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A Improving Exploration for Standard RL

While the focus of this work has been on unsupervised evaluation, here we provide a proof-of-concept
that EDDICT can aid in the achievement of task rewards via structured exploration.

To do so, we train EDDICT alongside a standard policy maximizing task rewards, which we refer
to as the task policy. While the EDDICT training procedure remains unchanged, experience for the
latter is generated by a behavior policy which randomly switches between EDDICT’s policy and
the task policy at regular intervals (every 20 steps). The motivation is similar to recent work [8]
on temporally extended ε-greedy: temporally coherent exploration can more rapidly cover the state
space. Two separate networks were used to instantiate EDDICT and the task policy, so any potential
benefits must arise from improved exploration rather than e.g. representation regularization via an
auxiliary objective. We stress that this is likely to be a sub-par utilization of EDDICT, since this
neglects many of it’s unique characteristics (e.g. learning a smooth latent state representation). We
have restricted ourselves here to avoid additional complexity and focus on evaluating the exploratory
benefits of EDDICT in the most straight-forward way possible.

Figure 1 demonstrates that having EDDICT contribute to the behavior policy in this way is beneficial
to performance on Montezuma’s Revenge. While this is not close to the state-of-the-art in general (c.f.
[2]), it is competitive in the data-limited regime [15].
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Figure 1: Average Episodic Return. Training EDDICT alongside a standard RL agent maximizing
extrinsic rewards, and using the former for exploration, yields increased score achievement.
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B Action Entropy

The version of EDDICT reported in the main text used an ε-greedy behavior policy trained with
Peng’s Q(λ) [16]. This is in keeping with prior work on using intrinsic control methods in Atari
[12]. But much of the literature uses a parametric behavior policy with action entropy as part of the
objective (e.g. [10]). In this section, we run EDDICT using soft Q-learning in order to similarly
incorporate action entropy [11, 18].

Figure 2 shows the effect of action entropy on exploratory behavior in Montezuma’s Revenge. While
it appears there is some benefit to including action entropy in the EDDICT objective, the results are
not particularly significant. However, this does at least suggest that action entropy is not actively
harmful, and need not be avoided even in environments with irreversible dynamics like Atari.

Figure 2: EDDICT with action entropy Training EDDICT while varying the weight of the action
entropy term in the objective function. Zero corresponds to reverting back to Peng’s Q(λ). (right)
Game score. (left) Number of unique avatar positions visited. This is a proxy for coverage of the
controllable states.

C Full Atari Training Curves

Full training curves across all 6 Atari games are shown in Fig. 3, including the random policy baseline.
Table 3 is a more in-depth version of Table 1 found in the main paper, modified to include standard
deviation estimated across 10 seeds for RVIC, EDDICT and EDDICT-∆.

D DIAYN Hyper-Parameter Sweep

Diversity is All You Need (DIAYN) is included as a baseline despite our experimental setup differing
significantly from that of the original paper [10]. The environment is not reset after each skill
execution, and the environment is Atari rather than continuous control. These differences motivated
using no action entropy and a shorter skill duration. To ensure this didn’t hamper performance, we
ran a grid search over these two hyper-parameters.

As shown in Figure 4, neither of these hyper-parameter had a significant impact, even when varied
across multiple orders of magnitude.

E Coverage Calculation

At each state visited by the agent evaluator during training, the agent’s state (consisting of the avatar’s
x and y coordinates within the frame, and potentially also the room number in games with more
than one frame in which the agent can move, such as the different rooms in Montezuma’s Revenge)
is extracted from the environment’s RAM state using the RAM annotations provided by [1]. To
compute coverage, the evaluator counts all unique (x, y, [frame number]) states visited either within
its lifetime (for lifetime coverage) or since the last episode reset (for episodic coverage).

We note that the evaluator runs in parallel to and is not rate limited with respect to the learner or other
actors, and therefore, lifetime coverage could increase more quickly for some methods than others
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Figure 3: Full Atari Training Curves Each row shows (from left to right) Episodic Coverage (·103),
Lifetime Coverage (·103), and Average return for a specific game. These results correspond to those
of Table 1 in the main text.
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Figure 4: Full Atari Training Curves for DIAYN grid-search Each row shows (from left to right)
Episodic Coverage (·103), Lifetime Coverage (·103), and Average return for a specific game.
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due to the relative speed of the evaluator compared to the number of actor frames. Therefore, the
speed of takeoff for the lifetime coverage metric in Figure 3 should be devalued in favor of paying
attention to asymptotic performance. The full curves are included for completeness.

F Compute Requirements

The compute cluster we performed experiments on is heterogenous, and has features such as host-
sharing, adaptive load-balancing, etc. It is therefore hard to give precise details regarding compute
resources – however, the following is a best-guess estimate.

A full experimental training run lasted 4 days on average. Our distributed reinforcement learning
setup [9] used 100 CPU actors and a single V100 GPU learner. Thus, we required approximately
9600 CPU hours and 96 V100 GPU hours per seed, with 3 seeds and 7 conditions per game and with
followup experiments requiring 10 seeds for 3 conditions. No significant hyper-parameter tuning
was required, as the values were inherited from previous work on VIC and general reinforcement
learning in the same setup. For the only EDDICT specific hyper-parameter, the latent dimensionality,
only 2 values were considered, which account for 4 of the 6 conditions mentioned above. The results
were dominated by the compute required for the set of six Atari games i.e. the cost of the qualitative
results was not significant. By the above approximation, these experiments required in total 489,600
CPU hours and 4,896 V100 GPU hours.

It is worth remembering that the above is likely quite a loose upper-bound, as this estimate assumes
100 percent up time, which is far from the truth given the host-sharing and load-balancing involved in
our setup. Additionally, V100 GPUs were chosen based on what was on hand; our models are small
enough to fit on much cheaper cards without much slowdown.

G Architectural Details and Hyperparameters

Architectural details and hyper-parameters used in the experiments are shown in Table 1.

Torso IMPALA Torso [9]
Head hidden size 512
Number of actors 100
Batch size 64
Steps per option 20
Unroll length 20
Actor update period 100
Latent code dimension [2,4]
Replay buffer size 106 unrolls
Optimizer Adam [13]
learning rate 2 ∗ 10−4

Adam ε 10−2

RL algorithm Q(λ) [17]
λ 0.7
discount γ 0.99
Target update period 100

Table 1: A table of the hyperparameters for all experiments. Hyperparameter values are shared across
all ALE Atari games and the DeepMind Control Suite point mass task. All baselines and ablations
shared all applicable hyper-parameters, which were tuned for standard reinforcement learning rather
than EDDICT specifically. One exception was the RVIC baseline, whose hyperparameters were
copied from Baumli et al. [4].

H Unsupervised Baselines for Montezuma’s Revenge

Here we present previously published results on unsupervised Montezuma’s Revenge that cover a
wide range of methods that can broadly thought of as being novelty-seeking. This highlights the
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Figure 5: Expanded Code Norm Results Additional seeds (bottom rows) added to show the qualita-
tive variability of EDDICT representations for different training runs. These differ in their preference
for going to room 2 vs room 3, but all demonstrate the main effect of more difficult locations
corresponding to codes with a higher norm.

relative merits of different methods. As mentioned in the discussion, learning a single policy appears
to currently be more scalable in terms of just producing exploratory behavior, and Table 2 make this
concrete. That said, we note that intrinsic control / latent code methods have a unique set of use
cases compared to other novelty-based approaches, due to learning a family of policies (i.e. code
conditional) instead of a single policy.
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