
Appendix

1 Introduction 1

2 Background 2

3 Score-based Generative Modeling in Latent Space 3

3.1 The Cross Entropy Term . 3

3.2 Mixing Normal and Neural Score Functions . 4

3.3 Training with Different Weighting Mechanisms 5

3.4 Variance Reduction . 5

4 Related Work 6

5 Experiments 7

5.1 Main Results . 7

5.2 Ablation Studies . 9

6 Conclusions 10

7 Broader Impact 10

A Proof for Theorem 1 19

B Variance Reduction 22

B.1 Generic Mixed Score Parameterization for Non-Variance Preserving SDEs 23

B.2 Variance Reduction of Cross Entropy with Importance Sampling for Generic SDEs 23

B.3 VPSDE . 25

B.3.1 Variance Reduction for Likelihood Weighting (Geometric VPSDE) 25

B.3.2 Variance Reduction for Likelihood Weighting (Importance Sampling) . . . 26

B.3.3 Variance Reduction for Unweighted Objective 26

B.3.4 Variance Reduction for Reweighted Objective 27

B.4 VESDE . 28

B.4.1 Variance Reduction for Likelihood Weighting 28

B.4.2 Variance Reduction for Unweighted Objective 29

B.4.3 Variance Reduction for Reweighted Objective 29

B.5 Sub-VPSDE . 30

C Expressions for the Normal Transition Kernel 30

D Probability Flow ODE 31

E Converting VAE with Hierarchical Normal Prior to Standard Normal Prior 31

E.1 Converting NVAE Prior to Standard Normal Prior 32

17

F Bias in Importance Weighted Estimation of Log-Likelihood 32

G Additional Implementation Details 33

G.1 VAE Backbone . 33

G.2 Latent SGM Prior . 33

G.3 Training Details . 34

G.4 Evaluation Details . 34

G.5 Ablation Experiments . 34

G.5.1 Ablation: SDEs, Objective Weighting Mechanisms and Variance Reduction 34

G.5.2 Ablation: End-to-End Training . 35

G.5.3 Ablation: Mixing Normal and Neural Score Functions 36

G.6 Training Algorithms . 36

G.7 Computational Resources . 37

H Additional Experiments 37

H.1 Additional Samples . 37

H.2 MNIST: Small VAE Experiment . 38

H.3 CIFAR-10: Neural Network Evaluations during Sampling 38

H.4 CIFAR-10: Sub-VPSDE vs. VPSDE . 38

H.5 CelebA-HQ-256: Different ODE Solver Error Tolerances 38

H.6 CelebA-HQ-256: Ancestral Sampling . 41

H.7 CelebA-HQ-256: Sampling from VAE Backbone vs. LSGM 41

H.8 Evolution Samples on the ODE and SDE Reverse Generative Process 41

18

A Proof for Theorem 1

Without loss of generality, we state the theorem in general form without conditioning on x.

Theorem 1. Given two distributions q(z0) and p(z0) defined in the continuous space RD, denote the
marginal distributions of diffused samples under the SDE dz = f(t)zdt+ g(t) dw at time t ∈ [0, 1]
with q(zt) and p(zt). Assuming that log q(zt) and log p(zt) are smooth with at most polynomial
growth at zt → ±∞, and also assuming that f(t) and g(t) are chosen such that q(z1) = p(z1) at
t = 1, the cross entropy is given by:

CE(q(z0)||p(z0)) = Et∼U[0,1]

[
g(t)2

2
Eq(zt,z0|x)

[
||∇zt log q(zt|z0)−∇zt log p(zt)||

2
2

]]
+
D

2
log
(
2πeσ2

0

)
,

with q(zt, z0) = q(zt|z0)q(z0) and a Normal transition kernel q(zt|z0) = N (zt;µt(z0), σ2
t I)

where µt and σ2
t are obtained from f(t) and g(t) for a fixed initial variance σ2

0 at t = 0.

Theorem 1 amounts to estimating the cross entropy between q(z0) and p(z0) with denoising score
matching and can be understood intuitively in the context of LSGM: We are drawing samples from
a potentially complex encoding distribution q(z0), add Gaussian noise with small initial variance
σ2

0 to obtain a well-defined initial distribution, and then smoothly perturb the sampled encodings
using a diffusion process, while learning a denoising model, the SGM prior. Note that from the
perspective of the learnt SGM prior, which is defined by the separate reverse-time generative SDE
with the learnt score function model (see Sec. 2), the expression in our theorem becomes an upper
bound (see discussion in Sec. 3.1).

Proof. The first part of our proof follows a similar proof strategy as was used by Song et al. [4]. We
start the proof with a more generic diffusion process in the form:

dz = f(z, t)dt+ g(t)dw

The time-evolution of probability densities q(zt) and p(zt) under this SDE is described by the
Fokker-Planck equation [104] (note that we follow the same notation as in the main paper: We omit
the t-subscript of the diffused distributions qt, indicating the time dependence at the variable, i.e.
q(zt) ≡ qt(zt)):

∂q(zt)

∂t
= ∇zt

(
1

2
g2(t)q(zt)∇zt log q(zt)− f(z, t)q(zt)

)
= ∇zt

(
hq(zt, t)q(zt)

) (10)

with

hq(zt, t) :=
1

2
g2(t)∇zt log q(zt)− f(z, t) (11)

and analogously for p(zt).

The cross entropy can be written as

CE(q(z0)||p(z0)) = CE(q(z1)||p(z1)) +

∫ 0

1

∂

∂t
CE(q(zt)||p(zt))dt

= H
(
q(z1)

)
−
∫ 1

0

∂

∂t
CE(q(zt)||p(zt))dt

since q(z1) = p(z1), as assumed in the Theorem (in practice, the used SDEs are designed such that
q(z1) = p(z1)).

19

Furthermore, we have

∂

∂t
CE(q(zt)||p(zt)) = −

∫ [
∂q(zt)

∂t
log p(zt) +

q(zt)

p(zt)

∂p(zt)

∂t

]
dz

(i)
= −

∫ [
∇zt(hq(zt, t)q(zt)) log p(zt) +

q(zt)

p(zt)
∇zt(hp(zt, t)p(zt))

]
dz

(ii)
=

∫ [
hq(zt, t)

>q(zt)∇zt log p(zt) + hp(zt, t)
>p(zt)∇zt

q(zt)

p(zt)

]
dz

(iii)
=

∫
q(zt)

[
hq(zt, t)

>∇zt log p(zt)

+ hp(zt, t)
>∇zt log q(zt)

− hp(zt, t)
>∇zt log p(zt)

]
dz

(iv)
=

∫
q(zt)

[
−1

2
g2(t)||∇zt log p(zt)||2 − f(zt, t)

>∇zt log q(zt)

+ g2(t)∇zt log q(zt)
>∇zt log p(zt)

]
dz

where (i) inserts the Fokker Planck equations for q(zt) and p(zt), respectively. Furthermore, (ii)
is integration by parts assuming similar limiting behavior of q(zt) and p(zt) at zt → ±∞ as
Song et al. [4]. Specifically, we know that q(zt) and p(zt) must decay towards zero at zt → ±∞
to be normalized. Furthermore, we assumed log q(zt) and log p(zt) to have at most polynomial
growth (or decay, when looking at it from the other direction) at zt → ±∞, which implies faster
exponential growth/decay of q(zt) and p(zt). Also, ∇zt log q(zt) and ∇zt log p(zt) grow/decay at
most polynomially, too, since the gradient of a polynomial is still a polynomial. Hence, one can work
out that all terms to be evaluated at zt → ±∞ after integration by parts vanish. Finally, (iii) uses the
log derivative trick and some rearrangements, and (iv) is obtained by inserting hq and hp.

Hence, we obtain

CE(q(z0)||p(z0)) = H
(
q(z1)

)
+

∫ 1

0

Eq(zt)
[

1

2
g2(t)||∇zt log p(zt)||22 + f(zt, t)∇zt log q(zt)

− g2(t)∇zt log q(zt)
>∇zt log p(zt)

]
dt,

which we can interpret as a general score matching-based expression for calculating the cross entropy,
analogous to the expressions for the Kullback-Leibler divergence and entropy derived by Song et
al. [4].

However, as discussed in the main paper, dealing with the marginal score∇zt log q(zt) is problematic
for complex “input” distributions q(z0). Hence, we further transform the cross entropy expression
into a denoising score matching-based expression:

20

CE(q(z0)||p(z0)) = H
(
q(z1)

)
+

∫ 1

0

Eq(zt)

[
1

2
g2(t)||∇zt log p(zt)||

2
2 + f(zt, t)∇zt log q(zt)

− g2(t)∇zt log q(zt)
>∇zt log p(zt)

]
dt

(i)
=

1

2

∫ 1

0

g(t)2Eq(z0,zt)

[
−2∇z log q(zt|z0)>∇zt log p(zt) + ||∇zt log p(zt)||

2
2

]
dt

+
1

2

∫ 1

0

Eq(z0,zt)

[
2f(z, t)>∇zt log q(zt|z0)

]
dt+ H

(
q(z1)

)
(ii)
=

1

2

∫ 1

0

g(t)2Eq(z0,zt)

[
||∇zt log q(zt|z0)||

2
2 − 2∇zt log q(zt|z0)

>∇zt log p(zt) + ||∇zt log p(zt)||
2
2

]
dt

+
1

2

∫ 1

0

Eq(zt)

[
2f(z, t)>∇zt log q(zt|z0)− g(t)

2||∇zt log q(zt|z0)||
2
2

]
dt+ H

(
q(z1)

)
(iii)
=

1

2

∫ 1

0

g(t)2Eq(z0,zt)

[
||∇zt log q(zt|z0)−∇zt log p(zt)||

2
2

]
dt

+
1

2

∫ 1

0

Eq(z0,zt)

[(
2f(z, t)− g(t)2∇zt log q(zt|z0)

)>
∇zt log q(zt|z0)

]
dt︸ ︷︷ ︸

(I): Model-independent term

+H
(
q(z1)

)

with q(z0, zt) = q(zt|z0)q(z0) and where in (i) we have used the following identity from Vin-
cent [22]:

Eq(zt)
[
∇zt log q(zt)

]
= Eq(zt)

[
Eq(z0|zt)

[
∇zt log q(zt|z0)

]]
= Eq(z0)q(zt|z0)

[
∇zt log q(zt|z0)

]
.

