
Federated Reconstruction:
Partially Local Federated Learning

Karan Singhal
Google Research

karansinghal@google.com

Hakim Sidahmed
Google Research

hsidahmed@google.com

Zachary Garrett
Google Research

zachgarrett@google.com

Shanshan Wu
Google Research

shanshanw@google.com

Keith Rush
Google Research

krush@google.com

Sushant Prakash
Google Research
sush@google.com

Abstract

Personalization methods in federated learning aim to balance the benefits of feder-
ated and local training for data availability, communication cost, and robustness
to client heterogeneity. Approaches that require clients to communicate all model
parameters can be undesirable due to privacy and communication constraints. Other
approaches require always-available or stateful clients, impractical in large-scale
cross-device settings. We introduce Federated Reconstruction, the first model-
agnostic framework for partially local federated learning suitable for training and
inference at scale. We motivate the framework via a connection to model-agnostic
meta learning, empirically demonstrate its performance over existing approaches
for collaborative filtering and next word prediction, and release an open-source
library for evaluating approaches in this setting. We also describe the successful
deployment of this approach at scale for federated collaborative filtering in a mobile
keyboard application.

1 Introduction

Federated learning is a machine learning setting in which distributed clients solve a learning objective
on sensitive data via communication with a coordinating server [44]. Typically, clients collaborate to
train a single global model under an objective that combines heterogeneous local client objectives.
For example, clients may collaborate to train a next word prediction model for a mobile keyboard
application without sharing sensitive typing data with other clients or a centralized server [28].
This paradigm has been scaled to production and deployed in cross-device settings [3, 28, 56] and
cross-silo settings [11, 13].

However, training a fully global federated model may not always be ideal due to heterogeneity in
clients’ data distributions. Yu et al. [58] show that global models can perform worse than purely local
(non-federated) models for many clients (e.g., those with many training examples). Moreover, in
some settings privacy constraints completely prohibit fully global federated training. For instance, for
models with user-specific embeddings, such as matrix factorization models for collaborative filtering
[37], naively training a global federated model involves sending updates to user embeddings on the
server, directly revealing potentially sensitive individual preferences [21, 47].

To address this, we explore partially local federated learning. In this setting, models are partitioned
into global g and local parameters l such that local parameters never leave client devices. This enables
training on sensitive user-specific parameters as in the collaborative filtering setting, and we show it
can also improve robustness to client data heterogeneity and communication cost for other settings,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Schematic of Federated Reconstruction. Model variables are partitioned into global and
local variables. For every round t, each participating client i is sent the current global variables, uses
them to reconstruct its own local variables, and then updates its copy of the global variables. The
server aggregates updates to only the global variables across clients.

since we are effectively interpolating between local and federated training. Previous works have
looked at similar settings [4, 41]. Importantly, these approaches cannot realistically be applied at
scale in cross-device settings because they assume clients are stateful or always-available: in practice,
clients are sampled from an enormous population with unreliable availability, so approaches that rely
on repeated sampling of the same stateful clients are impractical (Kairouz et al. [34] [Table 1]). Other
work has demonstrated that stateful federated algorithms in partial participation regimes can perform
worse than stateless algorithms due to the state becoming "stale" [48]. Previous methods also do not
enable inference on new clients unseen during training, preventing real-world deployment.

These limitations motivate a new method for partially local federated learning, balancing the benefits
of federated aggregation and local training. This approach should be:

1. Model-agnostic: works with any model.
2. Scalable: compatible with large-scale cross-device training with partial participation.
3. Practical for inference: new clients can perform inference.
4. Fast: clients can quickly adapt local parameters to their personal data.

In this work, we propose combining federated training of global parameters with reconstruction of
local parameters (see Figure 1). We show that our method relaxes the statefulness requirement of
previous work and enables fast personalization for unseen clients without additional communication,
even for models without user-specific embeddings.

Our contributions: We make the following key contributions:

• Introduce a model-agnostic framework for training partially local and partially global models,
satisfying the above criteria. We propose a practical algorithm instantiating this framework
(FEDRECON).

• Justify the algorithm via a connection to model-agnostic meta learning (see Section 4.2),
showing that FEDRECON naturally leads to fast reconstruction at test time (see Table 1).

• Demonstrate FEDRECON’s empirical performance over existing approaches for applications in
collaborative filtering and next word prediction, showing that our method outperforms standard
centralized and federated training in performance on unseen clients (see Table 1), enables
fast adaptation to clients’ personal data (see Figure 3), and matches the performance of other
federated personalization techniques with less communication (see Figure 2).

• Release an open-source library for evaluating algorithms across tasks in this setting.1

• Describe the successful deployment of this approach at scale for collaborative filtering in a
real-world mobile keyboard application (see Section 7).

