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A Appendix

Varying the number of clip encoder layers See Table 1. From the table, adding two more layers
of clip encoder only increases the number of parameters by 1M. The clip encoder using four layers
yields better accuracy. We use four layered clip encoder in our experiment.

Table 1: Effect of clip encoder on the Top-1 accuracy (%)

Name #Layer #Param FLOPs K400 U101

SCT-S 2 17.67M 86.14G 76.32 97.35
SCT-S 4 18.72M 88.18G 78.41 98.02

Pretrained model analysis See Table 2. Pretraining on large amount of data yields better top-1
accuracy.

Table 2: Pretrain Model Result

UCF101

Name Pretrain Type Top-1 Acc

SCT-S ImageNet 98.02%
SCT-M ImageNet 97.45 %
SCT-L ImageNet 97.70 %

SCT-S ImageNet+Kinetics-400 98.33 %
SCT-M ImageNet+Kinetics-400 98.45 %
SCT-L ImageNet+Kinetics-400 98.71 %

HMDB51

SCT-S ImageNet 76.52 %
SCT-M ImageNet 78.31 %
SCT-L ImageNet 81.42 %

SCT-S ImageNet+Kinetics-400 81.54 %
SCT-M ImageNet+Kinetics-400 83.22 %
SCT-L ImageNet+Kinetics-400 84.61 %
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Results on Moments in Time [10] See Table 3. We achieve comparable accuracy with much less
number of parameters and GFLOPs on Moments in Time [10].

Table 3: Results on Moments in Time [10]

Method #Param GFLOPs Top-1 (%) Top-5 (%)

I3D [4] 25M - 29.5 56.1
ViViT-L [2] 88.9M 1446 38.0 64.9
VATT-L [1] 306.1M 29800 41.1 67.7

SCT-M 33.48M 162.9 36.8 61.2
SCT-L 59.89M 342.6 37.3 65.1

Ablation study on ViLT We further compare the ViLT with convolution variants and one Trans-
former variant, i.e., LSH attention. We compare ViLT (78.4%, 98.3%) with various convolution
variants in SCT-S on the Kinetics-400 and UCF101 datasets. We have convolution (73.9%, 94.9%),
convolution + bn (74.3%, 95.0%), and residual convolution block (75.1%, 95.8%), which sufficiently
demonstrates the effectiveness of our ViLT. From the perspective of receptive field size, without
pooling, a four layered ConvNet with 3x3 kernel has receptive field size of 9x9, and our ViLT is able
to fully model the information from 28x28 of each chunk. Replacing ViLT with image LSH attention
obtains 76.6% and 96.1% Top-1 accuracy, because the LSH self-attention reduces the computation
by approximating the dense matrix with an upper triangular matrix.

Ablation study on image LSH attention To conduct ablation studies for image LSH attention, we
a) remove the ViLT and obtain 63.2% and 85.2% Top-1 accuracy on Kinectics-400 and UCF101,
because it fails to capture low-level fine grained features, b) replace LSH attention with ConvNets and
obtain convolution (75.3%, 96.6%), convolution + bn (75.6%, 96.9%), and residual convolution block
(76.9%, 97.0%), because ConvNets have limited receptive field size compared with Transformers, c)
remove the LSH attention in SCT-S and achieve (76.2%, 96.5%) Top-1 accuracy. The global attention
brought by LSH attention in each frame helps spatio-temporal learning.

Ablation study on shifted MSA Compared with the conventional self-attention only modeling
the intra-frame patches (space attention), or divided space-time attention only modeling the same
position along different frames which cannot handle big motions, our shifted self-attention explicitly
models the motion and focuses the main objects in the video. We also validate the effectiveness of
our shifted attention through ablation study and comparison with previous state-of-the-art methods.

Empirically, we compare the shifted MSA with various attentions, i.e., space attention (conventional
self-attention, 77.02%), time attention [3] (77.62%), and concatenated feature from space and time
attentions [3] (77.35%) with fixed other components in SCT-S on the Kinetics-400 dataset, which
demonstrates the advantages of explicitly effective motion modeling in the shifted attention. The
attention map visualization in Fig. ?? also verifies the effective motion capture of the main object in
the video.

Results on SSv2 and Diving-48 We further conduct experiments on Something-Something-V2 [7]
and Diving-48 [9], which are more dynamic datasets and rely heavily on the temporal dimension. Our
SCT-L with Kinetics-600 pretrained model obtain 68.1% and 81.9% accuracy on the two datasets,
respectively, compared with TEA [8] (65.1%, N/A), SlowFast [6] (61.7%, 77.6%), ViViT-L/16x2 [2]
(65.4%, N/A), TimeSformer-L [3] (62.4%, 81.0%), and MViT-B, 32x3 [5] (67.8%, N/A). Our SCT-L
achieves the best Top-1 accuracy on the two datasets.

Hyper-parameters of shifted MSA In our experiment, the frame rate of each input clip is varied
from 5-10, which is 0.1-0.3s. From the perspective of human vision system, the typical duration
of persistence of vision is 0.1-0.4s. The experiment validates the best numbers of shifted MSA
and shifted frames are 1, which is consistent with our vision system and the bigger number of
shifted frames could misses the motion information for some actions. From the perspective of model
complexity, we have the multi-layer clip encoder after shifted MSA to specifically model complicated
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inter-frame dependencies. The shifted MSA is forced to learn fine-grained motion information. In
the future work, developing multi-scale shifted MSA is an interesting topic.

References
[1] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and

Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw video,
audio and text. arXiv preprint arXiv:2104.11178, 2021.

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
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