What Makes Multi-modal Learning Better than Single (Provably)

Yu Huang^{1,*}, Chenzhuang Du^{1,*}, Zihui Xue², Xuanyao Chen^{3,4},

Hang Zhao^{1,4}, Longbo Huang^{1,†}

¹ Institute for Interdisciplinary Information Sciences, Tsinghua University
² The University of Texas at Austin
³ Fudan University
⁴ Shanghai Qi Zhi Institute

Appendices

A Proof of Main Results

A.1 Proof of Theorem 1

Proof. Let $h'_{\mathcal{M}}$ denote the minimizer of the population risk over \mathcal{D} with the representation $\hat{g}_{\mathcal{M}}$, then we can decompose the difference between $r\left(\hat{h}_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)-r\left(\hat{h}_{\mathcal{N}}\circ\hat{g}_{\mathcal{N}}\right)$ into two parts:

$$r\left(\hat{h}_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right) - r\left(\hat{h}_{\mathcal{N}}\circ\hat{g}_{\mathcal{N}}\right) \tag{1}$$

$$=\underbrace{r\left(\hat{h}_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)-r\left(h'_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)}_{J_{1}}+\underbrace{r\left(h'_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)-r\left(\hat{h}_{\mathcal{N}}\circ\hat{g}_{\mathcal{N}}\right)}_{J_{2}}$$
(2)

 J_1 can further be decomposed into:

$$J_{1} = \underbrace{r\left(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}\right) - \hat{r}\left(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}\right)}_{J_{11}} + \underbrace{\hat{r}\left(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}\right) - \hat{r}\left(h'_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}\right)}_{J_{12}}$$
(3)

$$+\underbrace{\hat{r}\left(h'_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)-r\left(h'_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}}\right)}_{I_{12}}\tag{4}$$

(5)

Clearly, $J_{12} \leq 0$ since $\hat{h}_{\mathcal{M}}$ is the minimizer of the empirical risk over \mathcal{D} with the representation $\hat{g}_{\mathcal{M}}$. And $J_{11} + J_{13} \leq 2 \sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} |r(h \circ g_{\mathcal{M}}) - \hat{r}(h \circ g_{\mathcal{M}})|$.

$$\sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} |\hat{r}(h \circ g_{\mathcal{M}}) - r(h \circ g_{\mathcal{M}})|$$

$$= \sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} \left| \frac{1}{m} \sum_{i=1}^{m} \ell(h \circ g_{\mathcal{M}}(\mathbf{x}_{i}), y_{i}) - \mathbb{E}_{(\mathbf{x}', y') \sim \mathcal{D}} \left[\ell(h \circ g_{\mathcal{M}}(\mathbf{x}'), y') \right] \right|$$

^{*}equal contribution

[†]Correspondence to: longbohuang@tsinghua.edu.cn

Since ℓ is bounded by a constant C, we have $0 \le \ell$ $(h \circ g_{\mathcal{M}}(\mathbf{x}), y) \le C$ for any (\mathbf{x}, y) . As one pair (\mathbf{x}_i, y_i) changes, the above equation cannot change by at most $\frac{2C}{m}$. Applying McDiarmid's[4] inequality, we obtain that with probability $1 - \delta/2$:

$$\sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} |\hat{r} (h \circ g_{\mathcal{M}}) - r (h \circ g_{\mathcal{M}})|$$
(6)

$$\leq \mathbb{E}_{(\mathbf{x}_{i}, y_{i}) \sim \mathcal{D}} \sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} \left| \frac{1}{m} \sum_{i=1}^{m} \ell \left(h \circ g_{\mathcal{M}}(\mathbf{x}_{i}), y_{i} \right) - \mathbb{E}_{(\mathbf{x}', y') \sim \mathcal{D}} \left[\ell \left(h \circ g_{\mathcal{M}}(\mathbf{x}'), y' \right) \right] \right|$$
(7)

$$+C\sqrt{\frac{2\ln(2/\delta)}{m}}\tag{8}$$

To proceed the proof, we introduce a popular result of Rademacher complexity in the following lemma[2]:

Lemma 1. Let $U, \{U_i\}_{i=1}^m$ be i.i.d. random variables taking values in some space \mathcal{U} and $\mathcal{F} \subseteq [a,b]^{\mathcal{U}}$ is a set of bounded functions. We have