2 Related Work

Previous works have explored personalization of federated models via finetuning [52, 58], meta
learning / bi-level optimization [10, 16, 18, 33], and model interpolation [14, 27, 43]. Some works
aim to improve training convergence with heterogeneous client gradient updates [35, 39], while

1https://git.io/federated_reconstruction

2

https://git.io/federated_reconstruction

others address client resource heterogeneity [15, 49]. All of these approaches require communicating
all client parameters during training, which can be unreasonable due to privacy and communication
constraints for some models (discussed further in Section 3), which motivates methods that aggregate
only part of a model as in our work.

Arivazhagan et al. [4] and Liang et al. [41] aggregate part of a model, but these approaches do not
meet the criteria from Section 1. Similar to other works proposing local parameters [22, 31, 40],
both approaches require clients to maintain local models across rounds, which is problematic when
sampling clients from large populations (criterion 2). Arivazhagan et al. [4] assumes that all clients
are available for training at all times and do not propose a method for performing inference on new
clients (criterion 3). Liang et al. [41] requires new inference clients to be able to ensemble the outputs
of all other clients’ local models to evaluate on new data, which is unrealistic in practice due to
communication and privacy constraints (criterion 3). These constraints are crucial: with previous
methods most clients do not have a practical way to perform inference. Previous methods were also
proposed for specific model types (criterion 1): Arivazhagan et al. [4] explores personalization layers
after shared base layers and Liang et al. [41] learns personal representations of local data. Finally,
as we discuss in Section 4.2, our method optimizes a meta learning objective for training global
parameters that lead to fast reconstruction (criterion 4).

Federated Collaborative Filtering: We evaluate our approach on collaborative filtering [37] in
Section 5.1.1. Prior work has explored federated matrix factorization: Ammad-Ud-Din et al. [2]
avoids sending the user matrix to the server by storing it locally, aggregating only the item matrix
globally. Chai et al. [9] applies homomorphic encryption to aggregation of the item matrix. Flanagan
et al. [20] studies federated collaborative filtering as a multi-view learning problem. Each approach
requires clients to maintain state, unlike our method. Ammad-Ud-Din et al. [2] and Chai et al. [9]
also do not address the problem of inference on unseen users.

Federated Meta Learning: Our approach is motivated by a connection to meta learning, described
in Section 4.2. Other federated learning works have also established connections to meta learning:
Jiang et al. [33] observed that training a global federated model that can be easily personalized
via finetuning can be studied in the model-agnostic meta learning (MAML) framework [19], and
FEDAVG is performing the distributed version of the REPTILE meta learning algorithm presented by
Nichol et al. [46]. Chen et al. [10], Fallah et al. [18], and Lin et al. [42] apply the MAML algorithm
and variants in federated settings. Khodak et al. [36] aims to improve upon these methods by learning
client similarities adaptively. These methods do not address the partially local federated learning
setting, where some parameters are not aggregated globally.

3 Partially Local Federated Learning

Typically, federated learning of a global model optimizes:
min
x2Rd

F (x) = Ei⇠P [fi(x)] (1)

where fi(x) = E⇠2Di [fi(x, ⇠)] is the local objective for client i, x is the d-dimensional model
parameter vector, P is the distribution of clients, and ⇠ is a data sample drawn from client i’s data Di.
In practical cross-device settings, fi(x) may be highly heterogeneous for different i, and the number
of available clients may be large and constantly changing due to partial availability. Only a relatively
small fraction of clients may be sampled for training.

To motivate partially local federated learning, we begin by considering models that can be partitioned
into user-specific parameters and non-user-specific parameters. An example is matrix factorization in
the collaborative filtering setting [30, 37]: in this scenario, a ratings matrix R 2 RU⇥I representing
user preferences is factorized into a user matrix P 2 RU⇥K and an items matrix Q 2 RI⇥K such
that R ⇡ PQ>, where U is the number of users and I is the number of items. For each user u, this
approach yields a K-dimensional user-specific embedding Pu.

To train this type of model in the federated setting, we cannot naively use the popular FEDAVG
algorithm [44] or other (personalized) algorithms that involving aggregation of all model parameters.
A simple application of global learning algorithms might require every client to be sent every other
client’s personal parameters, which is clearly unreasonable for both privacy and communication.
A more sophisticated approach might be to have each client communicate only their own personal
parameters with the server. In this case, the server still has access to individual user parameters,

3

Algorithm 1 Federated Reconstruction Training
Input: set of global parameters G, set of local parameters L, dataset split function S, reconstruction
algorithm R, client update algorithm U
Server executes:
g(0) (initialize G)
for each round t do
S(t) (randomly sample m clients)
for each client i 2 S(t) in parallel do
(�(t)

i , ni) ClientUpdate(i, g(t))
end for
n =

P
i2S(t) ni

g(t+1) g(t) + ⌘s
P

i2S(t)
ni
n �(t)

i
end for

ClientUpdate:
(Di,s,Di,q) S(Di)

l(t)i R(Di,s,L, g(t))
g(t)i U(Di,q, l

(t)
i , g(t))

�(t)
i g(t)i � g(t)

ni |Di,q|
return �(t)

i , ni to the server

which in this setting can be trivially used to recover sensitive user-item affinities, negating the privacy
benefit of not centralizing the data (again unreasonable).

