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A Clue examples from dataset

Table 6: Examples from our dataset, taken from the train portion of the naive split. Replicates Table 1
in the main paper. Indicators, where they occur, are italicized. The wordplay substrate appears in
bold. Typographical emphasis added to aid reader, only; actual clues have no such indication.

Clue type Clue example Explanation for this example
Anagram: An anagram clue requires
scrambling some set of clue letters to
produce the answer.

Honour, Ben and Noel
with a new order (4)

with a new order indicates that we
should re-order (anagram) the letters
of “Ben” and “Noel” to get ENNO-
BLE.

Initialism: An initialism requires tak-
ing the first letters of a phrase

Initially, is doctor
elated at result of
brain operation (4)

initially indicates taking the first let-
ters of “is doctor elated at”, which
gives IDEA, the “result of brain oper-
ation”.

Hidden: The answer occurs within a
larger phrase.

Cryptic advice for a
clever solver to extract

(6)

solver to extract indicates that a word
is hidden inside a phrase. Extract the
word ORACLE from the phrase “for
a clever”.

Charade: For a charade clue, each part
of the answer is clued sequentially.

Nitrogen and oxygen
shown to exist to stu-
dent chemist (5)

“Nitrogen” becomes “N”, “oxygen”
becomes “O”, “shown to exist” be-
comes ”BE” since they are synonyms,
and a standard abbreviation for stu-
dent is “L” for learner. NOBEL was
a chemist! This clue type does not
have an indicator.

Double definition: In a double defini-
tion clue, two synonyms or phrases ap-
pear next to each other, each of which
can refer to the answer.

Painful withdrawal,
having raw meat (4,6)

“COLD TURKEY” means both
“Painful withdrawal” and “raw meat”.
Double definitions do not have indi-
cators.

B Cryptics dataset preprocessing

To produce the clean dataset, we remove 15,591 clues that interact with other clues in the same puzzle
as follows:

1. 7,687 clues that are explicitly marked as being part of a clue grouping (i.e. clues that the
puzzle author has explicitly marked as interacting). For example, from Guardian puzzle
21633:4

(a) 20-across: this cast no blight on semi-conventional party (8,8)

“SCOTTISH NATIONAL”
(b) 5-down: see 20

In this case, the answer must be written into two locations (20-across and-5 down). The
first part (20-across) is a valid clue for our models, but we omit clues of this type because
programatically parsing them would require simultaneously looking at multiple clues during
preprocessing.

2. 607 “continuation” clues or clues that are part of an annotated grouping: These include
clues that start with an asterisk (indicating clue grouping) or those that start with an ellipsis,
which indicates continuation from a previous clue. For example, from the same puzzle:
(a) 23-across: drunken kilty whams a dram ... (4,6)

“MALT WHISKEY”
(b) 24-across: ..and another, by the sound of it, on a 20 isle, while ... (4)

“RHUM”
4Each puzzle can be accessed at https://www.theguardian.com/crosswords/cryptic/puzzle_id.
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Solving 24-across requires having seen 23-across. (“Rum” is a type of malt whiskey that
sounds like Rhum, which is a Scottish isle.) Note that we also needed to substitute Scottish
for 20, from 20-across.)

3. 7,066 clues that contain a numeral. Many clues with a numeral are references to a solution in
another part of the puzzle (i.e. the other solution must be substituted for the numeral). Some
numerals are not references, but distinguishing them programatically is not straightforward,
so we omit them. See for example, the substitution required above of “Scottish” for “20”.

4. 90 clues that do not match our regular expression or with an empty clue after regular
expression extraction.

5. 56 where the answer does not match the length enumeration.
6. 85 where there are unrecognized characters in the clue (e.g., unparsed HTML).

We further remove 1,611 exact duplicates. These are clues with the same target answer and clue
strings that match after lower-casing, normalizing whitespace, normalizing articles (“a”, “an”, “the”),
and stripping off punctuation.

In addition to releasing the full dataset, code to fully replicate our data download and pre-processing
pipeline is also available in the GitHub repository. The code we provide reproduces this detailed
information, including removal counts broken down by reason, whenever it is run to generate the data
splits; comments in the code provide additional details.