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left(\mathbb{E}[f(U)] - \frac{1}{m}\sum_{i=1}^{m}f\left(U_{i}\right)\right)\right] \leq 2\Re_{m}(\mathcal{F})\tag{9}$$

Proof of lemma 1. Denote $\{U_i'\}_{i=1}^m$ be ghost examples of $\{U_i\}_{i=1}^m$, i.e. U_i' be independent of each other and have the same distribution as U_i . Then we have,

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left(\mathbb{E}[f(U)] - \frac{1}{m}\sum_{i=1}^{m}f(U_i)\right)\right]$$
(10)

$$= \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^{m} \left(\mathbb{E}[f(U)] - f\left(U_{i}\right)\right)\right)\right]$$
(11)

$$\stackrel{(a)}{=} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{E} \left[f\left(U_i'\right) - f\left(U_i\right) \mid \left\{ U_i \right\}_{i=1}^{m} \right] \right) \right]$$
(12)

$$\leq \mathbb{E}\left[\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left(\frac{1}{m}\sum_{i=1}^{m}\left(f\left(U_{i}'\right)-f\left(U_{i}\right)\right)\right)\mid\left\{U_{i}\right\}_{i=1}^{m}\right]\right]\tag{13}$$

$$\stackrel{(b)}{=} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^{m} \left(f\left(U_i'\right) - f\left(U_i\right) \right) \right) \right]$$
(14)

$$=\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left(\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}\left(f\left(U_{i}^{\prime}\right)-f\left(U_{i}\right)\right)\right)\right] \tag{15}$$

$$\leq \mathbb{E}\left[\sup_{f\in\mathcal{F}}\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}f\left(U_{i}'\right)\right] + \mathbb{E}\left[\sup_{f\in\mathcal{F}}\frac{1}{m}\sum_{i=1}^{m}\sigma_{i}f\left(U_{i}\right)\right]$$
(16)

$$\stackrel{(c)}{=} 2\mathfrak{R}_m(\mathcal{F}). \tag{17}$$

where $\sigma_1, \ldots, \sigma_m$ is i.i.d. $\{\pm 1\}$ -valued random variables with $\mathbb{P}(\sigma_i = +1) = \mathbb{P}(\sigma_i = -1) = 1/2$. (a) (b) are obtained by the tower property of conditional expectation; (c) follows from the definition of Rademacher complexity of \mathcal{F} .

Consider the function class:

$$\ell_{\mathcal{H} \circ \mathcal{G}_{\mathcal{M}}} := \{ (\mathbf{x}, y) \mapsto \ell (h \circ g_{\mathcal{M}}(\mathbf{x}), y) \mid h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}} \}$$

let $\mathcal{F} = \ell_{\mathcal{H} \circ \mathcal{G}_{\mathcal{M}}}$ in lemma 1, then we have equation (7) can be upper bound by $2\mathfrak{R}_m(\ell_{\mathcal{H} \circ \mathcal{G}_{\mathcal{M}}})$. To directly work with the hypothesis function class, we need to decompose the Rademacher term which

consists of the loss function classes. We center the function $\ell'(h \circ g_{\mathcal{M}}(\mathbf{x}), y) = \ell(h \circ g_{\mathcal{M}}(\mathbf{x}), y) - \ell(\mathbf{0}, y)$. The constant-shift property of Rademacher averages[2] indicates that

$$\Re_m(\ell_{\mathcal{H}\circ\mathcal{G}_{\mathcal{M}}}) \le \Re_m(\ell'_{\mathcal{H}\circ\mathcal{G}_{\mathcal{M}}}) + \frac{C}{\sqrt{m}}$$

Since ℓ' is Lipschitz in its first coordinate with constant L and $\ell'(h \circ g_{\mathcal{M}}(\mathbf{0}), y) = 0$, applying the contraction principle[2], we have:

$$\mathfrak{R}_m(\ell'_{\mathcal{H}\circ\mathcal{G}_{\mathcal{M}}}) \le 2L\mathfrak{R}_m(\mathcal{H}\circ G_{\mathcal{M}})$$

Combining the above discussion, we obtain:

$$J_1 \le 8L\Re_m(\mathcal{H} \circ G_{\mathcal{M}}) + \frac{4C}{\sqrt{m}} + 2C\sqrt{\frac{2\ln(2/\delta)}{m}}$$