In (ii), we have added and subtracted g(t)2||∇zt log q(zt|z0)||22 and in (iii) we rearrange the terms
into denoising score matching. In the following, we show that the term marked by (I) depends only
on the diffusion parameters and does not depend on q(z0) when f(z, t) takes a special affine (linear)
form f(z, t) := f(t)z, which is often used for training SGMs and which we assume in our Theorem.

Note that for linear f(z, t) := f(t)z, we can derive the mean and variance (there are no “off-
diagonal” co-variance terms here, since all dimensions undergo diffusion independently) of the
distribution q(zt|z0) at any time t in closed form, essentially solving the Fokker-Planck equation
for this special case analytically. In that case, if the initial distribution at t = 0 is Normal then
the distribution stays Normal and the mean and variance completely describe the distribution, i.e.
q(zt|z0) = N (zt;µt(z0), σ2

t I). The mean and variance are given by the differential equations and
their solutions [104]:

dµ

dt
= f(t)µ → µt = z0e

∫ t
0
f(s)ds (12)

dσ2

dt
= 2f(t)σ2 + g2(t)→ σ2

t =
1

F̃ (t)

(∫ t

0

F̃ (s)g2(s)ds+ σ2
0

)
, F̃ (t) := e−2

∫ t
0
f(s)ds (13)

Here, z0 denotes the mean of the distribution at t = 0 and σ2
0 the component-wise variance at

t = 0. After transforming into the denoising score matching expression above, what we are doing
is essentially drawing samples z0 from the potentially complex q(z0), then placing simple Normal
distributions with variance σ2

0 at those samples, and then letting those distributions evolve according
to the SDE. σ2

0 acts as a hyperparameter of the model.

In this case, i.e. when the distribution q(zt|z0) is Normal at all t, we can represent samples zt from
the intermediate distributions in reparameterized from zt = µt(z0) + σtε where ε ∼ N (ε;0, I). We

21

also know that∇z log q(zt|z0) = − ε
σt

With this we can write down (i) as:

(I) =
1

2

∫ 1

0

Eq(z0),ε

[(
2f(t)(µt(z0) + σtε) + g(t)2 ε

σt

)T (
− ε
σt

)]
dt (14)

=

∫ 1

0

−f(t)

σt
Eq(z0),ε

[
µt(z0)T ε

]
︸ ︷︷ ︸

=0

−2f(t)σ2
t + g(t)2

2σ2
t

Eε[εT ε]︸ ︷︷ ︸
=D

dt (15)

= −D
2

∫ 1

0

2f(t)σ2
t + g(t)2

σ2
t

dt (16)

= −D
2

∫ σ2
1

σ2
0

1

σ2
t

dσ2
t =

D

2
(log σ2

0 − log σ2
1), (17)

where we have used Eq. 13.

Furthermore, since q(zT) → N (zT ,0, σ
2
1I) at t = 1, its entropy is H

(
q(zT)

)
= D

2 log(2πeσ2
1).

With this, we get the following simple expression for the cross-entropy:

CE(q(z0)||p(z0)) =
1

2

∫ 1

0

g(t)2Eq(z0,zt)

[
||∇z log q(zt|z0)−∇z log p(zt)||22

]
dt+D log(

√
2πeσ2

0)

Expressing the integral as an expectation completes the proof:

CE(q(z0)||p(z0)) = Et∼U [0,1]

[
g(t)2

2
Eq(zt,z0)

[
||∇zt log q(zt|z0)−∇zt log p(zt)||22

]]
+
D

2
log
(

2πeσ2
0

)

The expression in Theorem 1 measures the cross entropy between q and p at t = 0. However, one
should consider practical implications of the choice of initial variance σ2

0 when estimating the cross
entropy between two distributions using our expression, as we discuss below.

Consider two arbitrary distributions q′(z) and p′(z). If the forward diffusion process has a non-
zero initial variance (i.e., σ2

0 > 0), the actual distributions q and p at t = 0 in the score matching
expression are defined by q(z0) :=

∫
q′(z)N (z0, z, σ

2
0I)dz and p(z0) :=

∫
p′(z)N (z0, z, σ

2
0I)dz,

which correspond to convolving q′(z) and p′(z) each with a Normal distribution with variance σ2
0I. In

this case, q′(z) and p′(z) are not identical to q(z0) and p(z0), respectively, in general. However, we
can approximate q′(z) and p′(z) using p(z0) and q(z0), respectively, when σ2

0 is small. That is why
our expression in Theorem 1 that measures CE(q(z0)||p(z0)), can be considered as an approximation
of CE(q′(z)||p′(z)) when σ2

0 takes a positive small value. Note that in practice, our σ2
0 is indeed

generally very small (see Tab. 7).

On the other hand, when σ2
0 = 0 (e.g., when using the VPSDE from Song et al. [2]), we know that

q′(z) and p′(z) are identical to q(z0) and p(z0). However, in this case, the initial distribution at t = 0
is essentially an infinitely sharp Normal and we cannot evaluate the integral over the full interval
t ∈ [0, 1]. Hence, we limit its range to t ∈ [ε, 1], where ε is another hyperparameter. In this case, we
can approximate the cross entropy CE(q′(z)||p′(z)) using:

CE(q(z0)||p(z0)) ≈ 1

2

∫ 1

ε

g(t)2Eq(z0,zt)

[
||∇z log q(zt|z0)−∇z log p(zt)||22

]
dt+D log(

√
2πeσ2

ε)

= Et∼U [ε,1]

[
g(t)2

2
Eq(zt,z0)

[
||∇zt log q(zt|z0)−∇zt log p(zt)||22

]]
+
D

2
log
(

2πeσ2
ε

)

B Variance Reduction

The variance of the cross entropy in a mini-batch update depends on the variance of CE(q(z0)||p(z0))
where q(z0) := Epdata(x)[q(z0|x)] is the aggregate posterior (i.e., the distribution of latent vari-
ables) and pdata is the data distribution. This is because, for training, we use a mini-batch

22

estimation of Epdata(x)[L(x,φ,θ,ψ)]. For the cross entropy term in L(x,φ,θ,ψ), we have
Epdata(x)[CE(q(z0|x)||p(z0))] = CE(q(z0)||p(z0)).

In order to study the variance of the training objective, we derive CE(q(z0)||p(z0)) analytically,
assuming that both q(z0) = p(z0) = N (z0;0, I). This is a reasonable simplification for our analysis
because pretraining our LSGM model with a N (z0;0, I) prior brings q(z0) close to N (z0;0, I)
and our SGM prior is often dominated by the fixed Normal mixture component. Nevertheless, we
empirically observe that the variance reduction techniques developed with this simplification still
work well when q(z0) and p(z0) are not exactly N (z0;0, I).

In this section, we start with presenting the mixed score parameterization for generic SDEs in
App. B.1. Then, we discuss variance reduction with importance sampling for these generic SDEs in
App. B.2. Finally, in App. B.3 and App. B.4, we focus on variance reduction of the VPSDEs and
VESDEs, respectively, and we briefly discuss the Sub-VPSDE [2] in App. B.5.

B.1 Generic Mixed Score Parameterization for Non-Variance Preserving SDEs

The mixed score parameterization uses the score that is obtained when dealing with Normal input
data and just predicts an additional residual score. In the main text, we assume that the variance
of the standard Normal data stays the same throughout the diffusion process, which is the case for
VPSDEs. But the way Normal data diffuses depends generally on the underlying SDE and generic
SDEs behave differently than the regular VPSDE in that regard.

Consider the generic forward SDEs in the form:

dz = f(t)z dt+ g(t) dw (18)

If our data distribution is standard Normal, i.e. z0 ∼ N (z0;0, I), using Eq. 13, we have

σ̊2
t :=

1

F̃ (t)

(∫ t

0

F̃ (s)g2(s)ds+ 1

)
=

1

F̃ (t)

(
σ̃2
t + 1

)
(19)

with the definition σ̃2
t :=

∫ t
0
F̃ (s)g2(s)ds. Hence, the score function at time t is ∇zt log p(zt) =

− zt
σ̊2
t

. Using the geometric mixture p(zt) ∝ N (zt; 0, σ̊2
t)1−αp′θ(zt)

α, we can generally define our
mixed score parameterization as

εθ(zt, t) :=
σt
σ̊2
t

(1−α)� zt +α� ε′θ(zt, t). (20)

In the case of VPSDEs, we have σ̊2
t = 1 which corresponds to the mixed score introduced in the

main text.

Remark: It is worth noting that both σ̊2
t and σ2

t are solutions to the same differential equation in
Eq. 13 with different initial conditions. It is easy to see that σ̊2

t − σ2
t = (1− σ2

0)F̃ (t)−1.