C Baseline experiment details

We provide details of model and task set-up, hyperparameter choice, machines and compute used,
and evaluation methods.

Evaluation is the same for all models. When evaluating the correctness of outputs, we lowercase
all letters and ignore whitespace. Generated whitespace (i.e., spaces between generated multiword
answers) is considered only for evaluating the meta-properties (e.g., number of words) for model
outputs. The GitHub repository includes code to exactly replicate all evaluations.

C.1 WordNet

The WordNet heuristic approach produces candidate outputs as follows: the first and last words of
a clue are extracted from the clue and lowercased. For each of these two words, we do a reverse
dictionary lookup using WordNet. We try building the reverse lookup with synonyms, hyponyms,
and hypernyms, where the last two have controllable lookup depth (e.g., hypernyms of the first set of
hypernyms, etc). Any underscores or hyphens in WordNet lookup results are replaced with spaces.
We test with and without inflection of lookup results by using [19] to produce all possible inflections.
We filter to outputs of the correct length, excluding whitespace. We try ranking outputs (1) by by
their multiset character-level overlap with the rest of the clue (i.e. not the word used for the reverse
lookup), (2) by bigram overlap with the rest of the clue using a modified Levenshtein distance, and
(3) by the order in which they are added to the output set (i.e., without further ranking). For this
model, the number of generated outputs is determined by changing which parts of the WordNet graph
(synonyms, hyponyms, hypernyms, and depth) we use to generate candidates.

This model does not involve any training, so the train set is not used. We take the configuration that
produces the best performance on the dev set: we use reverse lookup with synonyms and hyponyms
to depth 1, omit inflected forms, and rank using multiset character-level overlap.

We can upper-bound this method by observing that, when including synonyms and hy-
ponyms/hypernyms up to depth three, and inflecting all outputs using LemmInflect [19] (i.e., pro-
ducing the maximum number of candidates for each clue), our definition sets contains the correct
answer 22% of the time. This performance could be achieved if we had a perfect ranking function.
However, since our ranking mechanism is poor, we do not achieve this level of performance and find
that the best outcome is achieved by reducing the size of our reverse dictionary space to include only
synonyms and hyponyms to depth 1.

The slowest of these models is the one with full hyponym/hypernym lookup to depth 3 and was run
on a 2013 Macbook Air in two minutes.
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C.2 KNN BoW

The KNN model is implemented with scikit-learn’s [28] CountVectorizer and KNeighborsClassifier.
The CountVectorizer lowercases all characters and considers only alphabetic characters, numbers,
parentheses and the | character. All other characters function as split locations and are themselves
omitted. When including the length enumeration we append length as, e.g., (4) or (4|6), in the case of
multiword solutions. We use ‘|’ so that the length enumeration is treated as a single token. As for
all other traininable models, targets for the train set are lowercase solutions with spaces separating
multiword answers. We select the 3000 nearest neighbors for each test clue so that we always produce
at least ten outputs of the correct length for each clue.

We train by fitting the train set and take the set of hyperparameters that produces the best performance
on the dev set: in particular, we use 1-grams, since performance degrades with longer n-grams.

This model was run on a 2013 Macbook Air in roughly ten minutes.

C.3 Rule-based

We run the Deits [5] solver on our clue sets. The model is not trainable, so we directly evaluate it on
our dev and test sets. We follow Deits’ guidance to set up our clue file, providing a text file where
each line is of the form, clue | answer – for example,

But everything’s really trivial initially for a transformer model (4) | bert

We do not restrict the number of outputs generated by this model.

The rule-based solver uses a context free grammar (CFG) that specifies possible clue forms. For
example, a grammar for an anagram clue type could be “$Anagram $AnagramIndicator $Definition”.
Terminals for $AnagramIndicators (and other types of indicators in the full grammar) come from
custom lists of indicators. One of the components of the CFG is a definition: the definition terminal
is matched to a word or set of words. The non-definition part of the grammar (“$Anagram $Anagra-
mIndicator” in the above example) is evaluated to produce possible wordplay outcomes (in this case,
computing valid anagrams of the tokens matched to the $Anagram terminal). Finally, the possible
wordplay outputs are compared to the definitional tokens using WordNet’s word similarity function.
Parses with higher similarity are ranked higher.

