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Abstract

Latent variable models are ubiquitous in the exploratory analysis of neural popula-
tion recordings, where they allow researchers to summarize the activity of large
populations of neurons in lower dimensional ‘latent’ spaces. Existing methods can
generally be categorized into (i) Bayesian methods that facilitate flexible incorpora-
tion of prior knowledge and uncertainty estimation, but which typically do not scale
to large datasets; and (ii) highly parameterized methods without explicit priors
that scale better but often struggle in the low-data regime. Here, we bridge this
gap by developing a fully Bayesian yet scalable version of Gaussian process factor
analysis (bGPFA), which models neural data as arising from a set of inferred latent
processes with a prior that encourages smoothness over time. Additionally, bGPFA
uses automatic relevance determination to infer the dimensionality of neural ac-
tivity directly from the training data during optimization. To enable the analysis
of continuous recordings without trial structure, we introduce a novel variational
inference strategy that scales near-linearly in time and also allows for non-Gaussian
noise models appropriate for electrophysiological recordings. We apply bGPFA to
continuous recordings spanning 30 minutes with over 14 million data points from
primate motor and somatosensory cortices during a self-paced reaching task. We
show that neural activity progresses from an initial state at target onset to a reach-
specific preparatory state well before movement onset. The distance between these
initial and preparatory latent states is predictive of reaction times across reaches,
suggesting that such preparatory dynamics have behavioral relevance despite the
lack of externally imposed delay periods. Additionally, bGPFA discovers latent
processes that evolve over slow timescales on the order of several seconds and
contain complementary information about reaction time. These timescales are
longer than those revealed by methods which focus on individual movement epochs
and may reflect fluctuations in e.g. task engagement.

1 Introduction

The adult human brain contains upwards of 100 billion neurons [3]. Yet many of our day-to-day
behaviors such as navigation, motor control, and decision making can be described in much lower
dimensional spaces. Accordingly, recent studies across a range of cognitive and motor tasks have
shown that neural population activity can often be accurately summarised by the dynamics of a
“latent state” evolving in a low-dimensional space [7, 8, 13, 38, 43]. Inferring and investigating these
latent processes can therefore help us understand the underlying representations and computations
implemented by the brain [20]. To this end, numerous latent variable models have been developed and
used to analyze the activity of populations of simultaneously recorded neurons. These models range
from simple linear projections such as PCA to sophisticated non-linear and temporally correlated
models [10, 16, 22, 43, 50].
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Figure 1: Bayesian GPFA schematic. Bayesian GPFA places a Gaussian Process prior over the
latent states in each dimension as a function of time t (p(X|t); top left) as well as a linear prior
over neural activity as a function of each latent dimension (p(F |X); bottom left). Together with
a stochastic noise process p(Y |F ), which can be discrete for electrophysiological recordings, this
forms a generative model that gives rise to observations Y (middle). From the data and priors, bGPFA
infers posterior latent states for each latent dimension (p(X|Y ); top right) as well as a posterior
predictive observation model for each neuron (p(Ytest|Xtest,Y ); bottom right). When combined
with automatic relevance determination, the model learns to automatically discard superfluous latent
dimensions by maximizing the log marginal likelihood of the data (right, black vs. blue).

A popular latent variable model for neural data analysis is Gaussian process factor analysis (GPFA),
which has yielded insights into neural computations ranging from time tracking to movement
preparation and execution [1, 48, 49, 51]. However, fitting GPFA comes with a computational
complexity of O(T 3) and a memory footprint O(T 2) for T time bins. This prohibits the application
of GPFA to time series longer than a few hundred time bins without artificially chunking such data into
“pseudo-trials” and treating these as independent samples. Additionally, canonical GPFA assumes a
Gaussian noise model while recent work has suggested that non-Gaussian models often perform better
on neural data [12, 25, 60]. Here, we address these challenges by formulating a scalable and fully
Bayesian version of GPFA (bGPFA; Figure 1) with a computational complexity of O(T log T ) and a
memory cost of O(T ). To do this, we introduce an efficiently parameterized variational inference
strategy that ensures scalability to long recordings while also supporting non-Gaussian noise models.
Additionally, the Bayesian formulation provides a framework for principled model selection based on
approximate marginal likelihoods [53]. This allows us to perform automatic relevance determination
and thus fit a single model without prior assumptions about the underlying dimensionality, which is
instead inferred from the data itself [5, 41].