B.2 Variance Reduction of Cross Entropy with Importance Sampling for Generic SDEs

Let’s consider the cross entropy expression for p(z0) = N (z0,0, I) and q(z0) = N (z0,0, (1−σ2
0)I)

where we have scaled down the variance of q(z0) to (1 − σ2
0) to accommodate the fact that the

diffusion process with initial variance σ2
0 applies a perturbation with variance σ2

0 in its initial step
(hence, the marginal distribution at t = 0 is N (z0,0, I) and we know that the optimal score is
εθ(zt, t) = σt

σ̊2
t
zt, i.e., the Normal component).

23

The cross entropy CE(q(z0)||p(z0)) with the optimal score εθ(zt, t) = σt
σ̊2
t
zt is:

CE− const. =
1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt (21)

=
1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
||ε− σt

σ̊2
t

zt||22
]
dt (22)

=
1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
||ε− σt

σ̊2
t

(F̃ (t)−
1
2 z0 + εσt)||22

]
dt (23)

=
1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
|| σ̊

2
t − σ2

t

σ̊2
t

ε− σt
σ̊2
t

F̃ (t)−
1
2 z0||22

]
dt (24)

=
1

2

∫ 1

ε

g2(t)

σ2
t

(
(̊σ2
t − σ2

t)2

(̊σ2
t)2

Eε
[
||ε||22

]
+

σ2
t

(̊σ2
t)2

F̃ (t)−1Ez0

[
||z0||22

])
dt (25)

=
D

2

∫ 1

ε

g2(t)

σ2
t

(
(̊σ2
t − σ2

t)2

(̊σ2
t)2

+
σ2
t

(̊σ2
t)2

F̃ (t)−1(1− σ2
0)

)
dt (26)

=
D

2

∫ 1

ε

g2(t)

σ2
t

(
(̊σ2
t − σ2

t)2

(̊σ2
t)2

+
σ2
t (̊σ2

t − σ2
t)

(̊σ2
t)2

)
dt (27)

=
D

2

∫ 1

ε

g2(t)

σ2
t

dt− D

2

∫ 1

ε

g2(t)

σ̊2
t

dt (28)

=
D

2

∫ 1

ε

d
dtσ

2
t + 2f(t)σ2

t

σ2
t

dt− D

2

∫ 1

ε

d
dt σ̊

2
t + 2f(t)̊σ2

t

σ̊2
t

dt (29)

=
D

2

∫ 1

ε

d
dtσ

2
t

σ2
t

dt− D

2

∫ 1

ε

d
dt σ̊

2
t

σ̊2
t

dt (30)

= D
1− ε

2
Et∼U [ε,1]

 d
dt

log

(
σ2
t

σ̊2
t

) (31)

= D
1− ε

2
Et∼U [ε,1]

 d
dt

log

(
σ̃2
t + σ2

0

σ̃2
t + 1

) , (32)

where in Eq. 23, we have used zt = F̃ (t)−
1
2 z0 + εσt. In Eq. 25, we have used the fact that z0 and ε

are independent. In Eq. 27, we have used the identity σ̊2
t − σ2

t = (1 − σ2
0)F̃ (t)−1. In Eq. 29, we

have used g2(t) = d
dtσ

2
t + 2f(t)σ2

t from Eq. 13.

Therefore, the IW distribution with minimum variance for CE(q(z0)||p(z0)) is

r(t) ∝ d

dt
log

(
σ̃2
t + σ2

0

σ̃2
t + 1

)
(33)

with normalization constant

R̃ = log

(σ̃2
1 + σ2

0

σ̃2
1 + 1

)(
σ̃2
ε + 1

σ̃2
ε + σ2

0

) (34)

and CDF

R(t) =
1

R̃
log

(σ̃2
t + σ2

0

σ̃2
t + 1

)(
σ̃2
ε + 1

σ̃2
ε + σ2

0

) (35)

Hence, the inverse CDF is

t =
(
σ̃2
t

)invσ2
0 −

(
σ̃2
ε+σ2

0

σ̃2
ε+1

)1−ρ (
σ̃2
1+σ2

0

σ̃2
1+1

)ρ
(
σ̃2
ε+σ2

0

σ̃2
ε+1

)1−ρ (
σ̃2
1+σ2

0

σ̃2
1+1

)ρ
− 1

 (36)

24

Finally, the cross entropy objective with importance weighting becomes

1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

R̃

2
Et∼r(t)

[
1 + σ̃2

t

1− σ2
0

Ez0,ε||ε− εθ(zt, t)||22

]
(37)

=
1

2
log

(σ̃2
1 + σ2

0

σ̃2
1 + 1

)(
σ̃2
ε + 1

σ̃2
ε + σ2

0

)Et∼r(t)

[
1 + σ̃2

t

1− σ2
0

Ez0,ε||ε− εθ(zt, t)||22

]
(38)

The idea here is to write everything as a function of σ̃2
t =

∫ t
0
F̃ (s)g2(s)ds. We see that σ̃2

t is
monotonically increasing for any g(t) and f(t); hence, it always has an inverse and inverse transform
sampling is, in principle, always possible. However, we should pick g(t) and f(t) such that σ̃2

t and
its inverse are also analytically tractable to avoid dealing with numerical methods.

B.3 VPSDE

Consider the simple forward diffision process in the form:

dz = −1

2
β(t)zdt+

√
β(t)dw (39)

which corresponds to the VPSDE from Song et al. [2]. The appealing characteristic of this diffusion
model is that if z0 ∼ N (z0;0, I), intermediate z(t) will also have a standard Normal distribution and
its variance is constant (i.e., d

dt σ̊
2
t = 0). In the original VPSDE, β(t) is defined by a linear function

β(t) = β0 + (β1 − β0)t that interpolates between [β0, β1].

B.3.1 Variance Reduction for Likelihood Weighting (Geometric VPSDE)

Our analysis in App. B.2, Eq. 30 shows that the cross entropy can be expressed as:

CE(q(z0)||p(z0))− const =
D

2

∫ 1

ε

d
dtσ

2
t

σ2
t

dt− D

2

∫ 1

ε

d
dt σ̊

2
t

σ̊2
t

dt (40)

=
D

2

∫ 1

ε

d
dtσ

2
t

σ2
t

dt (41)

= D
1− ε

2
Et∼U [ε,1]

[
d
dtσ

2
t

σ2
t

]
(42)

where for the VPSDE we have used d
dt σ̊

2
t = 0.

A sample-based estimation of this expectation has a low variance if 1
σ2
t

dσ2
t

dt is constant for all

t ∈ [0, 1]. By solving the ODE 1
σ2
t

dσ2
t

dt = const., we can see that a log-linear noise schedule of the

form σ2
t = σ2

min(
σ2

max
σ2

min
)t satisfies this condition, with t ∈ [0, 1], 0<σ2

min<σ
2
max<1, and σ2

min = σ2
0 .

Using Eq. 13, we can find an expression for β(t) that generates such noise schedule:

β(t) =
1

1− σ2
t

dσ2
t

dt
=

σ2
t

1− σ2
t

log(
σ2

max

σ2
min

) =
σ2

min(
σ2

max
σ2

min
)t

1− σ2
min(

σ2
max
σ2

min
)t

log(
σ2

max

σ2
min

) (43)

We call a VPSDE with β(t) defined as above a geometric VPSDE. For small σ2
min and σ2

max close to 1,
all inputs diffuse closely towards the standard Normal prior at t = 1. In that regard, notice that our
geometric VPSDE is well-behaved with positive β(t) only within the relevant interval t ∈ [0, 1] and
for 0<σ2

min<σ
2
max<1. These conditions also imply σ2

t < 1 for all t ∈ [0, 1]. This is expected for
any VPSDE. We can approach unit variance arbitrarily closely but not reach it exactly.

Importantly, our geometric VPSDE is different from the “variance-exploding” SDE (VESDE),
proposed by Song et al. [5] (also see App. C). The VESDE leverages a SDE in which the variance
grows in an almost unbounded way, while the mean of the input distribution stays constant. Because

25

of this, the hyperparameters of the VESDE must be chosen carefully in a data-dependent manner [38],
which can be problematic in our case (see discussion in App. B.4). Furthermore, Song et al. also
found that the VESDE does not perform well when used with probability flow-based sampling [2]. In
contrast, our geometric VPSDE combines the variance preserving behavior (i.e. standard Normal
input data remains standard Normal throughout the diffusion process; all individual inputs diffuse
towards standard Normal prior) of the VPSDE with the geometric growth of the variance in the
diffusion process, which was first used in the VESDE.

Finally, for the geometric VPSDE we also have that ∂
∂tCE(q(zt)||p(zt)) = const. for Normal input

data. Hence, data is encoded “as continuously as possible” throughout the diffusion process. This
is in line with the arguments made by Song et al. in [38]. We hypothesize that this is particularly
beneficial towards learning models with strong likelihood or NELBO performance. Indeed, in our
experiments we observe the geometric VPSDE to perform best on this metric.

B.3.2 Variance Reduction for Likelihood Weighting (Importance Sampling)

Above, we have assumed that we sample from a uniform distribution for t and we have defined
β(t) and σ2

t such that the variance of a Monte-Carlo estimation of the expectation is minimum.
Another approach for improving the sample-based estimate of the expectation is to keep β(t) and σ2

t
unchanged and to use importance sampling such that the variance of the estimate is minimum.

Using importance sampling, we can rewrite the expectation in Eq. 42 as:

Et∼U [ε,1]

[
1

σ2
t

dσ2
t

dt

]
= Et∼r(t)

[
1

r(t)

1

σ2
t

dσ2
t

dt

]
(44)

where r(t) is a proposal distribution. The theory of importance sampling [28] shows that r(t) ∝
1
σ2
t

dσ2
t

dt =
d log σ2

t

dt will have the smallest variance. In order to use this proposal distribution, we require
(i) sampling from r(t) and (ii) evaluating the objective using this importance sampling technique.

