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This supplementary provides additional training details as well as further results from our method.

A1 Architecture and training details

BRDF-SMAE. In our decomposition network, a specific BRDF embedding is stored in a neural
volume at each point. Our BRDF-SMAE should therefore be able to encode a single BRDF. As each
point in the neural volume can have a different embedding, the resulting decomposition has a spatially
varying BRDF. To encode this singular BRDF per point, we leverage a MLP network architecture.
For the encoder, decoder, and discriminator, we use 3 MLP layers with 32 output features. We train
our SMAE to create a smooth latent space on the material dataset of Boss et al. [1]. We set the SMAE
loss weighting to λ1 = 0.01, λ2 = 0.01 and λ3 = 0.001. We use 64 interpolation steps in the latent
space and use a mean absolute error (MAE) on the BRDF parameters for the reconstruction loss. In
total, we use 1.5 million training steps with a batch size of 256 for training on a single NVIDIA 1080
TI GPU. This roughly takes 3.5 hours to converge. We use the Adam optimizer with a learning rate
of 1e-4.

Light-SMAE. As our dataset only consists of 320 environment maps, we augment the dataset by
randomly rotating each environment map 10 times, and during training, we randomly blend two
environment maps. Additionally, we downscale the environment maps to 128 × 256. We set the
SMAE loss weighting to λ1 = 0.01, λ2 = 0.0001 and λ3 = 0.05 with 5 interpolation steps between
each of the batch halves. Due to the high dynamic range, we found that specific care is required to
ensure smooth training. The input to the encoder is transformed from HDR to LDR by log(1 + x)
and the output from LDR to HDR with exp(x− 1). We further calculate the loss on a logarithmic
scale using the MALE loss: |log(1 + x∗)− log(1 + x̂)|.
Our networks are all based on CNNs, whereas the encoder and discriminator leverage CoordConvs [6].
The encoder and discriminator do not use padding, whereas the decoder uses the “same” padding.
The overall architecture is shown in Table A1. In total, we use 4 million steps with a batch size of 24
to train on a single NVIDIA 1080 TI GPU, which takes 5 days to train. The Adam optimizer with a
learning rate of 5e-4 is used for the training.

Neural-PIL. We train the neural-PIL using the same environment maps dataset as used for training
the Light-SMAE. Here, the encoder of the Light-SMAE is used for defining the smooth latent space.
The network is comprised of MLPs with the FiLM-SIREN conditioning [3]. The first portion of
the network is comprised of 3 layers with 128 features. The β and γ conditioning parameters are
generators from a mapping network with 2 MLPs with 128 elu activated features. An additional
MLP output layer produces 768 features, which corresponds to 128 β and 128 γ features per layer.

∗Work done while at Google.
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(a) Encoder

Type Size Stride Features Activation

CoordConv 3 1 8 elu

CoordConv 4 2 21 elu
CoordConv 3 1 21 elu

CoordConv 4 2 42 elu
CoordConv 3 1 42 elu

CoordConv 4 2 64 elu
CoordConv 3 1 64 elu

Flatten
MLP 128 Linear

(b) Decoder

Type Size Stride Features Activation

ConvT (1,2) 1 64 elu

ConvT 4 2 58 elu
Conv 3 1 58 elu

ConvT 4 2 52 elu
Conv 3 1 52 elu

ConvT 4 2 45 elu
Conv 3 1 45 elu

ConvT 4 2 39 elu
Conv 3 1 39 elu

ConvT 4 2 32 elu
Conv 3 1 32 elu

ConvT 4 2 26 elu
Conv 3 1 26 elu

ConvT 4 2 20 elu
Conv 3 1 20 elu

Conv 1 1 3 exp(x − 1)

(c) Discriminator

Type Size Stride Features Activation

CoordConv 3 1 8 relu

CoordConv 4 2 32 relu
Conv 3 1 32 relu

CoordConv 4 2 32 relu
Conv 3 1 32 relu

CoordConv 4 2 32 relu
Conv 3 1 32 relu

CoordConv 4 2 32 relu
Conv 3 1 32 relu

Flatten
MLP 1 Linear

Table A1: Light-SMAE Architecture. Details for the architecture used for each network. Conv
denotes a regular 2D conv, ConvT a transposed 2D convolution and CoordConv uses a 2D convolution
with the coordinates as described in [6].

The penultimate layer is then conditioned on the roughness br, which is parametrized by a mapping
network with the first elu activated MLP outputting 32 features and the second 256 for the β and γ
mapping parameters of the respective layer. Finally, a final MLP in the main network generates the
final output color with 3 features output and exp(x − 1) as the activation to generate easier HDR
values.