We validate our method on synthetic and biological data, where bGPFA exhibits superior performance
to GPFA and Poisson GPFA with increased scalability and without requiring cross-validation to
select the latent dimensionality. We then apply bGPFA to longitudinal, multi-area recordings from
primary motor (M1) and sensory (S1) areas during a monkey self-paced reaching task spanning 30
minutes. bGPFA readily scales to such datasets, and the inferred latent trajectories improve decoding
of kinematic variables compared to the raw data. This decoding improves further when taking into
account the temporal offset between motor planning encoded by M1 and feedback encoded by S1. We
also show that the latent trajectories for M1 converge to consistent regions of state space for a given
reach direction at the onset of each individual reach. Importantly, the distance in latent space to this
preparatory state from the state at target onset is predictive of reaction times across reaches, similar
to previous results in a task that includes an explicit ‘motor preparation epoch’ where the subject is
not allowed to move [1]. This illustrates the functional relevance of such preparatory activity and
suggests that motor preparation takes place even when the task lacks well-defined trial structure
and externally imposed delay periods, consistent with findings by Lara et al. [32] and Zimnik and
Churchland [62]. Finally, we analyze the task relevance of slow latent processes identified by bGPFA
which evolve on timescales of seconds; longer than the millisecond timescales that can be resolved
by methods designed for trial-structured data. We find that some of these slow processes are also
predictive of reaction time across reaches, and we hypothesize that they reflect task engagement
which varies over the course of several reaches.
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2 Method

In the following, we use the notationA to refer to the matrix with elements aij . We use ak to refer
to the kth row or column ofA with an index running from 1 to K, represented as a column vector.

2.1 Generative model

Latent variable models for neural recordings typically model the neural activity Y ∈ RN×T of
N neurons at times t ∈ RT as arising from shared fluctuations in D latent variables X ∈ RD×T .
Specifically, the probability of a given recording can be written as

p(Y |t) =

∫
p(Y |F ) p(F |X) p(X|t) dF dX, (1)

where F ∈ RN×T are intermediate, neuron-specific variables that can often be thought of as firing
rates or a similar notion of noise-free activity. For example, GPFA [59] specifies

p(Y |F ) =
∏
n,t

N (ynt; fnt, σ
2
n) (2)

p(F |X) = δ(F −CX) (3)

p(X|t) =
∏
d

N (xd; 0,Kd) withKd = kd(t, t)) (4)

That is, the prior over the dth latent function xd(t) is a Gaussian process [45] with covariance function
kd(·, ·) (usually a radial basis function), and the observation model p(Y |X) is given by a parametric
linear transformation with independent Gaussian noise.

In this work, we additionally introduce a prior distribution over the mixing matrix C ∈ RN×D with
hyperparameters specific to each latent dimension. This allows us to learn an appropriate latent
dimensionality for a given dataset using automatic relevance determination (ARD) similar to previous
work in Bayesian PCA (Appendix I; 5) rather than relying on cross-validation or ad-hoc thresholds
of variance explained. Unlike in standard GPFA, the log marginal likelihood (Equation 1) becomes
intractable with this prior. We therefore develop a novel variational inference strategy [55] which
also (i) provides a scalable implementation appropriate for long continuous neural recordings, and
(ii) extends the model to general non-Gaussian likelihoods better suited for discrete spike counts.

In this new framework, which we call Bayesian GPFA (bGPFA), we use a Gaussian prior over
C of the form cnd ∼ N (0, s2d), where sd is a scale parameter associated with latent dimension d.
Integrating C out in Equation 3 then yields the following observation model:

p(F |X) =
∏
n

N (fn; 0,XTS2X), with S = diag(s1, . . . , sD). (5)

Moreover, we use a general noise model p(Y |F ) =
∏
n,t p(ynt|fnt) where p(ynt|fnt) is any

distribution for which we can evaluate its density.