Sampling from r(t) by inverse transform sampling: It’s easy to see that the normalization constant
for r(t) is

∫ 1

ε
d log σ2

t

dt dt = log σ2
1 − log σ2

ε . Thus, the PDF r(t) is:

r(t) =
1

log σ2
1 − log σ2

ε

1

σ2
t

dσ2
t

dt
=

β(t)(1− σ2
t)

(log σ2
1 − log σ2

ε)σ2
t

(45)

We can derive inverse transform sampling by deriving the inverse CDF:

R(t) =
log

σ2
t

σ2
ε

log
σ2
1

σ2
ε

= ρ⇒ σ2
t

σ2
ε

=

(
σ2

1

σ2
ε

)ρ
⇒ t = var−1

((
σ2

1

)ρ (
σ2
ε

)1−ρ
)

(46)

where var−1 is the inverse of σ2
t .

Importance Weighted Objective: The cross entropy is then written as (ignoring the constants here):

1

2

∫ 1

ε

β(t)

σ2
t

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

1

2
Et∼r(t)

[
(log σ2

1 − log σ2
ε)

(1− σ2
t)

Ez0,ε||ε− εθ(zt, t)||22

]
(47)

B.3.3 Variance Reduction for Unweighted Objective

Using a similar derivation as in App. B.2, we can show that for the unweighted objective for
p(z0) = N (z0,0, I) and q(z0) = N (z0,0, (1− σ2

0)I), we have∫ 1

ε

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

D

2

∫ 1

ε

(
(̊σ2
t − σ2

t)2

(̊σ2
t)2

+
σ2
t (̊σ2

t − σ2
t)

(̊σ2
t)2

)
dt (48)

= D
1− ε

2
Et∼U [ε,1]

[
1− σ2

t

]
(49)

= D
1− ε

2
Et∼r(t)

[
1− σ2

t

r(t)

]
(50)

26

with proposal distribution r(t) ∝ 1−σ2
t . Recall that in the VPSDE with linear β(t) = β0+(β1−β0)t,

we have
1− σ2

t = (1− σ2
0)e−

∫ t
0
β(s)ds = (1− σ2

0)e−β0t−(β1−β0) t
2

2 (51)

Hence, the normalization constant of r(t) is

R̃ =

∫ 1

ε

(1− σ2
0)e−β0t−(β1−β0) t

2

2 dt (52)

= (1− σ2
0)e

1
2

β0
β1−β0

√
π

2(β1 − β0)︸ ︷︷ ︸
:=AR̃

erf

(√
β1 − β0

2

[
1 +

β0

β1 − β0

])
− erf

(√
β1 − β0

2

[
ε+

β0

β1 − β0

])
(53)

Similarly, we can write the CDF of r(t) as

R(t) =
AR̃
R̃

erf

(√
β1 − β0

2

[
t+

β0

β1 − β0

])
− erf

(√
β1 − β0

2

[
ε+

β0

β1 − β0

]) (54)

solving ρ = R(t) for t then results in

t =

√
2

β1 − β0
erfinv

 ρR̃

AR̃
+ erf

(√
β1 − β0

2

[
ε+

β0

β1 − β0

])− β0

β1 − β0
(55)

Importance Weighted Objective:∫ 1

ε

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt = Et∼r(t)

[
R̃

(1− σ2
t)
Ez0,ε||ε− εθ(zt, t)||22

]
(56)

B.3.4 Variance Reduction for Reweighted Objective

For the reweighted mechanism, we drop only σ2
t from the cross entropy objective but we keep

g2(t) = β(t). Using a similar derivation in App. B.2, we can show that unweighted objective for
p(z0) = N (z0,0, I) and q(z0) = N (z0,0, (1− σ2

0)I), we have∫ 1

ε

β(t)Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt = D

1− ε
2

Et∼U [ε,1]

[
dσ2

t

dt

]
= D

1− ε
2

Et∼r(t)

 dσ2
t

dt

r(t)

 (57)

with proposal distribution r(t) ∝ dσ2
t

dt = β(t)(1− σ2
t).

In this case, we have the following proposal r(t), its CDF R(t) and inverse CDF R−1(ρ):

r(t) =
β(t)(1− σ2

t)

σ2
1 − σ2

ε

, R(t) =
σ2
t − σ2

ε

σ2
1 − σ2

ε

, t = R−1(ρ) = var−1((1− ρ)σ2
ε + ρσ2

1) (58)

Note that usually σ2
ε ' 0 and σ2

1 / 1. In that case, the inverse CDF can be thought of as R−1(ρ) ≈
var−1(ρ).

Importance Weighted Objective:

1

2

∫ 1

ε

β(t)Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

1

2
Et∼r(t)

[
(σ2

1 − σ2
ε)

(1− σ2
t)

Ez0,ε||ε− εθ(zt, t)||22

]
(59)

Remark: It is worth noting that the derivation of the importance sampling distribution for the
reweighted objective does not make any assumption on the form of β(t). Thus, the IS distribution
can be formed for any VPSDE when training with the reweighted objective, including the original
VPSDE with linear β(t) and also our new geometric VPSDE.

27

B.4 VESDE

The VESDE [2] is defined by:

dz =

√
d

dt
σ(t)2dw (60)

=

√√√√σ2
min log

(
σ2

max

σ2
min

)(
σ2

max

σ2
min

)t
dw (61)

with σ(t)2 = σ2
min

(
σ2

max
σ2

min

)t
.

Solving the Fokker-Planck equation for input distribution N (µ0, σ
2
0) results in

µt = µ0; σ2
t = σ2

0 − σ2
min + σ2

min

(
σ2

max

σ2
min

)t
(62)

Typical values for σ2
min and σ2

max are σ2
min = 0.012 and σ2

max = 502 (CIFAR10). Usually, we use
σ2

min = σ2
0 .

Note that when the input data is distributed as z0 ∼ N (z0;0, I), the variance at time t in VESDE is
given by:

σ̊2
t = 1− σ2

min + σ2
min

(
σ2

max

σ2
min

)t
(63)

Note that σ2
max is typically very large and chosen empirically based on the scale of the data [38].

However, this is tricky in our case, as the role of the data is played by the latent space encodings,
which themselves are changing during training. We did briefly experiment with the VESDE and
calculated σ2

max as suggested in [38] using the encodings after the VAE pre-training stage. However,
these experiments were not successful and we suffered from significant training instabilities, even
with variance reduction techniques. Therefore, we did not further explore this direction.

Nevertheless, our proposed variance reduction techniques via importance sampling can be derived
also for the VESDE. Hence, for completeness, they are shown below.

B.4.1 Variance Reduction for Likelihood Weighting

Let’s have a closer look at the likelihood objective when using the VESDE for modeling the standard
Normal data. Following similar arguments as in previous sections, we have z0 ∼ N (z0;0, (1 −
σ2

min)I). With the optimal score εθ(zt, t) = σt
σ̊2
t
zt (i.e., the Normal component), we have the following

expression for CE(q(z0)||p(z0)) from Eq. 30:

1

2

∫ 1

ε

g2(t)

σ2
t

Eµ0,ε

[
||ε− εθ(zt, t)||22

]
dt =

D

2

∫ 1

ε

d
dtσ

2
t

σ2
t

dt− D

2

∫ 1

ε

d
dt σ̊

2
t

σ̊2
t

dt = (64)

D

2

∫ 1

ε

[
d
dtσ

2
t

σ2
t

−
d
dt σ̊

2
t

σ̊2
t

]
dt = D

1− ε
2

Et∼U [ε,1]

[
d
dtσ

2
t

σ2
t

−
d
dt σ̊

2
t

σ̊2
t

]
(65)

Since the term inside the expectation is not constant in t, the VESDE does not result in an objective
with naturally minimal variance, opposed to our proposed geometric VPSDE.

We derive an importance sampling scheme with a proposal distribution

r(t) ∝ 1

σ2
t

dσ2
t

dt
− 1

σ̊2
t

dσ̊2
t

dt
= log

(
σ2

max

σ2
min

)1−
σ2

min

(
σ2

max
σ2

min

)t
1− σ2

min + σ2
min

(
σ2

max
σ2

min

)t
 (66)

28

Note that the quantity above is always positive as
σ2

min

(
σ2max
σ2min

)t
1−σ2

min+σ
2
min

(
σ2max
σ2min

)t ≤ 1 with σ2
min < 1. In this case

the normalization constant of r(t) is R̃ = log
(
σ̊2
ε

σ2
ε

σ2
max
σ̊2
1

)
and the CDF is:

R(t) =
1

R̃

[
log σ2

t − log σ2
ε + log σ̊2

ε − log σ̊2
t

]
=

1

R̃
log

(
σ̊2
εσ

2
t

σ̊2
t σ

2
ε

)
(67)

And the inverse CDF is:

t = v̊ar−1

 1− σ2
min

1−
(
σ2
ε

σ̊2
ε

)1−ρ (
σ2

max
σ̊2
1

)ρ
 (68)

where v̊ar−1 is the inverse of σ̊2
t .

So, the objective with importance sampling is then:

1

2

∫ 1

ε

g2(t)

σ2
t

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

1

2
Et∼r(t)

log

(
σ̊2
ε

σ2
ε

σ2
max

σ̊2
1

)
σ̊2
t

1− σ2
min

Ez0,ε||ε− εθ(zt, t)||22

In contrast to the VESDE, the geometric VPSDE combines the geometric progression in diffusion
variance directly with minimal variance in the objective by design. Furthermore, it is simpler to set
up, because we can always choose σ2

max ∼ 1 for the geometric VPSDE and do not have to use a
data-specific σ2

max as proposed by [38].