Thus a practical federated learning algorithm for this setting should be partially local: it should
enable clients to train a subset of parameters entirely on-device. However, approaches that involve
stateful clients storing their local parameters across rounds are undesirable in large-scale cross-device
settings since clients are unlikely to be sampled repeatedly, causing state to be infrequently available
and become stale, degrading performance (Reddi et al. [48] [Sec. 5.1]). Additionally, since only a
fraction of clients participate in training, all other clients will be left without trained local parameters,
preventing them from performing inference using the model. In a large population setting with
hundreds of millions of clients as described in Section 7, this can mean 99%+ of clients do not have a
complete model, preventing practical deployment. Thus an algorithm for this setting ideally should
not depend on stateful clients and should provide a way to perform inference on unseen clients.

Though we have motivated partially local federated learning via a setting that contains privacy-
sensitive user-specific parameters, we will later show that this paradigm can also improve robustness
to heterogeneity in fi(x) and reduce communication cost, even for models without user-specific
parameters. In this case, the partition between local and global parameters is determined by the
use-case and communication limitations. As an example, in Section 5.1.2 we motivate a next word
prediction use-case, where having a partially local model can be useful for handling diverse client
inputs while reducing communication.

Achieving partially local federated learning in a practical cross-device setting with large, changing
client distribution P and stateless clients is one of the key contributions of our work.

4 Federated Reconstruction

We now introduce the Federated Reconstruction framework. One of the key insights of our approach
is that we can relax the requirement for clients to maintain local parameters across rounds by
reconstructing local parameters whenever needed, running a reconstruction algorithm R to recover
them. Once a client is finished participating in a round, it can discard its reconstructed local parameters.
An overview is presented in Figure 1.

Federated Reconstruction training is presented in Algorithm 1. Training proceeds as follows: for each
round t, the server sends the current global parameters g(t) to each selected client. Selected clients
split their local data Di into a support set Di,s and a query set Di,q. Each client uses its support set
Di,s and g(t) as inputs to reconstruction algorithm R to produce its local parameters l(t)i . Then each
client then uses its query set Di,q , its local parameters l(t)i , and the global parameters g(t) as inputs to
update algorithm U to produce updated global parameters g(t)i . Finally, the server aggregates updates
to global parameters across clients. We describe key steps in further detail below.

Dataset Split Step: Clients apply a dataset split function S to their datasets Di to produce a support
set Di,s used for reconstruction and a query set Di,q used for updating global parameters. Typically
these sets are disjoint to maximize the meta-generalization ability of the model (see Section 4.2), but

4

in Appendix D we show that this assumption may be relaxed if clients don’t have sufficient data to
partition.

Client Reconstruction Step: Reconstruction of local parameters is performed by algorithm R.
Though this algorithm can take other forms, in this work we instantiate R as performing kr local
gradient descent steps on initialized local parameters with the global parameters frozen, using the
support set Di,s. We show in Section 4.2 this naturally optimizes a well-motivated meta learning ob-
jective. Interestingly, this approach is related to gradient-based alternating minimization, a historically
successful method for training factored models [26, 32].

A potential concern with reconstruction is that this may lead to additional client computation cost
compared to storing local parameters on clients. However, since clients are unlikely to be reached
repeatedly by large-scale cross-device training, in practice this cost is similar to the cost of initializing
these local parameters and training them with stateful clients. Additionally, reconstruction provides a
natural way for new clients unseen during training to produce their own partially local models offline
(see Section 4.1)–without this step, the vast majority of clients would not be able to use the model.
Finally, in Section 4.2 we argue and in Section 5.2 we empirically demonstrate that with our approach
just one local gradient descent step can yield successful reconstruction because global parameters are
being trained for fast reconstruction of local parameters.

Client Update Step: Client updates of global parameters are performed by update algorithm U . In
this work we instantiate U as performing ku local gradient descent steps on the global parameters,
using the query set Di,q .

Server Update Step: We build on the generalized FEDAVG formulation proposed by Reddi et al.
[48], treating aggregated global parameter updates as an "antigradient" that can be input into different
server optimizers (SGD is shown in Algorithm 1). Note that the server update operates on a weighted
average of client updates as in McMahan et al. [44], weighted by ni = |Di,q|.
We refer to the instantiation of this framework outlined here as FEDRECON below. We address
frequently asked questions about FEDRECON and partially local federated learning in Appendix A.