2.2 Variational inference and learning

To train the model and infer bothX and F from the data Y , we use a nested variational approach. It
is intractable to compute log p(Y |t) (Equation 1) analytically for bGPFA, and we therefore introduce
a lower bound on log p(Y |t) at the outer level and another one on log p(Y |X) at the inner level.
These lower bounds are constructed from approximations to the posterior distributions over latents
(X) and noise-free activity (F ) respectively.

Distribution over latents At the outer level, we introduce a variational distribution q(X) over la-
tents and construct an evidence lower bound (ELBO; 55) on the log marginal likelihood of Equation 1:

log p(Y |t) ≥ L := Eq(X) [log p(Y |X)]− KL [q(X)||p(X|t)] . (6)

Conveniently, maximizing this lower bound is equivalent to minimizing KL [q(X)||p(X|Y )] and
thus also yields an approximation to the posterior over latents in the form of q(X). We estimate the
first term of the ELBO using Monte Carlo samples from q(X) and compute the KL term analytically.
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Here, we use a so-called whitened parameterization of q(X) [19] that is both expressive and scalable
to large datasets:

q(X) =

D∏
d=1

N (xd;µd,Σd) with µd = K
1
2

d νd and Σd = K
1
2

d ΛdΛ
T
dK

1
2

d

T

, (7)

whereK
1
2

d is any square root of the prior covariance matrixKd, and νd ∈ RT is a vector of variational
parameters to be optimized. Λd ∈ RT×T is a positive semi-definite variational matrix whose structure
is chosen carefully so that its squared Frobenius norm, log determinant, and matrix-vector products
can all be computed efficiently which facilitates the evaluation of Equations 8 and 9. This whitened
parameterization has several advantages. First, it does not place probability mass where the prior
itself does not. In addition to stabilizing learning [39], this also guarantees that the posterior is
temporally smooth for a smooth prior. Second, the KL term in Equation 6 simplifies to

KL[q(X)||p(X|t)] =
1

2

∑
d

(
‖Λd‖2F − 2 log |Λd|+ ||νd||2 − T

)
. (8)

Third, q(X) can be sampled efficiently via a differentiable transform (i.e. the reparameterization

trick) provided that fast differentiableK
1
2

d v and Λdv products are available for any vector v:

x
(m)
d = K

1
2

d (νd + Λdηd) with ηd ∼ N (0, I), (9)

where x(m)
d ∼ q(xd). This is important to form a Monte Carlo estimate of Eq(X) [log p(Y |X)].

To avoid the challenging computation ofK
1
2

d v for generalKd [2], we directly parameterizeK
1
2

d , the
positive definite square root ofK, which implicitly defines the prior covariance function kd(·, ·). In

this work we use an RBF kernel forKd and give the expression forK
1
2

d in Appendix F. Additionally,

we use Toeplitz acceleration methods to computeK
1
2

d v products in O(T log T ) time and with O(T )
memory cost [48, 57].

We implement and compare different choices of Λd in Appendix F. For the experiments in this work,
we use the parameterization Λd = ΨdCd, where Ψd is diagonal with positive entries and Cd is
circulant, symmetric, and positive definite. This parameterization enables cheap computation of KL
divergences and matrix-vector products while maintaining sufficient expressiveness (Appendix F).
All results are qualitatively similar when instead using a simple diagonal parameterization Λd = Ψd.