B.4.2 Variance Reduction for Unweighted Objective

When we drop all “prefactors” in the objective, the importance sampling distribution stays the same
as above, since g2(t)

σ2
t

is constant in t. The objective becomes:

∫ 1

ε

Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt = Et∼r(t)

 log
(
σ̊2
ε

σ2
ε

σ2
max
σ̊2
1

)
log
(
σ2

max
σ2

min

) σ̊2
t

1− σ2
min

Ez0,ε||ε− εθ(zt, t)||22

 (69)

B.4.3 Variance Reduction for Reweighted Objective

To define the importance sampling for the reweighted objective by σ2
t , we use the fact that dσ

2
t

dt =
dσ̊2
t

dt
in VESDEs. Using a similar derivation as in App. B.2, we show:

1

2

∫ 1

ε

g2(t)Ez0,ε

[
||ε− εθ(zt, t)||22

]
dt =

D

2

∫ 1

ε

dσ2
t

dt
dt− D

2

∫ 1

ε

dσ̊2
t

dt

σ2
t

σ̊2
t

dt (70)

=
D

2

∫ 1

ε

dσ̊2
t

dt

(
σ̊2
t − σ2

t

σ̊2
t

)
dt (71)

=
D(1− σ2

0)

2

∫ 1

ε

1

σ̊2
t

dσ̊2
t

dt
dt (72)

Thus, the optimal proposal for reweighted objective and the inverse CDF are:

r(t) ∼ 1

σ̊2
t

dσ̊2
t

dt
⇒ r(t) =

1

log(
σ̊2
1

σ̊2
ε
)

1

σ̊2
t

dσ̊2
t

dt
⇒ R(t) =

log(
σ̊2
t

σ̊2
ε
)

log(
σ̊2
1

σ̊2
ε
)
⇒ t = v̊ar−1

(
(̊σ2
ε)1−ρ(̊σ2

1)ρ
)
(73)

29

So, the reweighted objective with importance sampling is:

1

2

∫ 1

ε

g2(t)Eµ0,ε

[
||ε− εθ(zt, t)||22

]
dt =

1

2
Et∼r(t)

log

(
σ̊2

1

σ̊2
ε

)
σ̊2
tEµ0,ε||ε− εθ(zt, t)||

2
2

 (74)

Note that in practice, we can safely set ε = 0 as initial σ2
0 is non-zero in the VESDE.

B.5 Sub-VPSDE

Song et al. also proposed the Sub-VPSDE [2]. It is defined as:

dz = −1

2
β(t)zdt+

√
β(t)

(
1− e−2

∫ t
0
β(s)ds

)
dw (75)

with the same linear β(t) as for the regular VPSDE.

Solving the Fokker-Planck equation for input distribution N (µ0, σ
2
0) at t = 0 results in

µt = e−
1
2

∫ t
0
β(s)dsµ0; σ2

t =
(

1.0− e−
∫ t
0
β(s)ds

)2

+ σ2
0 e
−
∫ t
0
β(s)ds (76)

0 50 100 150 200 250 300
Epochs

0

2500

5000

7500

10000

12500

15000

17500

20000
Tr

ai
ni

ng
 N

E
LB

O
 (n

at
s)

SubVPSDE, Uniform
SubVPSDE, IS

Figure 6: Variance reduction of the sample-based esti-
mate of the training objective for the Sub-VPSDE, using
an IS distribution derived from the regular VPSDE.

Deriving importance sampling distributions for
variance reduction for the Sub-VPSDE can be
more complicated than for the VPSDE, Geomet-
ric VPSDE, and VESDE and we did not investi-
gate this in detail. However, for the same linear
β(t) the Sub-VPSDE is close to the VPSDE,
only slightly reducing the the variance σ2

t of the
diffusion process distribution for small t. This
suggests that the IS distribution derived using
the regular VPSDE will likely also significantly
reduce the variance of the objective due to t-
sampling of the Sub-VPSDE, just not as opti-
mally as theoretically possible. In Fig. 6, we
show the training NELBO of an LSGM trained
on CIFAR-10 with wll-weighting using the Sub-
VPSDE. We show the NELBO both for uniform
t sampling as well as for t sampling from the IS
distribution that was originally derived for the
regular VPSDE with the same β(t) (the experi-
ment and model setup is otherwise the same as the one for the ablation study on SDEs, weighting
mechanisms and variance reduction). We indeed observe a significantly reduced training objective
variance. We were consequently able to train large LSGM models in a stable manner using the
Sub-VPSDE with VPSDE-based IS. However, the strongest generative performance in either NLL or
FID was not achieved using the Sub-VPSDE, but with the Geometric VPSDE or regular VPSDE. For
that reason, we did not focus on the Sub-VPSDE in our main experiments. However, a generative
modeling performance comparison of the VPSDE vs. Sub-VPSDE in a smaller LSGM model is
presented in App. H.4.

C Expressions for the Normal Transition Kernel

In our derivations of the Normal transition kernel q(zt|z0), we only considered the general case in
Eq. 12 and Eq. 13. However, the expression for q(zt|z0) can be further simplified for different SDEs
that are considered in this paper. For completeness, we provide the expressions for q(zt|z0) below:

q(zt|z0) =

N
(
zt; e

− 1
2

∫ t
0
β(s)dsz0,

[
1− (1− σ2

0)e−
∫ t
0
β(s)ds

]
I
)

VPSDE (linear β(t))

N
(
zt;

√
1−σ2

min(
σ2max
σ2min

)t

1−σ2
min

z0, σ
2
min(

σ2
max
σ2

min
)tI
)

Geometric VPSDE

N
(
zt; z0, σ

2
min(

σ2
max
σ2

min
)tI
)

VESDE

(77)

30

In both VESDE and Geometric VPSDE, the initial variance σ2
0 is denoted by σ2

min > 0. These
diffusion processes start from a slightly perturbed version of the data at t=0. In VESDE, σ2

max by
definition is large (as the name variance exploding SDE suggests) and it is set based on the scale of
the data [38]. In contrast, σ2

max in the Geometric VPSDE does not depend on the scale of the data
and it is set to σ2

max ≈ 1. In the VPSDE, the initial variance is denoted by the hyperparameter σ2
0 .

In contrast to VESDE and Geometric VPSDE, we often set the initial variance to zero in VPSDE,
meaning that the diffusion process models the data distribution exactly at t= 0. However, using
the VPSDE with σ2

0 = 0 comes at the cost of not being able to sample t in the full interval [0, 1]
during training and also prevents us from solving the probability flow ODE all the way to zero during
sampling [2].

D Probability Flow ODE

In LSGM, to sample from our SGM prior in latent space and to estimate NELBOs, we follow Song
et al. [2] and build on the connection between SDEs and ODEs. We use black-box ODE solvers to
solve the probability flow ODE. Here, we briefly recap this approach.

All SDEs used in this paper can be written in the general form

dz = f(z, t)dt+ g(t)dw

The reverse of this diffusion process is also a diffusion process running backwards in time [105, 2],
defined by

dz =
[
f(z, t)− g2(t)∇zt log q(zt)

]
dt+ g(t)dw̄,

where dw̄ denotes a standard Wiener process going backwards in time, dt now represents a negative
infinitesimal time increment, and∇zt log q(zt) is the score function of the diffusion process distribu-
tion at time t. Interestingly, Song et al. have shown that there is a corresponding ODE that generates
the same marginal probability distributions q(zt) when acting upon the same prior distribution q(z1).
It is given by

dz =

[
f(z, t)− g2(t)

2
∇zt log q(zt)

]
dt

and usually called the probability flow ODE. This connects score-based generative models using
diffusion processes to continuous Normalizing flows, which are based on ODEs [73, 106]. Note that
in practice ∇zt log q(zt) is approximated by a learnt model. Therefore, the generative distributions
defined by the ODE and SDE above are formally not exactly equivalent when inserting this learnt
model for the score function expression. Nevertheless, they often achieve quite similar performance
in practice [2]. This aspect is discussed in detail in concurrent work by Song et al. [4].

We can use the above ODE for efficient sampling of the model via black-box ODE solvers. Specifi-
cally, we can draw samples from the standard Normal prior distribution at t = 1 and then solve this
ODE towards t = 0. In fact, this is how we perform sampling from the latent SGM prior in our paper.
Similarly, we can also use this ODE to calculate the probability of samples under this generative
process using the instantaneous change of variables formula (see [73, 106] for details). We rely on
this for calculating the probability of latent space samples under the score-based prior in LSGM.
Note that this involves calculating the trace of the Jacobian of the ODE function. This is usually
approximated via Hutchinson’s trace estimator, which is unbiased but has a certain variance (also see
discussion in Sec. F).

This approach is applicable similarly for all diffusion processes and SDEs considered in this paper.

E Converting VAE with Hierarchical Normal Prior to Standard Normal
Prior

Converting a VAE with hierarchical prior to a standard Normal prior can be done using a simple
change of variables. Consider a VAE with hierarchical encoder q(z|x) =

∏
l q(zl|z<l,x) and

31

hierarchical prior p(z) =
∏
l p(zl|z<l) where z = {zl}Ll=1 represent all latent variables and:

p(zl|z<l) = N (zl;µl(z<l), σ
2
l (z<l)I) (78)

q(zl|z<l,x) = N (zl;µ
′
l(z<l,x), σ′2l (z<l,x)I) (79)

where for simplicity we have assumed that the variance is shared for all the components. We can
reparameterize the latent variables by introducing εl = zl−µl(z<l)

σl(z<l)
. With this reparameterization, the

equivalent VAE is:

p(εl) = N (εl;0, I) (80)

q(εl|ε<l,x) = N (εl;
µ′l(z<l,x)− µl(z1)

σl(z<l)
,
σ′2l (z<l,x)

σ2
l (z<l)

I), (81)

(82)

where zl = µl(z<l) + σl(z<l)εl. In this equivalent parameterization, we can consider εl as latent
variables with a standard Normal prior.