For J_2 , by the definition of $h'_{\mathcal{M}}$:

$$J_2 = \inf_{h_{\mathcal{M}} \in \mathcal{H}} \left[r \left(h_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}} \right) - r \left(\hat{h}_{\mathcal{N}} \circ \hat{g}_{\mathcal{N}} \right) \right]$$
(18)

$$\leq \sup_{h_{\mathcal{N}} \in \mathcal{H}} \inf_{h_{\mathcal{M}} \in \mathcal{H}} \left[r \left(h_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}} \right) - r \left(h_{\mathcal{N}} \circ \hat{g}_{\mathcal{N}} \right) \right] \tag{19}$$

$$= \inf_{h_{\mathcal{M}} \in \mathcal{H}} \left[r \left(h_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}} \right) - r (h^* \circ g^*) \right] - \inf_{h_{\mathcal{M}} \in \mathcal{H}} \left[r \left(h_{\mathcal{N}} \circ \hat{g}_{\mathcal{N}} \right) - r (h^* \circ g^*) \right]$$
(20)

$$= \eta(\hat{g}_{\mathcal{M}}) - \eta(\hat{g}_{\mathcal{N}}) \tag{21}$$

$$= \gamma_{\mathcal{S}}(\mathcal{M}, \mathcal{N}) \tag{22}$$

Finally,

$$r\left(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}\right) - r\left(\hat{h}_{\mathcal{N}} \circ \hat{g}_{\mathcal{N}}\right) \leq \gamma_{\mathcal{S}}(\mathcal{M}, \mathcal{N}) + 8L\mathfrak{R}_{m}(\mathcal{H} \circ \mathcal{G}_{\mathcal{M}}) + \frac{4C}{\sqrt{m}} + 2C\sqrt{\frac{2\ln(2/\delta)}{m}}$$

with probability $1 - \frac{\delta}{2}$.

A.2 Proof of Theorem 2

Proof. Let $\tilde{h}_{\mathcal{M}}$ denote the minimizer of the population risk over \mathcal{D} with the representation $\hat{g}_{\mathcal{M}}$, then we have:

$$\eta(\hat{g}_{\mathcal{M}}) \tag{23}$$

$$= r(\tilde{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}) - r(h^* \circ g^*) \tag{24}$$

$$\leq \underbrace{r(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}) - \hat{r}(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}})}_{J_{1}} + \underbrace{\hat{r}(\hat{h}_{\mathcal{M}} \circ \hat{g}_{\mathcal{M}}) - \hat{r}(h^{*} \circ g^{*})}_{J_{2}} + \underbrace{\hat{r}(h^{*} \circ g^{*}) - r(h^{*} \circ g^{*})}_{J_{2}}$$
(25)

 J_2 is the centering empirical risk. Following the similar analysis in Theorem 1, we obtain:

$$J_1 + J_3 \le \sup_{h \in \mathcal{H}, g_{\mathcal{M}} \in \mathcal{G}_{\mathcal{M}}} |r(h \circ g_{\mathcal{M}}) - \hat{r}(h \circ g_{\mathcal{M}})| + \sup_{h \in \mathcal{H}, g \in \mathcal{G}} |r(h \circ g) - \hat{r}(h \circ g)| \tag{26}$$

$$\leq 4L\Re_m(\mathcal{H} \circ \mathcal{G}_{\mathcal{M}}) + 4L\Re_m(\mathcal{H} \circ \mathcal{G}) + \frac{4C}{\sqrt{m}} + 2C\sqrt{\frac{2\ln(2/\delta)}{m}}$$
(27)

with probability $1 - \delta$. Combining the above discussion yields the result:

$$\eta(\hat{g}_{\mathcal{M}}) \le \tag{28}$$

$$4L\mathfrak{R}_m(\mathcal{H}\circ\mathcal{G}_{\mathcal{M}}) + 4L\mathfrak{R}_m(\mathcal{H}\circ\mathcal{G}) + \frac{4C}{\sqrt{m}} + 2C\sqrt{\frac{2\ln(2/\delta)}{m}} + \hat{L}(\hat{h}_{\mathcal{M}}\circ\hat{g}_{\mathcal{M}},\mathcal{S})$$
(29)