4.1 Evaluation and Inference

To make predictions with global variables g learned using Algorithm 1, clients can naturally recon-
struct their local models just as they do during training, by using R, g, and Di,s to produce local
parameters l. Then g and l combined make up a fully trained partially local model, which can be
evaluated on Di,q . We refer to this evaluation approach as RECONEVAL below. Note that this can be
applied to clients unseen during training (most clients in large-scale settings), enabling inference for
these clients.2

Reconstruction for inference is performed offline, independently of any federated process, so clients
can perform reconstruction once and store local parameters for repeated use, optionally refreshing
them periodically if they have new local data.

4.2 Connection to Meta Learning

Our framework is naturally motivated via meta learning. Given that RECONEVAL involves clients do-
ing (gradient-based) reconstruction using global parameters, we ask: Can we train global parameters
conducive to fast reconstruction of local parameters?

We can easily formulate this question in the language of model-agnostic meta learning [19]. The
heterogeneous client distribution P corresponds to the heterogeneous distribution of tasks; each
round (episode) we sample a batch of clients in the hope of meta-generalizing to unseen clients.
Each client has a support dataset for reconstruction and a query dataset for global parameter updates.
Our meta-parameters are g and our task-specific parameters are li for client i. We want to find g
minimizing the objective:

Ei⇠P fi(g k li) = Ei⇠P fi(g kR(Di,s,L, g)] (2)

2In this work we focus on new clients that have some local data for reconstruction; our method can be easily
extended to learn a global default for the local parameters. We also show that skipping reconstruction can be
reasonable for some tasks in Section 5.2.

5

where g k li denotes the concatenation of g and li and fi(g k li) = E⇠2Di,q [fi(g k li, ⇠)].
In Appendix B we show that the instantiation of our framework where R performs kr � 1 steps of
gradient descent on initialized local parameters using Di,s and U performs ku = 1 step of gradient
descent using Di,q is already minimizing the first-order terms in this objective (i.e., this version of
FEDRECON is performing first-order meta learning). Intuitively, reconstruction corresponds to the
MAML “inner loop” and the global parameter update corresponds to the “outer loop”; we test the
same way we train (via reconstruction), a common pattern in meta learning.

Thus FEDRECON trains global parameters g for fast reconstruction of local parameters l, enabling
partially local federated learning without requiring clients to maintain state. In Section 5.2 we
observe that our method empirically produces g more conducive to fast, performant reconstruction on
unseen clients than standard centralized or federated training (e.g., see SERVER+RECONEVAL vs.
FEDRECON in Table 1). We see in Figure 3 that just one reconstruction step is sufficient to recover
the majority of performance.

5 Experimental Evaluation

5.1 Tasks and Methods

We next describe experiments validating FEDRECON on matrix factorization and next word prediction.
We aim to determine whether reconstruction can enable practical partially local federated learning
with fast personalization for new clients, including in settings without user-specific embeddings.

5.1.1 Matrix Factorization

We evaluate on federated matrix factorization using the popular MovieLens 1M collaborative filtering
dataset [29]. We perform two kinds of evaluation:

1. STANDARDEVAL on seen users, those users who participated in at least one round of
federated training. We split each user’s ratings into 80% train, 10% validation, and 10% test
by timestamp. We train on all users’ train ratings, and report results on users test ratings.

2. RECONEVAL on unseen users, those users who did not participate at all during federated
training. We split the users randomly into 80% train, 10% validation, and 10% test; we train
with the train users and report results on test users.

The model learns P and Q such that R ⇡ PQ> as discussed in Section 3, with embedding dimen-
sionality K = 50. We apply FEDRECON with local user embeddings Pu and global item matrix Q.
We report root-mean-square-error (RMSE) and rating prediction accuracy. We compare centralized
training, FEDAVG, and FEDRECON in Table 1. See also Appendix C.1 for more details on the dataset,
model, and hyperparameter choices.

5.1.2 Next Word Prediction

We also aim to determine whether Federated Reconstruction can be successfully applied in settings
without user-specific embeddings to improve robustness to client heterogeneity and communication
cost, since our approach is agnostic to which parameters are chosen as local/global. We apply
FEDRECON to next word prediction because the task provides a natural motivation for personalization:
different clients often have highly heterogeneous data, e.g., if they use different slang, but language
models typically have a fixed vocabulary. We propose improving the ability of a language model to
capture diverse inputs using local out-of-vocabulary (OOV) embeddings. OOV embeddings are a
common application of the hashing trick [54] in deep learning; combining them with FEDRECON
enables language models to effectively allow for personal input vocabularies for different clients.
For example, if client i frequently uses OOV token ti and client j uses OOV token tj , each client’s
corresponding local OOV embedding can learn to reflect this (even if the OOV embeddings collide).
So adding local OOV embeddings with the core global vocabulary fixed can lead to improved
personalization without more communication per round; we will also show that we can reduce the
size of the core model (reducing communication) and get further benefits.

We perform next word prediction with the federated Stack Overflow dataset introduced in TensorFlow
[51]. We use an LSTM model and process data similarly to Reddi et al. [48], comparing to their best

6

Table 1: Movielens matrix factorization root-mean-square-error (lower is better) and rating prediction
accuracy (higher is better). STANDARDEVAL is on seen users, RECONEVAL is on held-out users.
Results within 2% of best for each metric are in bold.