E.1 Converting NVAE Prior to Standard Normal Prior

In NVAE [20], the prior has the same hierarchical form as in Eq. 78. However, the authors observe
that the residual parameterization of the encoder often improves the generative performance. In this
parameterization, with a small modification, the encoder is defined by:

q(zl|z<l,x) = N (zl;µl(z<l) + σl(z<l)∆µ
′
l(z<l,x), σ2

l (z<l)∆σ
′2
l (z<l,x)I), (83)

where the encoder is tasked to predict the residual parameters ∆µ′l(z<l,x) and ∆σ′2l (z<l,x). Using
the same reparameterization as above (εl = zl−µl(z<l)

σl(z<l)
), we have the equivalent VAE in the form:

p(εl) = N (εl;0, I) (84)

q(εl|ε<l,x) = N (εl; ∆µ′l(z<l,x),∆σ′2l (z<l,x)I), (85)

where zl = µl(z<l)+σl(z<l)εl. In other words, the residual parameterization of encoder, introduced
in NVAE, predicts the mean and variance for the εl distributions directly.

F Bias in Importance Weighted Estimation of Log-Likelihood

A common approach for estimating test log-likelihood in VAEs is to use the importance weighted
bound on log-likelihood [74]. In LSGM, we have access to an unbiased but stochastic estimation of
the prior likelihood log p(z0) which we obtain using the probability flow ODE [2]. The stochasticity
in the estimation comes from Hutchinson’s trick [106]. In VAEs, the test log-likelihood is estimated
using importance weighted (IW) estimation [74]:

Ez(1),...,z(K)∼q(z|x)[log(
1

K

K∑
k=1

exp(w(k)))] where w(k) = log p(z(k))+log p(x|z(k))−log q(z(k)|x) (86)

which is a statistical lower bound on log p(x).

In this section, we provide an informal analysis that shows that IW estimation with K > 1 can
overestimate the log-likelihood when log p(z) is measured with an unbiased estimator with variance
σ2. In our analysis we assume that σ2 is small and we use Taylor expansion to study how the IW
bound varies. Under our analysis, we observe that the bias has O(σ2) and it can be minimized by
ensuring that σ2 is sufficiently small.

Consider the Taylor expansion around w up to second order of the function log
∑

exp(w) =
log
∑
k e

wi where w = {w(k)}Kk=1 (log
∑

exp : RK → R). With ε ∼ N (ε,0, I) and assuming that
σ2 is sufficiently small so that all terms beyond second order contribute negligibly, we have:

Eε[log
∑

exp(w + σε)] ≈ log
∑

exp(w) + σ�
��
�*0

Eε[εT]∇w log
∑

exp(w) + σ2
��

���:
trace(H)

Eε[εTHε] (87)

32

where H is the Hessian matrix for the log
∑

exp function at w. Note that the gradient

∇w log
∑

exp(w) = ewi∑
j e
wj is the softmax function and trace(H)=

∑
i

ewi∑
j e
wj

(
1− ewi∑

j e
wj

)
≤ 1.

Thus, we have:

Eε[log
∑

exp(w + σε)] / log
∑

exp(w) + σ2 (88)

So, when the importance weights w = {w(k)}Kk=1 are estimated with sufficiently small variance σ2,
the bias is proportional to the variance of this estimate.

In our experiments, we observe that the variance of the log p(z0) estimate is not small enough to
obtain a reliable estimate of test likelihood using the importance weighted bound. One way to reduce
the variance is to use many randomly sampled noise vectors in Hutchinson’s trick. However, this
makes NLL estimation computationally too expensive. Fortunately, when evaluating NELBO (which
corresponds to K = 1 here), the NELBO estimate is unbiased and its variance is small because of
averaging across big test datasets (with often 10k samples). For example, on MNIST the standard
deviation of our log p(z0) estimate is 0.36 nat, while the standard deviation of NELBO is 0.07 nat.

G Additional Implementation Details

All hyperparameters for our main models are provided in Tab. 7.

G.1 VAE Backbone

The VAE backbone for all LSGM models is NVAE [20]7, one of the best-performing VAEs in
the literature. It has a hierarchical latent space with group-wise autoregressive latent variable
dependencies and it leverages residual neural networks (for architecture details see [20]). It uses
depth-wise separable convolutions in the decoder. Although both the approximate posterior and the
prior are hierarchical in its original version, we can reparametrize the prior and write it as a product
of independent Normal distributions (see Sec. E).

The VAE’s most important hyperparameters include the number of latent variable groups and their
spatial resolution, the channel depth of the latent variables, the number of residual cells per group,
and the number of channels in the convolutions in the residual cells. Furthermore, when training the
VAE during the first stage we are using KL annealing and KL balancing, as described in [20]. For
some models, we complete KL annealing during the pre-training stage, while for other models we
found it beneficial to anneal only up to a KL-weight βKL < 1.0 in the ELBO during the first stage and
complete KL annealing during the main end-to-end LSGM training stage. This provides additional
flexibility in learning an expressive distribution in latent space during the second training stage, as
it prevents more latent variables from becoming inactive while the prior is being trained gradually.
However, when using a very large backbone VAE together with an SGM objective that does not
correspond to maximum likelihood training, i.e. wun- or wre-weighting, we empirically observe that
this approach can also hurt NLL, while slightly improving FID (see CIFAR10 (best FID) model).

Note that the VAE Backbone performance for CIFAR10 reported in Tab. 2 in the main paper
corresponds to the 20-group backbone VAE (trained to full KL-weight βKL = 1.0) from the CIFAR10
(balanced) LSGM model (see hyperparameter Tab. 7).

Image Decoders: Since SGMs [2] assume that the data is continuous, they rely on uniform de-
quantization when measuring data likelihood. However, in LSGM, we rely on decoders designed
specifically for images with discrete intensity values. On color images, we use mixtures of discretized
logistics [82], and on binary images, we use Bernoulli distributions. These decoder distributions are
both available from the NVAE implementation.

G.2 Latent SGM Prior

Our denoising networks for the latent SGM prior are based on the NCSN++ architecture from Song et
al. [2], adapted such that the model ingests and predicts tensors according to the VAE’s latent variable
dimensions. We vary hyperparameters such as the number of residual cells per spatial resolution level

7https://github.com/NVlabs/NVAE (NVIDIA Source Code License)

33

https://github.com/NVlabs/NVAE

and the number of channels in convolutions. Note that all our models use 0.2 dropout in the SGM
prior. Some of our models use upsampling and downsampling operations with anti-aliasing based on
Finite Impulse Response (FIR) [107], following Song et al. [2].

NVAE has a hierarchical latent structure. For small image datasets including CIFAR-10, MNIST and
OMNIGLOT all the latent variables have the same spatial dimensions. Thus, the diffusion process
input z0 is constructed by concatenating the latent variables from all groups in the channel dimension.
Our NVAE backbone on the CelebA-HQ-256 dataset comes with multiple spatial resolutions in latent
groups. In this case, we only feed the smallest resolution groups to the SGM prior and assume that
the remaining groups have a standard Normal distribution.

G.3 Training Details

To optimize our models, we are mostly following the previous literature. The VAE’s encoder and
decoder networks are trained using an Adamax optimizer [108], following NVAE [20]. In the
second stage, the whole model is trained with an Adam optimizer [108] and we perform learning
rate annealing for the VAE network optimization, while we keep the learning rate constant when
optimizing the SGM prior parameters. At test time, we use an exponential moving average (EMA)
of the parameters of the SGM prior with 0.9999 EMA decay rate, following [1, 2]. Note that, when
using the VPSDE with linear β(t), we are also generally following [1, 2] and use β0 = 0.1 and
β1 = 20.0. We did not observe any benefits in using the EMA parameters for the VAE networks.

G.4 Evaluation Details

For evaluation, we are drawing samples and calculating log-likelihoods using the probability flow
ODE, leveraging black-box ODE solvers, following [73, 106, 2]. Similar to [2], we are using an
RK45 ODE solver [109], based on scipy, using the torchdiffeq interface 8. Integration cutoffs
close to zero and ODE solver error tolerances used for evaluation are indicated in Tab. 7 (for example,
for the VPSDE with linear β(t) we usually use σ2

0 = 0 and therefore have that σ2
t goes to 0 at t = 0,

hence preventing us from integrating the probability flow ODE all the way to exactly 0. This was
handled similarly by Song et al. [2]).

Following the conventions established by previous work [88, 3, 1, 5], when evaluating our main
models we compute FID at frequent intervals during training and report FID and NLL at the minimum
observed FID.

Vahdat and Kautz in NVAE [20] observe that setting the batch normalization (BN) layers to train mode
during sampling (i.e., using batch statistics for normalization instead of moving average statistics)
improves sample quality. We similarly observe that setting BN layers to train mode improves sample
quality by about 1 FID score on the CelebA-HQ-256 dataset, but it does not affect performance on
the CIFAR-10 dataset. In contrast to NVAE, we do not change the temperature of the prior during
sampling, as we observe that it hurts generation quality.

G.5 Ablation Experiments

Here we provide additional details and discussions about the ablation experiments performed in the
paper.

