 10−4 0.5 0.999 -

Critic 10−4 0.5 0.999 10
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