RMSE # ACCURACY "
CENTRALIZED + STANDARD EVAL .923 43.2
CENTRALIZED + RECONEVAL 1.36 40.8
FEDAVG + STANDARD EVAL .939 41.5
FEDAVG + RECONEVAL .934 40.0
FEDRECON (OURS) .907 43.3

Table 2: Stack Overflow next word prediction accuracy and communication per round, per client.
FEDYOGI and OOV/FULL FINETUNING require communication of all model parameters, FE-
DRECON does not (see Figure 2). Results within 2% of best for each vocabulary size are in bold.

VOCAB. SIZE 1K 5K 10K COMMUNICATION

FEDYOGI 24.3 26.3 26.7 2|l|+ 2|g|
FEDRECON (1 OOV) 24.1 26.2 26.4 2|g|
FEDRECON (500 OOV) 29.6 28.1 27.7 2|g|
OOV FINETUNING (500 OOV) 30.0 28.1 27.9 2|l|+ 2|g|
FULL FINETUNING (500 OOV) 30.8 29.2 28.8 2|l|+ 2|g|
FEDRECON+FINETUNE (500 OOV) 30.7 28.9 28.6 2|g|

FEDYOGI result. To demonstrate that reconstruction can be used to reduce model size, we describe
experiments with vocabulary sizes [1000, 5000, 10,000]. See Appendix C.2 for details on the dataset,
model, and hyperparameter choices.

5.2 Results and Discussion

In Tables 1 and 2 we present results for matrix factorization and next word prediction for FEDRECON
and baselines. We call out several key comparisons below; more results can be found in Appendix D.

For the MovieLens task FEDRECON is able to match the performance of CENTRALIZED + STANDARD
EVAL despite performing a more difficult task: as described in Section 5.1.1, FEDRECON is using
RECONEVAL to evaluate on held-out users, reconstructing user embeddings for them and then
evaluating. As is typical for server-trained matrix factorization models, CENTRALIZED + STANDARD
EVAL is only being evaluated on held-out ratings for seen users. Note that we would not be able to
evaluate on unseen users since they do not have trained user embeddings (randomly initializing them
produces garbage results). If we reconstruct user embeddings for unseen users and then evaluate as
in CENTRALIZED + RECONEVAL (we argue this is a fairer comparison with FEDRECON), we see
that performance is significantly worse than FEDRECON and server-evaluation on seen users. One
interesting finding was that the results of this seemed to vary widely across different users, with some
users reconstructing embeddings no better than random initialization, while most others reconstructed
better embeddings.3 We see a similar result with FEDAVG for the MovieLens task, where FEDAVG
with standard evaluation on seen users4 performs a bit worse than CENTRALIZED + STANDARD EVAL,
and performance for RECONEVAL on unseen users is significantly worse than FEDRECON. This
indicates that FEDRECON is doing a better job of training global parameters so they can reconstruct
local parameters than other approaches, as motivated in Section 4.2. Moreover, FEDRECON is doing
this despite not having direct access to the data or the user-specific parameters–enabling this approach
in settings where centralized training or FEDAVG is impossible.

3For this experiment, we repeat 500 times: sample 50 clients each time and perform RECONEVAL, reporting
average metrics. Across runs, we observe large standard deviations of 1.7% accuracy (absolute) and 0.53 RMSE.

4Note that for this task, FEDAVG is equivalent in result to the stateful FEDPER approach in Arivazhagan et al.
[4], since each client only updates its own user embedding. The user embeddings are stored on the server here,
but this does not affect the result. Performance reduction may be caused by user embeddings getting "stale"
across rounds which may occur when stateful algorithms are applied in cross-device FL, see Appendix A.

7

Figure 2: Accuracy as a function of total parameters communicated across all clients for FEDRECON
and baselines for Stack Overflow next word prediction.

Figure 3: Accuracy compared to base FEDRECON when varying the number of reconstruction steps
for local parameters (left plot) and client update steps for global parameters (right plot).

In the first section of the Stack Overflow results in Table 2, we compare FEDYOGI (an adaptive variant
of FEDAVG introduced by Reddi et al. [48]) with FEDRECON, showing that enabling FEDRECON
with 500 local OOV embeddings significantly boosts accuracy for every vocabulary size. Interestingly,
we observe that accuracy actually improves for smaller vocabulary sizes for FEDRECON (500 OOV),
whereas the reverse holds for FEDYOGI and FEDRECON (1 OOV). We posit that this is because
decreasing the vocabulary size effectively increases the amount of "training data" available for the
local part of the model, since OOV embeddings are only used (and trained) when tokens are out-of-
vocabulary; this is useful only when the local part of the model has sufficient capacity via the number
of OOV embeddings. This hypothesis is consistent with vocabulary coverage: a 10K vocabulary
covers 86.9% of the tokens in the dataset, a 5K vocabulary covers 80.1%, and a 1K vocabulary covers
49.2%; we see that difference in results for FEDRECON (500 OOV) is greater between 1K and 5K
than between 5K and 10K. We caution that reducing vocabulary size may be undesirable in some
cases: reducing the size of the vocabulary also restricts the output tokens of the model.