G.5.1 Ablation: SDEs, Objective Weighting Mechanisms and Variance Reduction

The models that were used for the ablation experiment on SDEs, objective weighting mechanisms
and variance reduction and produced the results in Tab. 6 in the main paper use an overall similar
setup as the CIFAR10 (best NLL) one, with a few exceptions: They are trained only for 1000 epochs
and evaluation always happens using the checkpoint at the end of training. Furthermore, the total
batchsize over all GPUs is reduced from 256 to 128. Additionally, only 2 instead of 8 cells per
residual are used in the latent SGM prior networks. Finally, the VAE’s KL term is annealed all the
way to βKL = 1.0 during the first training stage for these experiments. All other hyperparameters
correspond to the CIFAR10 (best NLL) setup, except those that are explicitly varied as part of the
ablation study and mentioned in Tab. 6 in the paper.

8https://github.com/rtqichen/torchdiffeq (MIT License)

34

https://github.com/rtqichen/torchdiffeq

Table 7: Hyperparameters for our main models. We use the same notations and abbreviations as in Tab. 6 in
main paper.

Hyperparameter CIFAR10 CIFAR10 CIFAR10 CelebA-HQ-256 CelebA-HQ-256 OMNIGLOT MNIST
(best FID) (balanced) (best NLL) (best quantitative) (best qualitative)

VAE Backbone
normalizing flows 0 0 2 2 2 0 0
latent variable scales 1 1 1 3 2 1 1
groups in each scale 20 20 4 8 10 3 2
spatial dims. of z in each scale 162 162 162 1282, 642, 322 1282, 642 162 82

channel in z 9 9 45 20 20 20 20
initial channels in enc. 128 128 256 64 64 64 64
residual cells per group 2 2 3 2 2 3 1
NVAE’s spectral reg. λ 10−2 10−2 10−2 3× 10−2 3× 10−2 10−2 10−2

Training
(VAE pre-training)
epochs 400 600 400 200 200 200 200
learning rate VAE 10−2 10−2 10−2 10−2 10−2 10−2 10−2

batch size per GPU 32 32 64 4 4 64 100
GPUs 8 8 4 16 16 2 2
KL annealing to βKL=0.7 βKL=1.0 βKL=0.7 βKL=1.0 βKL=1.0 βKL=1.0 βKL=0.7

Latent SGM Prior
number of scales 3 3 3 4 5 3 2
residual cells per scale 8 8 8 8 8 8 8
conv. channels at each scale [512]×3 [512]×3 [512]×3 256, [512]×3 [320]×2, [640]×3 [256]×3 [256]×2
use FIR [107] yes yes yes yes yes no no

Training
(Main LSGM training)
epochs 1875 1875 1875 1000 2000 1500 800
learning rate VAE 10−4 10−4 10−4 10−4 - 10−4 10−4

learning rate SGM prior 10−4 10−4 10−4 10−4 10−4 3× 10−4 3× 10−4

batch size per GPU 16 16 16 4 8 32 32
GPUs 16 16 16 16 16 4 4
KL annealing continued no continued no no continued continued
SDE VPSDE VPSDE Geo. VPSDE VPSDE VPSDE VPSDE VPSDE
σ2

0 (= σ2
min for Geo. VPSDE) 0.0 0.0 3× 10−5 0.0 0.0 0.0 0.0

σ2
max (only for Geo. VPSDE) - - 0.999 - - - -
t-sampling cutoff during training 0.01 0.01 0.0 0.01 0.01 0.01 0.01
SGM prior weighting mechanism wun wun wll wre wre wll wll
t-sampling approach (SGM-obj.) run(t) run(t) U [0, 1] rre(t) rre(t) rll(t) rll(t)
t-sampling approach (q-obj.) rew. rew. rew. rll(t) - rew. rew.

Evaluation
ODE solver integration cutoff 10−6 10−6 10−6 10−5 10−5 10−5 10−5

ODE solver error tolerance 10−5 10−5 10−5 10−5 10−5 10−5 10−5

As discussed in the main paper, the results of this ablation study overall validate that importance
sampling is important to stabilize training, that the wll-weighting mechanism as well as our novel
geometric VPSDE are well suited for training towards strong likelihood, and that the wun- and
wre-weighting mechanisms tend to produce better FIDs. Although these trends generally hold, it is
noteworthy that not all results translate perfectly to our large models that we used to produce our
main results. For instance, the setting with wre-weighting and no importance sampling for the SGM
objective, which produced the best FID in Tab. 6 (main paper), is generally unstable for our bigger
models, in line with our observation that IS is usually necessary to stabilize training. The stable
training run for this setting in Tab. 6 can be considered an outlier.

Furthermore, for CIFAR10 we obtained our very best FID results using the VPSDE, wun-weighting,
IS, and sample reweighting for the q-objective, while for the slightly smaller models used for the
results in Tab. 6, there is no difference between using sample reweighting and drawing a separate
batch t with rll(t) for training q for this case (see Tab. 6 main paper, VPSDE, wun, run(t) fields). Also,
CelebA-HQ-256 behaves slightly different for the large models in that the VPSDE with wre-weighting
and sampling a separate batch t with rll(t) for q-training performed best by a small margin (see
hyperparameter Tab. 7).

G.5.2 Ablation: End-to-End Training

The model used for the results on the ablation study regarding end-to-end training vs. fully separate
VAE and SGM prior training is the same one as used for the ablation study on SDEs, objective
weighting mechanisms and variance reduction above, evaluated in a similar way. For this experiment,
we used the VPSDE, wun-objective weighting, IS for t with run(t) when training the SGM prior,
and we did draw a second batch t with rll(t) for training q (only relevant for the end-to-end training
setup).

35

G.5.3 Ablation: Mixing Normal and Neural Score Functions

The model used for the ablation study on mixing Normal and neural score functions is again similar
to the one used for the other ablations with the exception that the underlying VAE has only a single
latent variable group, which makes it much smaller and removes all hierarchical dependencies
between latent variables. We tried training multiple models with larger backbone VAEs, but they were
generally unstable when trained without our mixed score parametrization, which only hightlights
its importance. As for the previous ablation, for this experiment we used the VPSDE, wun-objective
weighting, IS for t with run(t) when training the SGM prior, and we did draw a second batch t with
rll(t) for training q.

G.6 Training Algorithms

To unambiguously clarify how we train our LSGMs, we summarized the training procedures in three
different algorithms for different situations:

1. Likelihood training with IS. In this case, the SGM prior and the encoder share the same
weighted likelihood objective and do not need to be updated separately.

2. Un/Reweighted training with separate IS of t for SGM-objective and q-objective. Here,
the SGM prior and the encoder need to be updated with different weightings, because the
encoder always needs to be trained using the weighted (maximum likelihood) objective.
We draw separate batches t using separate IS distribution for the two differently weighted
objectives (i.e. last term in Eq. 8 from main paper vs. Eq. 9).

3. Un/Reweighted training with IS of t for the SGM-objective and reweighting for the q-
objective. What this means is that when training the encoder with the score-based cross
entropy term (last term in Eq. 8 from main paper), we are using an importance sampling
distribution that was actually tailored to un- or reweighted training for the SGM objective
(Eq. 9 from main paper) and therefore isn’t optimal for the weighted (maximum likelihood)
objective necessary for encoder training. However, if we nevertheless use the same impor-
tance sampling distribution, we do not need to draw a second batch of t for encoder training.
In practice, this boils down to different (re-)weighting factors in the cross entropy term (see
Algorithm 3).

For efficiency comparison between approaches (2) and (3), we observe that (3) consumes more
memory than (2) in general but it can be faster due to the shared computation for the denoising step.
Due to the memory limitations, we use (2) on large image datasets. Note that the choice between (2)
and (3) may affect generative performance as we empirically observed in our experiments.

Algorithm 1 Likelihood training with IS

Input: data x, parameters {θ,φ,ψ}
Draw z0 ∼ qφ(z0|x) using encoder.
Draw t ∼ rll(t) with IS distribution of likelihood weighting (Sec. B).
Calculate µt(z0) and σ2

t according to SDE.
Draw zt ∼ q(zt|z0) using zt = µt(z0) + σ2

t ε where ε ∼ N (ε,0, I).
Calculate score εθ(zt, t) = σt(1−α)� zt +α� ε′θ(zt, t).
Calculate cross entropy CE(qφ(z0|x)||pθ(z0)) ≈ 1

rll(t)
wll(t)

2 ||ε−εθ(zt, t)||22.
Calculate objective L(x,θ,φ,ψ) = − log pψ(x|z0) + log qφ(z0|x) + CE(qφ(z0|x)||pθ(z0)).
Update all parameters {θ,φ,ψ} by minimizing L(x,θ,φ,ψ).

36

Algorithm 2 Un/Reweighted training with separate IS of t

Input: data x, parameters {θ,φ,ψ}
Draw z0 ∼ qφ(z0|x) using encoder.

B Update SGM prior
Draw t ∼ run/re(t) with IS distribution for un/reweighted objective (Sec. B).
Calculate µt(z0) and σ2

t according to SDE.
Draw zt ∼ q(zt|z0) using zt = µt(z0) + σ2

t ε where ε ∼ N (ε,0, I).
Calculate score εθ(zt, t) = σt(1−α)� zt +α� ε′θ(zt, t).
Calculate objective L(θ) ≈ 1

run/re(t)

wun/re(t)

2 ||ε−εθ(zt, t)||22.
Update SGM prior parameters θ by minimizing L(θ).

B Update VAE Encoder and Decoder with new t sample
Draw t ∼ rll(t) with IS distribution for likelihood weighting (Sec. B).
Calculate µt(z0) and σ2

t according to SDE.
Draw zt ∼ q(zt|z0) using zt = µt(z0) + σ2

t ε where ε ∼ N (ε,0, I).
Calculate score εθ(zt, t) = σt(1−α)� zt +α� ε′θ(zt, t).
Calculate cross entropy CE(qφ(z0|x)||pθ(z0)) ≈ 1

rll(t)
wll(t)

2 ||ε−εθ(zt, t)||22.
Calculate objective L(x,φ,ψ) = − log pψ(x|z0) + log qφ(z0|x) + CE(qφ(z0|x)||pθ(z0)).
Update VAE parameters {φ,ψ} by minimizing L(x,φ,ψ).