A.3 Proof of Proposition 1

Proof. With the l_2 loss, we have

$$\mathbb{E}_{\mathbf{x}, y \sim h^{\star} \circ g^{\star}(\mathbf{x})} \{ \ell(h \circ g(\mathbf{x}), y) - \ell(h^{\star} \circ g^{\star}(\mathbf{x}), y) \} = \mathbb{E}_{\mathbf{x}} \left[\left| \boldsymbol{\beta}^{\top} \mathbf{A}^{\top} \mathbf{x} - {\boldsymbol{\beta}^{\star}}^{\top} \mathbf{A}^{\star}^{\top} \mathbf{x} \right|^{2} \right]$$

Define the covariance matrix [9] for two linear projections A, A' as follows:

$$\Gamma(\mathbf{A}, \mathbf{A}') = \mathbb{E}_{\mathbf{x}} \begin{bmatrix} \mathbf{A}^{\top} \mathbf{x} \left(\mathbf{A}^{\top} \mathbf{x} \right)^{\top} & \mathbf{A}^{\top} \mathbf{x} \left(\mathbf{A}'^{\top} \mathbf{x} \right)^{\top} \\ \mathbf{A}'^{\top} \mathbf{x} \left(\mathbf{A}^{\top} \mathbf{x} \right)^{\top} & \mathbf{A}'^{\top} \mathbf{x} \left(\mathbf{A}'^{\top} \mathbf{x} \right)^{\top} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}^{\top} \Sigma \mathbf{A} & \mathbf{A}^{\top} \Sigma \mathbf{A}' \\ \mathbf{A}'^{\top} \Sigma \mathbf{A} & \mathbf{A}'^{\top} \Sigma \mathbf{A}' \end{bmatrix} = \begin{bmatrix} \Gamma_{11}(\mathbf{A}, \mathbf{A}^{*}) & \Gamma_{12}(\mathbf{A}, \mathbf{A}^{*}) \\ \Gamma_{21}(\mathbf{A}, \mathbf{A}^{*}) & \Gamma_{22}(\mathbf{A}, \mathbf{A}^{*}) \end{bmatrix}$$
(30)

where Σ denotes the covariance matrix of the distribution $\mathbb{P}_{\mathbf{x}}$. Then the *latent representation quality* of \mathbf{A} becomes:

$$\eta(\mathbf{A}) = \inf_{\boldsymbol{\beta}: \|\boldsymbol{\beta}\| \le C_b} \mathbb{E}_{\mathbf{x}} \left[\left| \boldsymbol{\beta}^{\top} \mathbf{A}^{\top} \mathbf{x} - {\boldsymbol{\beta}^{\star}}^{\top} \mathbf{A}^{\star \top} \mathbf{x} \right|^2 \right]$$
(31)

$$= \inf_{\boldsymbol{\beta}: \|\boldsymbol{\beta}\| \le C_b} \left[\boldsymbol{\beta}, -\boldsymbol{\beta}^* \right] \Gamma(\mathbf{A}, \mathbf{A}^*) \left[\boldsymbol{\beta}, -\boldsymbol{\beta}^* \right]^\top$$
 (32)

For sufficiently large C_b , the constrained minimizer of (32) is equivalent to the unconstrained minimizer. Following the standard discussion of the quadratic convex optimization [3], if $\Gamma_{11}(\mathbf{A}, \mathbf{A}^*) \succ 0$ and $\det \Gamma_{11}(\mathbf{A}, \mathbf{A}^*) \neq 0$, the solution of the above minimization problem is $\boldsymbol{\beta} = \Gamma_{11}(\mathbf{A}, \mathbf{A}^*)^{-1}\Gamma_{12}(\mathbf{A}, \mathbf{A}^*)\boldsymbol{\beta}^*$, and

$$\eta(\mathbf{A}) = \boldsymbol{\beta}^{\star} \Gamma_{sch}(\mathbf{A}, \mathbf{A}^{\star}) {\boldsymbol{\beta}^{\star}}^{\top}$$
(33)

where $\Gamma_{sch}(\mathbf{A}, \mathbf{A}^{\star})$ is the Schur complement of $\Gamma(\mathbf{A}, \mathbf{A}^{\star})$, defined as:

$$\Gamma_{sch}(\mathbf{A}, \mathbf{A}^{\star}) \tag{34}$$

$$=\Gamma_{22}(\mathbf{A}, \mathbf{A}^{\star}) - \Gamma_{21}(\mathbf{A}, \mathbf{A}^{\star})\Gamma_{11}(\mathbf{A}, \mathbf{A}^{\star})^{-1}\Gamma_{12}(\mathbf{A}, \mathbf{A}^{\star})$$
(35)