Comparing with Finetuning: In Table 2 we compare FEDRECON with FINETUNING [52, 58] to
study whether reconstruction can provide similar benefits as global personalization methods. In
our implementation we train a fully global model using FEDYOGI, perform local gradient steps to
finetune part of the model using the support set, and then evaluate on the query set (same sets as
used for FEDRECON). For OOV FINETUNING, the OOV parameters only are finetuned using the
support set (comparable to FEDRECON), and for FULL FINETUNING all parameters are finetuned.
Comparing FEDRECON (500 OOV) and OOV FINETUNING, we see that reconstructing local
embeddings performs similarly to finetuning pre-trained OOV embeddings, despite FEDRECON not
communicating the local parameters l to the server. FULL FINETUNING from Table 2 achieves better
accuracy since all parameters are finetuned. To compare this fairly with reconstruction, we perform
FEDRECON+FINETUNE, where the support set is used first to reconstruct local parameters and then
to finetune global parameters before evaluation. We also see that we can get comparable results,
indicating that reconstruction can enable personalization on (potentially privacy-sensitive) local
parameters while reducing communication. See Figure 2 for a comparison of different approaches by
the total number of parameters communicated–we see an advantage for FEDRECON, particularly for
lower total communication.

Varying Reconstruction Steps: In Section 4.2 we described a connection between our framework
and MAML [19], which has been a successful paradigm for fast adaptation to tasks with few steps.
In Figure 3 we perform FEDRECON for varying numbers of reconstruction steps kr 2 [0, 1, 2, 5, 10]
and plot the accuracy as a fraction of accuracy across tasks from Tables 1 and 2. We see that

8

for zero reconstruction steps (an ablation skipping reconstruction), MovieLens accuracy is 0.0, as
expected (all user embeddings are randomly initialized). Relative accuracy for Stack Overflow NWP
settings remains above 90%, suggesting that for this task clients can still perform inference with a
FEDRECON-trained model even without any data to reconstruct. Importantly, just one reconstruction
step is required to recover the majority of remaining performance across both tasks, indicating that
FEDRECON learns global parameters conducive to fast reconstruction.

Varying Client Update Steps: In Section 4.2 we showed that gradient-based FEDRECON, involving
kr � 1 reconstruction steps and ku = 1 client update steps, is minimizing a first-order meta learning
objective for training global parameters that yield good reconstructions. In Figure 3 we perform
FEDRECON with ku 2 [1, 2, 5, 10] and compute relative accuracy as a fraction of accuracy across
tasks from Tables 1 and 2. For each experiment we run for a fixed number of rounds. We see that 1
step recovers almost all of the accuracy and adding more steps gradually increases accuracy further.
Interestingly, we observe that for ku = 1 training proceeds significantly slower than for other values
such that performance is still slightly increasing after the fixed number of rounds. This is analogous
to the difference between FEDAVG and FEDSGD [44]. While FEDSGD is optimizing the original
learning objective, FEDAVG often achieves similar performance in significantly fewer rounds by
adding multiple gradient steps on aggregated parameters.

We present further baselines and ablations in Appendix D.

6 Open-Source Library

We are releasing a code framework for expressing and evaluating practical partially local federated
models built on the popular TensorFlow Federated library [50]. The code is released under Apache
License 2.0. In addition to allowing for easy reproduction of our experiments, the framework provides
a flexible, well-documented interface for researchers and modelers to run simulations in this setting
with models and tasks of their choice. Users can take any existing Keras model and plug it into
this framework with just a few lines of code. We provide libraries for training and evaluation for
MovieLens matrix factorization and Stack Overflow next word prediction, which can be easily
extended for new tasks. We hope that the release of this framework spurs further research and lowers
the barrier to more practical applications.

7 Deployment in a Mobile Keyboard Application

A key differentiator of our method is that it scales to practical training and inference in cross-device
settings with large populations. To validate this, we deployed FEDRECON to a mobile keyboard
application with hundreds of millions of federated learning clients. We used a system similar to
Bonawitz et al. [7] to deploy FEDRECON for training. Note that the system does not support stateful
clients given the issues with large-scale stateful training described in Section 4, so a stateless approach
was necessary for deployment.

Users of the mobile keyboard application often use expressions (GIFs, stickers) to communicate with
others in e.g., chat applications. Different users are highly heterogeneous in the style of expressions
they use, which makes the problem a natural fit for collaborative filtering to predict new expressions a
user might want to share. We trained matrix factorization models as described in Section 5.1.1, where
the number of items ranged from hundreds to tens of thousands depending on the type of expression.