Algorithm 3 Un/Reweighted training with IS of t for the SGM objective

Input: data x, parameters {θ,φ,ψ}
Draw z0 ∼ qφ(z0|x) using encoder.
Draw t ∼ run/re(t) with IS distribution for un/reweighted objective (Sec. B).
Calculate µt(z0) and σ2

t according to SDE.
Draw zt ∼ q(zt|z0) using zt = µt(z0) + σ2

t ε where ε ∼ N (ε,0, I).
Calculate score εθ(zt, t) = σt(1−α)� zt +α� ε′θ(zt, t).
Compute LDSM := ||ε−εθ(zt, t)||22

B SGM prior loss
Calculate objective L(θ) ≈ 1

run/re(t)

wun/re(t)

2 LDSM .

B VAE Encoder and Decoder loss computed with the same t sample
Calculate cross entropy CE(qφ(z0|x)||pθ(z0)) ≈ 1

run/re(t)
wll(t)

2 LDSM .
Calculate objective L(x,φ,ψ) = − log pψ(x|z0) + log qφ(z0|x) + CE(qφ(z0|x)||pθ(z0)).

B Update all parameters
Update SGM prior parameters θ by minimizing L(θ).
Update VAE parameters {φ,ψ} by minimizing L(x,φ,ψ).

G.7 Computational Resources

In total, the research project consumed ≈ 350, 000 GPU hours, which translates to an electricity
consumption of about ≈ 50 MWh. We used an in-house GPU cluster of V100 NVIDIA GPUs.

H Additional Experiments

H.1 Additional Samples

In this section, we provide additional samples generated by our models for CIFAR-10 in Fig. 7, and
CelebA-256-HQ in Fig. 8.

37

Table 8: Experiment with a small VAE architecture on dynamically binarized MNIST.

Method NELBO ↓ (nats)

Small VAE [24] 84.08±0.10
Small VAE + inverse autoregressive flow [24] 80.80±0.07

Our small VAE 83.85
Our LSGM w/ small VAE 79.23

Table 9: Number of function evaluations (NFE) of ODE solver during proba-
bility flow-based latent SGM prior sampling and corresponding sampling time
for our main CIFAR-10 models. Sampling was done in batches of size 16 using
a single Titan V GPU. Results are averaged over 20 sampling runs. See Tab. 2
in main text for generative performance metrics.

Method NFE ↓ Sampling Time ↓
LSGM (FID) 138 11.07 sec.
LSGM (NLL) 120 9.58 sec.
LSGM (balanced) 128 10.26 sec.

H.2 MNIST: Small VAE Experiment

Here, we examine our LSGM on a small VAE architecture. We specifically follow [24] and build
a small VAE in the NVAE codebase. In particular, the model does not have hierarchical latent
variables, but only a single latent variable group with a total of 64 latent variables. Encoder and
decoder consist of small ResNets with 6 residual cells in total (every two cells there is a down- or
up-sampling operation, so we have 3 blocks with 2 residual cells per block). The experiments are
done on dynamically binarized MNIST. As we can see in Table 8, our implementation of the VAE
obtains a similar test NELBO as [24]. However, our LSGM improves the NELBO by almost 4.6 nats.
This simple experiment shows that we can even obtain good generative performance with our LSGM
using small VAE architectures.

H.3 CIFAR-10: Neural Network Evaluations during Sampling

In Tab. 9, we report the number of neural network evaluations performed by the ODE solver during
sampling from our CIFAR-10 models. ODE solver error tolerance is 10−5 and time integration
cutoff is 10−6. CIFAR-10 is a highly diverse and more multimodal dataset, compared to CelebA-HQ-
256. Because of that, the latent SGM prior that is learnt is more complex, requiring more function
evaluations.

H.4 CIFAR-10: Sub-VPSDE vs. VPSDE

In App. B.5 we discussed how variance reduction techniques derived based on the VPSDE can also
help reducing the variance of the sample-based estimate of the training objective when using the
Sub-VPSDE in the latent space SGM. Here, we perform a quantitative comparison between the
VPSDE and the Sub-VPSDE, following the same experimental setup and using the same models as
for the ablation study on SDEs, objective weighting mechanisms, and variance reduction (experiment
details in App. G.5.1). The results are reported in Tab. 10. We find that the VPSDE generally
performs slightly better in FID, while we observed little difference in NELBO in these experiments.
Importantly, the Sub-VPSDE also did not outperform our novel geometric VPSDE in NELBO. We
also see that the combination of Sub-VPSDE with wre-weighting performs poorly. Consequently, we
did not explore the Sub-VPSDE further in our main experiments.

H.5 CelebA-HQ-256: Different ODE Solver Error Tolerances

In Fig. 9, we visualize CelebA-HQ-256 samples from our LSGM model for varying ODE solver error
tolerances.

38

Table 10: Comparing the VPSDE and Sub-VPSDE in LSGM. For detailed explanations
of abbreviations in the table, see Tab. 6 in main paper. Note that importance sampling
distributions are generally based on derivations with the VPSDE, even when using the
Sub-VPSDE, as discussed in App. B.5.

SGM-obj.-weighting wll wun wre

t-sampling (SGM-obj.) rll(t) run(t) rre(t)

t-sampling (q-obj.) rew. rll(t) rll(t)

VPSDE FID↓ 8.00 5.39 6.19
NELBO↓ 2.97 2.98 2.99

Sub-VPSDE FID↓ 8.46 5.73 19.10
NELBO↓ 2.97 2.97 3.04

Figure 7: Additional uncurated samples generated by LSGM on the CIFAR-10 dataset (best FID
model). Sampling in the latent space is done using the probability flow ODE.

39

Figure 8: Additional uncurated samples generated by LSGM on the CelebA-HQ-256 dataset. Sam-
pling in the latent space is done using the probability flow ODE.

40

H.6 CelebA-HQ-256: Ancestral Sampling

For our experiments in this paper, we use the probability flow ODE to sample from the model.
However, on CelebA-HQ-256, we observe that ancestral sampling [2, 1, 27] from the prior instead
of solving the probability flow ODE often generates much higher quality samples. However, the
FID score is slightly worse for this approach. In Fig. 10, Fig. 11, and Fig. 12, we visualize samples
generated with different numbers of steps in ancestral sampling.

H.7 CelebA-HQ-256: Sampling from VAE Backbone vs. LSGM

For the quantitative results on the CelebA-HQ-256 dataset in the main text, we use an LSGM with
spatial dimension of 32×32 for the latent variables in the SGM prior. However, for the qualitative
results we used an LSGM with the prior spatial dimension of 64×64. The 32×32 dimensional model
achieves a better FID score compared to the 64×64 dimensional model (FID 7.22 vs. 8.53) and
sampling from it is much faster (2.7 sec. vs. 39.9 sec.). However, the visual quality of the samples
is slightly worse. In this section, we visualize samples generated by the 32×32 dimensional model
as well as the VAE backbone for this model. In this experiment, the VAE backbone is fully trained.
Samples from our VAE backbone are visualized in Fig. 13 and for our 32×32 dimensional LSGM in
Fig. 14.

H.8 Evolution Samples on the ODE and SDE Reverse Generative Process

In Fig. 15, we visualize the evolution of the latent variables under both the reverse generative SDE and
also the probability flow ODE. We are decoding the intermediate latent samples along the reverse-time
generative process via the decoder to pixel space.

41

(a) ODE solver error tolerance 10−2

(b) ODE solver error tolerance 10−3

(c) ODE solver error tolerance 10−4

(d) ODE solver error tolerance 10−5

Figure 9: The effect of ODE solver error tolerance on the quality of samples. In contrast to the original SGM [2]
where high error tolerance results in pixelated images (see Fig. 3 in [2]), in our case high error tolerances create
low-frequency artifacts. Reducing the error tolerance improves subtle details slightly.

42

Figure 10: Uncurated samples generated by LSGM on the CelebA-HQ-256 dataset using 200-step
ancestral sampling for the prior.

43

Figure 11: Uncurated samples generated by LSGM on the CelebA-HQ-256 dataset using 1000-step
ancestral sampling for the prior.

44

Figure 12: Additional uncurated samples generated by LSGM on the CelebA-HQ-256 dataset using
1000-step ancestral sampling.

45

Figure 13: Uncurated samples generated by our VAE backbone without changing the temperature of
the prior. The poor quality of the samples from the VAE backbone is partially due to the large spatial
dimensions of the latent space in which long-range correlations are not encoded well.

Figure 14: Uncurated samples generated by LSGM with the SGM prior applied to the latent variables
of 32×32 spatial dimensions, on the CelebA-HQ-256 dataset. Sampling in the latent space is done
using the probability flow ODE.

46

(a) Evolution of latent variables under the SDE

(b) Evolution of latent variables under the SDE

(c) Evolution of latent variables under the ODE

(d) Evolution of latent variables under the ODE

Figure 15: We visualize the evolution of the latent variables under both the reverse gener-
ative SDE (a-b) and also the probability flow ODE (c-d). Specifically, we feed latent vari-
ables from different stages along the generative denoising diffusion process to the decoder to
map them back to image space. The 13 different images in each row correspond to the times
t = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 10−5] along the reverse denoising diffu-
sion process. The evolution of the images is noticeably different from diffusion models that are run
directly in pixel space (see, for example, Fig. 1 in [2]).

47