Distribution over neural activity Evaluating log p(Y |X) =
∑
n log p(yn|X) for each sample

drawn from q(X) is intractable for general noise models. Thus, we further lower-bound the ELBO
of Equation 6 by introducing an approximation q(fn|X) to the posterior p(fn|yn,X):

log p(yn|X) ≥ Eq(fn|X) [log p(yn|fn)]− KL [q(fn|X)||p(fn|X)] . (10)
We repeat the whitened variational strategy described at the outer level by writing

q(fn|X) = N (fn; µ̂n, Σ̂n) with µ̂n = K̂
1
2 ν̂n and Σ̂n = K̂

1
2LnL

T
n (K̂

1
2 )T , (11)

where ν̂n ∈ RD is a neuron-specific vector of variational parameters to be optimized along with
a lower-triangular matrix Ln ∈ RD×D; and K̂ denotes the covariance matrix of p(f |X), whose
square root K̂

1
2 = XTS follows from Equation 5. The low-rank structure of K̂ enables cheap

matrix-vector products and KL divergences:

KL[q(fn|X)||p(fn|X)] =
1

2

(
‖Ln‖2F − 2 log |Ln|+ ||ν̂d||2 −D

)
. (12)

Note that the KL divergence does not depend onX in this whitened parameterization (Appendix H).
Moreover, q(fn|X) in Equation 11 has the form of the exact posterior when the noise model is
Gaussian (Appendix G), and it is equivalent to a stochastic variational inducing point approximation
[18] for general noise models (Appendix H).

Finally, we need to compute the first term in Equation 10:

Eq(fn|X) [log p(yn|fn)] =
∑
t

Eq(fnt|X) [log p(ynt|fnt)] . (13)

Each term in this sum is simply a 1-dimensional Gaussian expectation which can be computed
analytically in the case of Gaussian or Poisson noise (with an exponential link function), and
otherwise approximated efficiently using Gauss-Hermite quadrature (Appendix K; 18).
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2.3 Summary of the algorithm

Putting Section 2.1 and Section 2.2 together, optimization proceeds at each iteration by drawing M
Monte Carlo samples {Xm}M1 from q(X) and estimating the overall ELBO as:

L =
1

M

∑
Xm∼q(X)

[∑
n,t

Eq(fnt|Xm) [log p(ynt|fnt)]

]

−
∑
n

KL [q(fn)||p(fn)]−
∑
d

KL [q(xd)||p(xd)] , (14)

where the expectation over q(fnt|X) is evaluated analytically or using Gauss-Hermite quadrature
depending on the noise model (Appendix K). We maximize L using stochastic gradient ascent with
Adam [29]. This has a total computational time complexity of O(MNTD2 + MDT log T ) and
memory complexity of O(MNTD2) where N is the number of neurons, T the number of time
points, and D the latent dimensionality. For large datasets such as the monkey reaching data in
Section 3.2, we compute gradients using mini-batches across time to mitigate the memory cost. That
is, gradients for the sum over t in Equation 14 are computed in multiple passes. The algorithm is
described in pseudocode with further implementation and computational details in Appendix L. The
model learned by bGPFA can subsequently be used for predictions on held-out data by conditioning
on partial observations as used for cross-validation in Section 3.1 and discussed in Appendix M.
Latent dimensions that have been ‘discarded’ by automatic relevance determination will automatically
have negligible contributions to the resulting posterior predictive distribution since the prior scale
parameters sd are approximately zero for these dimensions (see Appendix I for details).

3 Experiments and results

3.1 Synthetic data

We first generated an example dataset from the GPFA generative model (Equations 2-4) with a true
latent dimensionality of 3. We proceeded to fit both factor analysis (FA), GPFA, and bGPFA with
different latent dimensionalities D ∈ [1, 10]. Here, we fitted bGPFA without automatic relevance
determination such that sd = s∀d. As expected, the marginal likelihoods increased monotonically
with D for both FA and GPFA (Figure 2a; Appendix I). In contrast, the bGPFA ELBO reached
its optimum value at the true latent dimensionality D? = 3. This is a manifestation of “Occam’s
razor”, whereby fully Bayesian approaches favor the simplest model that adequately explains the
data Y [36]. When instead considering the cross-validated predictive performance of each method,
performance deteriorated rapidly for D > 3 for FA and GPFA, while Bayesian GPFA was more
robust to overfitting (Figure 2b). Notably, the introduction of ARD parameters {sd} in bGPFA
allowed us to fit a single model with large D = 10. This recovered the maximum ELBO of bGPFA
without ARD and the minimum test error across GPFA and bGPFA without ARD (Figure 2a and b,
black) without a priori assumptions about the latent dimensionality or the need to perform extensive
cross-validation. Consistent with the ground truth generative process, only 3 of the scale parameters
sd remained well above zero after training (Figure 2b, inset). Similar to this illustrative example
with Gaussian data, bGPFA with ARD and Poisson noise also exceeded the optimal performance of
Poisson GPFA when applied to both synthetic and experimental spike count data (Appendix E).