Training in production brought challenges due to data sparsity. Depending on the task, some clients
had very few examples, if e.g., they didn’t commonly share stickers via the keyboard application. To
ensure clients with just one example weren’t just adding noise to the training process by participating,
we oversampled clients and filtered out the contributions of clients without at least some number of
examples. We reused examples between the support and query sets as described in Appendix D to
ensure all examples were used for both reconstruction and global updates.

Another practical challenge we faced was orthogonal to our method and commonly faced in real-
world federated learning applications: heterogeneity in client resources and availability meant that
some participating clients would drop out before sending updates to the server. We found that the
simple strategy of oversampling clients and neglecting updates from dropped-out clients appeared to

9

perform well, but we believe studying the fairness implications of this is a valuable area for future
work.

After successful training, the resulting model was deployed for inference in predicting potential
new expressions a user might share, which led to an increase of 29.3% in click-through-rate for
expression recommendations. We hope that this successful deployment of FEDRECON demonstrates
the practicality of our approach and leads the way for further real-world applications.

8 Conclusion

We introduced Federated Reconstruction, a model-agnostic framework for fast partially local federated
learning suitable for training and inference at scale. We justified FEDRECON via a connection to
meta learning and empirically validated the algorithm for collaborative filtering and next message
prediction, showing that it can improve performance on unseen clients and enable fast personalization
with less communication. We also released an open-source library for partially local federated
learning and described a successful production deployment. Future work may explore the optimal
balance of local and global parameters and the application of differential privacy to global parameters
(see Appendix E).

Acknowledgments and Disclosure of Funding

We thank Brendan McMahan, Lin Ning, Zachary Charles, Warren Morningstar, Daniel Ramage,
Jakub Konečný, Blaise Agüera y Arcas, and Jay Yagnik from Google Research for their helpful
comments and discussions. We also thank Wei Li, Matt Newton, and Yang Lu for their collaboration
towards deployment.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. 2016. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 308–318.

[2] Muhammad Ammad-Ud-Din, Elena Ivannikova, Suleiman A Khan, Were Oyomno, Qiang Fu,
Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated Collaborative Filtering for Privacy-
Preserving Personalized Recommendation System. arXiv preprint arXiv:1901.09888 (2019).

[3] Apple. 2019. Designing for Privacy (video and slide deck). Apple WWDC, https:
//developer.apple.com/videos/play/wwdc2019/708.

[4] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.
2019. Federated learning with personalization layers. arXiv preprint arXiv:1912.00818 (2019).

[5] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. 2019. Private Stochastic
Convex Optimization with Optimal Rates. CoRR abs/1908.09970 (2019). arXiv:1908.09970
http://arxiv.org/abs/1908.09970

[6] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. 2014. Private Empirical Risk Min-
imization, Revisited. CoRR abs/1405.7085 (2014). arXiv:1405.7085 http://arxiv.org/
abs/1405.7085

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. 2019.
Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019).

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practical secure aggregation
for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 1175–1191.

[9] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2020. Secure federated matrix factorization.
IEEE Intelligent Systems (2020).

10

https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708
http://arxiv.org/abs/1908.09970
http://arxiv.org/abs/1405.7085
http://arxiv.org/abs/1405.7085

[10] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2018. Federated meta-
learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876
(2018).

[11] NVIDIA Clara. 2019. The Clara Training Framework Authors. https://developer.
nvidia.com/clara

[12] Creative Commons. 2002. Attribution-ShareAlike 3.0 Unported. https://
creativecommons.org/licenses/by-sa/3.0/

[13] Walter de Brouwer. 2019. The Federated Future is ready for shipping. https://doc.ai/
blog/federated-future-ready-shipping/.

[14] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. 2020. Adaptive Personalized
Federated Learning. arXiv preprint arXiv:2003.13461 (2020).

[15] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and communication
efficient federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264 (2020).

[16] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. 2020. Personalized federated learning
with Moreau envelopes. arXiv preprint arXiv:2006.08848 (2020).

[17] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014), 211–407.

[18] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized federated learning:
A meta-learning approach. arXiv preprint arXiv:2002.07948 (2020).

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast
adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017).

[20] Adrian Flanagan, Were Oyomno, Alexander Grigorievskiy, Kuan Eeik Tan, Suleiman A Khan,
and Muhammad Ammad-Ud-Din. 2020. Federated Multi-view Matrix Factorization for Person-
alized Recommendations. arXiv preprint arXiv:2004.04256 (2020).

[21] Dashan Gao, Ben Tan, Ce Ju, Vincent W Zheng, and Qiang Yang. 2020. Privacy Threats Against
Federated Matrix Factorization. arXiv preprint arXiv:2007.01587 (2020).

[22] Suyu Ge, Fangzhao Wu, Chuhan Wu, Tao Qi, Yongfeng Huang, and Xing Xie. 2020. Fedner:
Privacy-preserving medical named entity recognition with federated learning. arXiv preprint
arXiv:2003.09288 (2020).