As mentioned in the footnote in Section 4.3, Deits [5] has a more recently implemented solver that is
reportedly faster. Because the Python solver is slow, we set a timeout of 120 seconds (timed-out runs
usually still produce some candidate answers) and report an average time to solve a clue of roughly
40 seconds. This results in a total time to evaluate each of the dev and test sets of approximately 300
CPU hours. We evaluate this model using multiple internal cluster CPUs run in parallel.

C.4 T5: vanilla seq2seq

Starting from HuggingFace’s [39] pretrained model parameters, we fine-tune T5-base to produce
the target answer for each clue input. As described in Section 3.1, inputs are of the form, e.g., But

everything’s really trivial, initially, for a transformer model (4), with output bert.

We optimize with Adafactor [33] using the relative step and warmup initialization options, as imple-
mented in the HuggingFace library (all other parameters are left unchanged from the HuggingFace
defaults). We use a batch size of 256 input–output (clue–answer) pairs with per-batch truncation-to-
longest, which is implemented by HuggingFace’s T5FastTokenizer. We train with a patience of 15
epochs and select the best model according to dev set performance, based on whether the top answer
(over 5 beam search generations) is correct. During evaluation, we generate 100 outputs for each
input (100 beams with 100 output sequences) in order to evaluate sample metrics. Hyperparameters,
including those for generation (max-length=10 tokens, length-penalty=0.05), were selected based on
dev set performance. This setup, including all hyperparameters, is implemented in the code that we
release on GitHub.

We use an internal cluster. Training takes approximately 100 minutes on a single GeForce RTX 3090
GPU. Evaluation takes roughly 120 minutes.
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D Curriculum learning

D.1 Datasets

D.1.1 ACW-data

ACW-data is the unprocessed version of the American crossword clue dataset [29]. To preprocess it,
we

1. Remove clues that do not match our reverse-dictionary goal: We remove clues that contain
underscores or multiple hyphens, since these are generally fill-in type clues, rather than
phrasal synonyms. We remove clues that reference other clues, i.e., those containing “Across”
or “Down” in the clue text. We remove clues likely to be abbreviations, i.e., those with a
clue ending in a period with an answer fewer than four letters, since cryptics rarely include
abbreviations. We remove clues where the clue text ends in a question mark.

2. We attempt to make the clues resemble our dataset by removing any periods that occur at
the end of clues, since cryptic clues do not generally have periods at the end of normal clues
(though they do admit other types of punctuation).

3. We filter normalized duplicates using the same approach as for cryptic clues (i.e. clues
with the same clue and answer strings after normalizing case, whitespace, and articles and
stripping punctuation.

This produces a cleaned dataset of 2,464,951 clue-answer pairs from which we produce the three
ACW-data-derived datasets used in curricular training. It is worth noting that some of the answers
in this dataset are multiword answers that are unsplit. Optimally we would find a way to split these
answers to increase similarity to our primary dataset, which does split multiple word targets.

The code to reproduce this preprocessing and to produce the following datasets is included in the
GitHub repository. Details of the three datasets (ACW, ACW-descramble, and ACW-descramble-word
were given in the main paper (Section 5.1).

D.1.2 ACW training datasets

The actual input-output pairs for ACW, ACW-descramble, and ACW-descramble-word are produced
from the processed version of ACW-data at train time. At train time, we prepend a task label as
described in the main text. The ACW curricular dataset has no further modification. For ACW-
descramble and ACW-descramble-word, we produce a scrambled version of the letters during dataset
collation and modify the input as specified in the main text. The provided code includes the collation
functions that produce the final input–output pairs for these three datasets.

D.1.3 Anagrams dataset

First, we produce a list of valid English words to be considered for anagramming from a publicly
available dictionary of English words. Using this list of words, we group all words into whether they
are anagrams of each other (i.e. grouping them by their sorted letters). For anagram indicators, we
use Deits [5] list of anagram indicators.