We then proceeded to apply bGPFA (D = 10) to an example dataset drawn using Equations 4 and 5
with a ground truth dimensionality D? = 2, and either Gaussian, Poisson, or negative binomial noise.
For all three datasets, the learned parameters clustered into a group of two latent dimensions with
high information content (Appendix J) and a group of eight uninformative dimensions, consistent
with the generative process (Figure 2c). In each case, we extracted the inferred latent trajectories
corresponding to the informative dimensions and found that they recapitulated the ground truth up
to a linear transformation (Figure 2d). Fitting flexible noise models such as the negative binomial
model is important because neural firing patterns are known to be overdispersed in many contexts
[4, 15, 54]. However, it is often unclear how much of that overdispersion should be attributed to
common fluctuations in hidden latent variables (X in our model) compared to private noise processes
in single neurons [35]. In our synthetic data with negative binomial noise, we could accurately
recover the single-neuron overdispersion parameters (Figure 2e; Appendix K), suggesting that such
unsupervised models have the capacity to resolve overdispersion due to private and shared processes.
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Figure 2: Bayesian GPFA applied to synthetic data. (a) Log likelihoods of factor analysis (yellow)
& GPFA (green) and ELBO of Bayesian GPFA without ARD (blue) fitted to synthetic data with
a ground truth dimensionality of three for different model dimensionalities. bGPFA with ARD
recovered a three-dimensional latent space as well as the optimum ELBO of bGPFA without ARD
(black dashed line). (b) Cross-validated prediction errors for the models in (a) (Appendix M). bGPFA
with ARD recovered the performance of the optimal GPFA and bGPFA models without requiring a
search over latent dimensionalities. Inspection of the learned prior scales {sd} and posterior mean
parameters ||νd||22 (inset) indicates that ARD retained only D? = 3 informative dimensions (top
right) and discarded the other 7 dimensions (bottom left). Shadings in (a) and (b) indicate ±2 stdev.
across 10 model fits. (c) Learned parameters of bGPFA with ARD and either Gaussian, Poisson
or negative binomial noise models fitted to two-dimensional synthetic datasets with observations
drawn from the corresponding noise models (Appendix K). The parameters clustered into two groups
of informative (top right) and non-informative (bottom left) dimensions (Appendix J). (d) Latent
trajectory in the space of the two most informative dimensions (c.f. (c)) for each model with the
ground truth shown in black. (e) The overdispersion parameter κn for each neuron learned in the
negative binomial model, plotted against the ground truth (Appendix K). Solid line indicates y = x;
note that κn →∞ corresponds to a Poisson noise model.

In summary, bGPFA provides a flexible method for inferring both latent dimensionalities, latent
trajectories, and heterogeneous single-neuron parameters in an unsupervised manner. In the next
section, we show that the scalability of the model and its interpretable parameters also facilitate the
analysis of large neural population recordings.

3.2 Primate recordings

In this section, we apply bGPFA to biological data recorded from a rhesus macaque during a self-
paced reaching task with continuous recordings spanning 30 minutes (37, 42; Figure 3a). The
continuous nature of these recordings as one long trial makes it a challenging dataset for existing
analysis methods that explicitly require the availability of many trials per experimental condition [43],
and poses computational challenges to Gaussian process-based methods that cannot handle long time
series [59]. While the ad-hoc division of continuous recordings into surrogate trials can still enable
the use of these methods [28], here we show that our formulation of bGPFA readily applies to long
continuous recordings. We fitted bGPFA with a negative binomial noise model to recordings from
both primary motor cortex (M1) and primary somatosensory cortex (S1). For all analyses, we used
a single recording session (indy_20160426, as in 28), excluded neurons with overall firing rates
below 2 Hz, and binned data at 25 ms resolution. This resulted in a data array Y ∈ R200×70482 (130
M1 neurons and 70 S1 neurons).