[23] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020. In-
verting Gradients–How easy is it to break privacy in federated learning? arXiv preprint
arXiv:2003.14053 (2020).

[24] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning:
A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[25] GroupLens. 2015. MovieLens 1M License. https://files.grouplens.org/datasets/
movielens/ml-1m-README.txt

[26] Asela Gunawardana, William Byrne, and Michael I Jordan. 2005. Convergence Theorems for
Generalized Alternating Minimization Procedures. Journal of machine learning research 6, 12
(2005).

[27] Filip Hanzely and Peter Richtárik. 2020. Federated learning of a mixture of global and local
models. arXiv preprint arXiv:2002.05516 (2020).

[28] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. 2018. Federated learning for
mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).

[29] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015), 1–19.

11

https://developer.nvidia.com/clara
https://developer.nvidia.com/clara
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://doc.ai/blog/federated-future-ready-shipping/
https://doc.ai/blog/federated-future-ready-shipping/
https://files.grouplens.org/datasets/movielens/ml-1m-README.txt
https://files.grouplens.org/datasets/movielens/ml-1m-README.txt

[30] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining. Ieee, 263–272.

[31] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong
Zhang. 2021. Personalized cross-silo federated learning on non-iid data. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 7865–7873.

[32] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. 2013. Low-rank matrix completion
using alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. 665–674.

[33] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. 2019. Improving federated
learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488
(2019).

[34] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977
(2019).

[35] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled averaging for federated learning.
In International Conference on Machine Learning. PMLR, 5132–5143.

[36] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. 2019. Adaptive gradient-
based meta-learning methods. In Advances in Neural Information Processing Systems. 5917–
5928.

[37] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for
recommender systems. Computer 42, 8 (2009), 30–37.

[38] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine 37, 3 (2020),
50–60.

[39] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
2018. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127
(2018).

[40] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021. Fedbn: Federated
learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623
(2021).

[41] Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency.
2020. Think locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523 (2020).

[42] Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Dongxiao Yu, Jun Ma, Maarten de Rijke,
and Xiuzhen Cheng. 2020. Meta Matrix Factorization for Federated Rating Predictions. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 981–990.

[43] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020. Three approaches
for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619
(2020).

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
2017. Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics. PMLR, 1273–1282.

[45] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differen-
tially private recurrent language models. arXiv preprint arXiv:1710.06963 (2017).

12

[46] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018).

[47] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft, and Dan Boneh.
2013. Privacy-preserving matrix factorization. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 801–812.

[48] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. 2020. Adaptive Federated Optimization. arXiv
preprint arXiv:2003.00295 (2020).

[49] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. 2017. Federated
multi-task learning. arXiv preprint arXiv:1705.10467 (2017).

[50] TensorFlow. 2019. TensorFlow Federated. https://www.tensorflow.org/federated

[51] TensorFlow. 2019. TensorFlow Federated Stack Overflow Dataset. https:
//www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/
stackoverflow/load_data

[52] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and
Daniel Ramage. 2019. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252 (2019).

[53] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. 2020. A framework for evaluating gradient leakage attacks in federated learning.
arXiv preprint arXiv:2004.10397 (2020).

[54] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. 2009.
Feature hashing for large scale multitask learning. In Proceedings of the 26th annual interna-
tional conference on machine learning. 1113–1120.

[55] Xi Wu, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey F. Naughton. 2016. Differ-
entially Private Stochastic Gradient Descent for in-RDBMS Analytics. CoRR abs/1606.04722
(2016). arXiv:1606.04722 http://arxiv.org/abs/1606.04722

[56] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. 2018. Applied federated learning: Improving google keyboard
query suggestions. arXiv preprint arXiv:1812.02903 (2018).

[57] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov.
2021. See through Gradients: Image Batch Recovery via GradInversion. arXiv preprint
arXiv:2104.07586 (2021).

[58] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2020. Salvaging federated learning by
local adaptation. arXiv preprint arXiv:2002.04758 (2020).

[59] Ligeng Zhu and Song Han. 2020. Deep leakage from gradients. In Federated Learning. Springer,
17–31.

13

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
http://arxiv.org/abs/1606.04722

	Introduction
	Related Work
	Partially Local Federated Learning
	Federated Reconstruction
	Evaluation and Inference
	Connection to Meta Learning

	Experimental Evaluation
	Tasks and Methods
	Matrix Factorization
	Next Word Prediction

	Results and Discussion

	Open-Source Library
	Deployment in a Mobile Keyboard Application
	Conclusion
	Frequently Asked Questions
	Proof of Connection to Meta Learning
	Datasets, Models, and Hyperparameters
	Matrix Factorization
	Next Word Prediction

	Additional Empirical Results
	Privacy Implications and Limitations
	Application to Differential Privacy