For training, we first try to encode the full environment map with a roughness of 0. In addition,
we perform reconstruction with 8192 random directions and roughness levels. Both perform both
of these simultaneously with a batch size of 8. In total, we use 4 million steps to train on a single
NVIDIA 1080 TI GPU, which takes 4.5 days to train. We use the Adam optimizer with a learning
rate of 5e-4.

Decomposition Both the coarse and fine networks consist of 8 MLPs with 256 relu activated features
each. We randomly sample 4096 ray directions per image for training. The ray directions are also
jittered as in Boss et al. [2]. For real-world data, we sample the ray in disparity rather than linear in
depth. This places more samples close to the camera. In total, we train 400,000 steps on 4 NVIDIA
2080 TI GPU, which takes about 22 hours. We use an adam optimizer with a learning rate of 4e-4.

We employ additional exponentially decaying losses over 10,000 steps. We use the background
segmentation loss, similar to [2], which ensures rays that do not hit the object do not contribute and
additionally add a BRDF priming loss. This loss initially sets the diffuse color to the actual image
color and the roughness to 0.3 using a Mean Squared Error (MSE). The background segmentation
loss fades in over the duration, and the BRDF priming loss fades out. Our main reconstruction loss
is an MSE between the rendered color c and the corresponding pixel in the input image. This loss
is then exponentially faded over 100,000 steps to a cosine weighted MSE: (x∗ ωo · n− x̂ ωo · n)2.
This weighting tends to achieve better BRDF fitting results [4] as harsh grazing highlights from the
Fresnel effect are not factored as much as regular samples, as well as our approximated rendering
model being the least accurate in the grazing angles. The reason for this fading loss scheme is that
the normals n are not reliable in the early stages of the training.

A2 SMAE ablation study.

The main goal of the SMAE is to enable optimizing a latent space from backpropagation through
the decoder alone. In Fig. A2, we show the estimated BRDF parameter maps (unseen taken from
www.sharetextures.com) by backpropagation through the decoder for 200 steps with the Adam
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optimizer and a learning rate of 0.01. Additionally, we show the smoothness of the latent space by
interpolating 4 materials in a grid. If the loss is working as intended, the transition between each
corner of the 3 parameter maps should be smooth. As seen in Fig. A2, only with all losses active,
we can successfully optimize the materials Small artifacts remain. For example, the joints in the tile
have become metallic as the method correctly learned the constraint of a black diffuse color often
indicates a metal. However, the space is smooth and allows for adding deep priors with a smooth
gradient-based optimization.

A3 Results

Neural-PIL vs. SGs. vs. MC. For the results in Fig. 6 of the paper, the SGs or the latent representation
for the Neural-PIL was optimized from known reflectance and shape, respectively. In Fig. A1, we
show more results of the same optimizations with different environment maps. We use a rendered
image of a metallic sphere with roughness values of 0.2 and 0.5 as the targets. We then optimize
the illumination with 1000 steps such that the SGs Renderer, MC Renderer or the PIL rendering
respectively match the target as well as possible. The environments shown for the PIL illumination
are the pre-integrated maps that encode the blur caused by the roughness, while the SGs environments
are again convolved with the BRDF lobe to obtain the rendered image of the sphere. For the MC
renderer the environment maps are shown as optimized. Notice the high-frequency detail captured
with Neural-PIL. E.g. the gap between the buildings is captured accurately in the top right.

BRDF decomposition. Fig. A3 shows more BRDF decomposition results where we compare our
results with GT, NeRD [2] and Li et al. [5]. Notice the accurate relighting results.

Visual comparison on all scenes Fig. A4 shows the quality of the novel view synthesis and also
novel relighting – for Gnome and Mother-Child – on every scenes with our baseline. As seen our
method provides convincing results over all our test scenes. The lego scene exhibits a slight color
shift in our method. This is due to this scene being captured under an artificial illumination setup
which is in complete darkness, except of two large white area lights. This is hard to reproduce for our
manifold of natural illuminations. The BRDF is also constrained by natural materials and is therefore
not capable of adjusting for the illumination.

A4 Dataset licenses

The environment maps are taken from hdrihaven.com which is under the CC0 license. BRDFs are
extracted from the Boss et al. [1] which is released under the NVIDIA Source Code License.
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Figure A1: Neural-PIL vs. SGs. Optimized illuinations with SGs and our Neural-PIL.
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Figure A2: BRDF SMAE Ablation. Sample BRDF optimizations and interpolated BRDF space
with SMAEs learned with the exclusion of different loss functions.
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Diffuse Specular Roughness Normal Environment Render
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Figure A3: Additional BRDF Decomposition Results. Comparison with NeRD [2] and Li et al. [5]
on two synthetic scenes.
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Figure A4: Results from each scene. Comparison with NeRF, NeRD and Neural-PIL for every
scene. 6



Base Image Illumination
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Figure A5: Additional relighting results. Relighting of various scenes under the source illumination
shown in the insets. For the last row the illumination is rotated.
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