We first fitted bGPFA independently to the M1 and S1 sub-populations withD = 25 latent dimensions.
In this case, ARD retained 16 (M1) and 12 (S1) dimensions (Figure 3b). We then proceeded to
train a linear decoder to predict hand kinematics in the form of x and y hand velocities from either
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the inferred firing rates or the raw data convolved with a 50 ms Gaussian kernel (28; Appendix M).
We found that the model learned by bGPFA predicted kinematics better than the convolved spike
trains, suggesting that (i) the latent space accurately captures kinematic representations, and (ii) the
denoising and data-sharing across time in bGPFA aids decodability beyond simple smoothing of
neural activity. Interestingly, by repeating this decoding analysis with an artificially imposed delay
between neural activity and decoded behavior, we found that neurons in S1 predominantly encoded
current behavior while neurons in M1 encoded a motor plan that predicted kinematics 100-150 ms
into the future (Figure 3b). This is consistent with the motor neuroscience literature suggesting that
M1 functions as a dynamical system driving behavior via downstream effectors [8].

We then fitted bGPFA to the entire dataset including both M1 and S1 neurons. In this case, bGPFA
retained 19 dimensions (Appendix D), and kinematic predictions improved over individual M1- and
S1-based predictions (Figure 3b). In this analysis, the decoding performance as a function of delay
between neural activity and behavior exhibited a broader peak than for the single-region decoding.
We hypothesized that this broad peak reflects the fact that these neural populations encode both
current behavior in S1 as well as future behavior in M1 (Figure 3c). Indeed, when we took this
offset into account by shifting all M1 spike times by +100 ms and retraining the model, decoding
performance increased from 68.56% ± 0.09 to 69.81% ± 0.06 (mean ± sem variance explained
across ten model fits; Appendix M). Additionally, the shifted data exhibited a narrower decoding peak
attained for near-zero delay between kinematics and latent trajectories (Figure 3d). Consistent with
the improved kinematic decoding, we also found that shifting the M1 spikes by 100 ms increased
the ELBO per neuron (−34,637.0± 0.7 to −34,631.1± 0.6) and decreased the dimensionality of
the data (Appendix D; 46). These results suggest that M1 and S1 contain both overlapping but also
non-redundant information, and that the most parsimonious description of the neural data is recovered
by taking into account the different biological properties of M1 and S1.

We next wondered if bGPFA could be used to reveal putative motor preparation processes, which is
non-trivial due to the lack of trial structure and well-defined preparatory epochs. We partitioned the
data post-hoc into individual ‘reaches’, each consisting of a period of time where the target location
remained constant. For these analyses, we only considered ‘successful’ reaches, where the monkey
eventually moved to the target location, and we defined movement onset as the first time during a
reach where the cursor speed exceeded a low threshold (Appendix A). We began by visualizing the
latent processes inferred by bGPFA as they unfolded prior to movement onset in each reach epoch.
For visualization purposes, we ranked the latent dimensions based on their learned prior scales (a
measure of variance explained; Appendix J) and selected the first two. Prior to movement onset, the
latent trajectories tended to progress from their initial location at target onset towards reach-specific
regions of state space (see example trials in Figure 3e for leftward and rightward reaches). To quantify
this phenomenon, we computed pairwise similarities between latent states across all 762 reaches,
during (i) stimulus onset and (ii) 75 ms before movement onset (chosen such that it is well before
any detectable movement; Appendix A). We defined similarity as the negative Euclidean distance
between latent states and restricted the analysis to ‘fast’ latent dimensions with timescales smaller
than 200 ms to study this putatively fast process. When plotted as a function of reach direction, the
latent similarities at target onset showed little discernable structure (Figure 3f, left). In contrast, the
pairwise similarities became strongly structured 75 ms before movement onset where neighboring
reach directions were associated with similar preparatory latent states (Figure 3f, right). Similar albeit
noisier results were found when using factor analysis or GPFA instead of bGPFA (Appendix A).
These findings are consistent with previous reports of monkey M1 partitioning preparatory and
movement-related activity into distinct subspaces [14, 32], as well as with the analogous finding
that a ‘relative target’ subspace is active before a ‘movement subspace’ in previous analyses of this
particular dataset [28].