Under the orthogonal assumption, $\hat{\mathbf{A}}_{\mathcal{M}}$ is nonsingular. Notice that $\hat{\mathbf{A}}_{\mathcal{N}}$ cannot be orthonormal in our settings. And \sum is also invertible. Therefore, the Schur complement of $\Gamma(\hat{\mathbf{A}}_{\mathcal{M}}, \mathbf{A}^*)$ exists,

$$\Gamma_{sch}(\hat{\mathbf{A}}_{\mathcal{M}}, \mathbf{A}^{\star}) = \mathbf{A}^{\star \top} \Sigma \mathbf{A}^{\star} - \left(\mathbf{A}^{\star \top} \Sigma \hat{\mathbf{A}}_{\mathcal{M}} \right) \left(\hat{\mathbf{A}}_{\mathcal{M}}^{\top} \Sigma \hat{\mathbf{A}}_{\mathcal{M}} \right)^{-1} \left(\hat{\mathbf{A}}_{\mathcal{M}}^{\top} \Sigma \mathbf{A}^{\star} \right) = \mathbf{0}$$
 (36)

Hence, $\eta(\hat{\mathbf{A}}_{\mathcal{M}}) = 0$. Given the above discussion, we obtain:

$$\gamma_{\mathcal{S}}(\mathcal{M}, \mathcal{N}) = \eta(\hat{\mathbf{A}}_{\mathcal{M}}) - \eta(\hat{\mathbf{A}}_{\mathcal{N}}) \tag{37}$$

$$= 0 - \inf_{\boldsymbol{\beta}: \|\boldsymbol{\beta}\| \le C_b} \mathbb{E}_{\mathbf{x}} \left[\left| \boldsymbol{\beta}^{\top} \hat{\mathbf{A}}_{\mathcal{N}}^{\top} \mathbf{x} - {\boldsymbol{\beta}^{\star}}^{\top} \mathbf{A}^{\star \top} \mathbf{x} \right|^2 \right] \le 0$$
 (38)

B The Composite Framework in Applications

As we stated in Section 3, our model well captures the essence of lots of existing multi-modal methods [1, 6, 7, 11, 10, 8]. Below, we explicitly discuss how these methods fit well into our general model, by providing the corresponding function class \mathcal{G} under each method.

Audiovisual fusion for sound recognition [6]: The audio and visual models map the respective inputs to segment-level representations, which are then used to obtain single-modal predictions, \mathbf{h}_a and \mathbf{h}_v , respectively. The attention fusion function n_{attn} , ingests the single-modal predictions, \mathbf{h}_a and \mathbf{h}_v , to produce weights for each modality, α_a and α_v . The single-modal audio and visual predictions, \mathbf{h}_a and \mathbf{h}_v , are mapped to $\tilde{\mathbf{h}}_a$ and $\tilde{\mathbf{h}}_v$ via functions n_a and n_v respectively, and fused using the attention weights, α_a and α_v . In summary, g has the form:

$$q = \tilde{\mathbf{h}}_{av} = \boldsymbol{\alpha}_a \odot \tilde{\mathbf{h}}_a + \boldsymbol{\alpha}_v \odot \tilde{\mathbf{h}}_v$$

Channel-Exchanging-Network [11]: A feature map will be replaced by that of other modalities at the same position, if its scaling factor is lower than a threshold. g in this problem can be formulated as a multi-dimensional mapping $g := (f_1, \cdots, f_M)$, where subnetwork $f_m(x)$ adopts the multi-modal data x as input and fuses multi-modal information by channel exchanging.