This produces 13,535 anagram groups (i.e., 13,535 unique sets of letters from which can be realized
at least two valid English words). These groups contain a total of 32,305 total words. The anagram
indicator list has 1,160 anagram indicators. At train time, a curricular epoch consists of showing each
anagram group to the model once. To do this, during collation at train time, we randomly sample
two of the anagrams from each set, randomly sample an anagram indicator, and randomly sample a
position (prepend or append).

D.2 Training

As described in Section 5.1, each supplementary dataset has its own task label [31], which is passed
to the model as part of the input string, and all inputs include length enumeration as in the vanilla T5
case. We fine-tune T5-base in the same way as described in Appendix C.4, but with the following
modifications.
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For curricular training, we first fine-tune on one or more supplementary tasks according to a training
schedule, for which we tune the following hyperparameters: the number of curricular epochs, the
frequencies with which each task is shown, whether the Adafactor optimizer is reset before primary
training (only affects non-constant LR, i.e., when we are training T5-base but not when we are training
T5-large), and the frequency of curricular subtask review during primary training. We hand-tune
these hyperparameters, generally finding that training nearly to convergence on a held-out dev set for
the primary curricular task is optimal. We also find that, for T5-base, resetting the optimizer between
curricular and main training slightly improves performance. The specific configurations to replicate
curricular training are included in the GitHub repository.

In order to directly compare the different curricula, we set up the curricula so that the number of
training examples shown to the model in each epoch as well as the mix between curricular and primary
task are the same. For example, for our single-dataset curricula (ACW and ACW-descramble), we
run experiments with 4 curricular epochs and relative batch frequences (primary dataset: curricular
dataset) during main training of 20:6. When training on curricula that include two curricular datasets,
we do only 2 curricular epochs and use relative batch frequencies of 20:3:3 (primary: curricular 1:
curricular 2).

To produce Table 3a, we evaluate only on the dev set over five generations to enable faster iteration.
To produce the second column of the table, we algorithmically identify anagram clues. Code to
replicate the anagram labeling and evaluate on this subset is available in the GitHub repository.

To produce our top result in Table 2, we double the total number of curricular epochs (from 2 to 4),
select the best model checkpoint via dev set performance, and perform final evaluation on the test set
taking 100 generations.

For all curricular training we use an internal cluster. Each curricular epoch takes roughly 150 minutes,
giving a total curricular training time of roughly ten hours. Primary training afterward takes roughly
130 minutes since we continue to review the curricular datasets. This gives a total train time of
roughly 12 hours on a single GeForce RTX 3090 GPU.

E Model analysis details

E.1 Descrambling task

We start with the preprocessed version of ACW-data from Appendix D.1.1 and further remove any
clue–answer pair with an answer that is not in an English dictionary (e.g., multiword answers would
be removed). This guarantees that all descrambling targets are valid English words.

After removing multiword answers, we have a dataset of 1,796,078 clues. We keep only words that
have between 4 and 14 characters and downsample to 10% (roughly 180k clue-answer pairs).

We train T5-base to complete the descrambling tasks using the same approach as in Appendix C.4.
Code to replicate dataset creation, training, and evaluation are available in the GitHub repository.

E.2 Wordplay systematic learning

Detailed code that identifies first name anagram substrates and generates substitutions is included
in the GitHub repository. For name identification, we use names lists from the US Naval Academy
and the U.K. Office of National Statistics (both lists, including with download URLs are provided in
the GitHub repository). We identify 27 clues in the dev set and 69 clues in the train set that require
anagramming a single word that is also a first name, and for each we perform 10 scramble and 10
name substitutions.

E.3 Efrat et al training

We use the same training setup as in Appendix C.4, but with the following changes: we train T5-large
with a constant learning rate of 3e-5 and an effective batch size of 768. For evaluation we use the
same metric (top output with b=5 beams, no filter) as used by Efrat et al. [7].

We again train on an internal cluster using a single GeForce RTX 3090 GPU. Training to replicate
Efrat et al. [7] results (i.e. non-curricular) takes roughly ten hours. Curricular pretraining is done for
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3 epochs and takes roughly 4 hours per curricular epoch, giving a total time for curricular pretraining
of roughly 12 hours.

Code to replicate this approach is included in the GitHub repository.
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