Other Fusion Methods [7, 10, 8, 1]: Methods in these works can be formulated into the form we mentioned in the example in Section 3. Specifically, recall the example, g has the form: $\varphi_1 \oplus \varphi_2 \oplus \cdots \oplus \varphi_M$, where \oplus denotes a fusion operation, (e.g., averaging, concatenation, and self-attention), and φ_k is a deep network which uses each modality data $x^{(k)}$ as input. Under these notations:

- For the early-fusion BERT method in [8], the temporal features are concatenated before the BERT layer and only a single BERT module is utilized. Here, the \oplus is a concatenation function, and g has the form (φ_1, φ_2) .
- [10, 7]discussed different fusion methods by choosing \oplus . (i) Max fusion: the \oplus is the maximum function and $g := max\{\varphi_1, \cdots, \varphi_M\}$; (ii) Sum fusion: $g := \sum \varphi_m$; (iii) averaging; (iv) self-attention and so on.
- The fusion section in the survey [1] provides many works which can be incorporated into our framework.

C Discussions on Training Setting

Existing works on multi-modal training demonstrates that naively fusing different modalities results insufficient representation learning of each modality [10, 5]. In our experiments, we train our multi-modal model using two methods: (1), naively end-to-end late-fusion training; (2), firstly train the uni-modal models and train a multi-modal classifier over the uni-modal encoders. As shown in Table 1 and Table 2, naively end-to-end training is unstable, affecting the representation learning of each modality, while fine-tuning a multi-modal classifier over trained uni-modal encoders is more stable and the results are more consistent with our theory. Noting that we use the late-fusion framework here, similar to [10, 5].

Table 1: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table, we show the results from naively end-to-end late-fusion training

Modalities	Test Acc (Ratio of Sample Size)						
	10^{-4}	10^{-3}	10^{-2}	10^{-1}	1		
T	23.66 ± 1.28	29.08 ± 3.34	45.63 ± 0.29	48.30 ± 1.31	49.93 ± 0.57		
TA	25.06 ± 1.05	34.28 ± 4.54	47.28 ± 1.24	50.46 ± 0.61	51.08 ± 0.66		
TV	24.71 ± 0.87	38.37 ± 3.12	46.54 ± 1.62	49.50 ± 1.04	53.03 ± 0.21		
TVA	24.71 ± 0.76	32.24 ± 1.17	46.39 ± 3.82	50.75 ± 1.45	53.89 ± 0.47		

Table 2: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table, we fristly train the uni-modal models and train a multi-modal classifier over the uni-modal encoders to get multi-modal results.

Modalities		Test Acc (Ratio of Sample Size)					
	10^{-4}	10^{-3}	10^{-2}	10^{-1}	1		
T	23.66 ± 1.28	29.08 ± 3.34	45.63±0.29	48.30±1.31	49.93±0.57		
TA	22.74 ± 1.86	35.14 ± 0.38	49.15 ± 0.43	50.61 ± 0.28	51.78 ± 0.08		
TV	23.64 ± 0.07	36.64 ± 1.79	46.91 ± 0.68	48.96 ± 0.47	53.24 ± 0.35		
TVA	25.40 ± 1.06	$40.87 {\pm} 2.47$	50.67 ± 0.63	52.54 ± 0.60	54.55 ± 0.29		

References

- [1] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning: A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):423–443, 2018.
- [2] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
- [3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
- [4] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from multiple sources. *Journal of Machine Learning Research*, 9(8), 2008.
- [5] Chenzhuang Du, Tingle Li, Yichen Liu, Zixin Wen, Tianyu Hua, Yue Wang, and Hang Zhao. Improving multi-modal learning with uni-modal teachers. *arXiv preprint arXiv:2106.11059*, 2021.
- [6] Haytham M Fayek and Anurag Kumar. Large scale audiovisual learning of sounds with weakly labeled data. *arXiv preprint arXiv:2006.01595*, 2020.
- [7] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network fusion for video action recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1933–1941, 2016.
- [8] M Esat Kalfaoglu, Sinan Kalkan, and A Aydin Alatan. Late temporal modeling in 3d cnn architectures with bert for action recognition. In *European Conference on Computer Vision*, pages 731–747. Springer, 2020.
- [9] Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance of task diversity. *Advances in Neural Information Processing Systems*, 33, 2020.
- [10] Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks hard? In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12692–12702. IEEE, 2020.
- [11] Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, and Junzhou Huang. Deep multimodal fusion by channel exchanging. *Advances in Neural Information Processing Systems*, 33, 2020.