Previous work on delayed reaches has shown that monkeys start reaching earlier when the neural
state attained at the time of the go cue – which marks the end of a delay period with a known reach
direction – is close to an “optimal subspace” [1, 23]. We wondered if a similar effect takes place
during continuous, self-initiated reaching in the absence of explicit delay periods. Based on Figure 3e,
we hypothesized that the monkey should start moving earlier if, at the time the next target is presented,
its latent state is already close to the mean preparatory state for the required next movement direction.
To test this, we extracted the mean preparatory state 75 ms prior to movement onset (as above) for
each reach direction in the dataset. We found that the distance between the latent state at target onset
and the corresponding mean preparatory state was strongly predictive of reaction time (Figure 3g,
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Figure 3: Bayesian GPFA applied to primate data. (a) Schematic illustration of the self-paced
reaching task. When a target on a 17x8 grid is reached (arrows; 8x8 shown for clarity), a new
target lights up on the screen (colours), selected at random from the remaining targets. In several
analyses, we classify movements according to reach angle measured relative to horizontal (θ1, θ2).
(b) Learned mean and scale parameters for the bGPFA models. Small prior scales sd and posterior
mean parameters (||νd||22) indicate uninformative dimensions (Appendix J). (c) We applied bGPFA to
monkey M1 and S1 data during the task and trained a linear model to decode kinematics from firing
rates predicted from the inferred latent trajectories with different delays between latent states and
kinematics. Neural activity was most predictive of future behavior in M1 (black) and current behavior
in S1 (blue). Dashed lines indicate decoding from the raw data convolved with a Gaussian filter.
(d) Decoding from bGPFA applied to the combined M1 and S1 data (cyan). Performance improved
further when decoding from latent trajectories inferred from data where M1 activity was shifted by
100 ms relative to S1 activity (green). (e) Example trajectories in the two most informative latent
dimensions for five rightward reaches (grey) and five leftward reaches (red). Trajectories are plotted
from the appearance of the stimulus until movement onset (circles). During ‘movement preparation’,
the latent trajectories move towards a consistent region of latent state space for each reach direction.
(f) Similarity matrix of the latent state at stimulus onset showing no obvious structure (left) and 75 ms
prior to movement onset showing modulation by reach direction (right). (g) Reaction time plotted
against Euclidean distance between the latent state at target onset and the mean preparatory state for
the corresponding reach direction (ρ = 0.45).

Pearson ρ = 0.45, p = 4× 10−36). Such a correlation was also weakly present with factor analysis
(ρ = 0.21, p = 1.1 × 10−8) but not detectable in the raw data (ρ = 0.002, p = 0.95). We also
verified that the strong correlation found with bGPFA was not an artifact of the temporal correlations
introduced by the prior (Appendix C). Taken together, our results suggest that motor preparation is
an important part of reaching movements even in an unconstrained self-paced task. Additionally,
we showed that bGPFA captures such behaviorally relevant latent dynamics better than simpler
alternatives, and our scalable implementation enables its use on the large continuous reaching dataset
analysed here.

3.3 Long-timescale latent processes

Some latent dimensions inferred by bGPFA also had long timescales on the order of 1.5 seconds,
which is similar to the timescale of individual reaches (1-2 seconds; Appendix C). We hypothesized
that these slow dynamics might reflect motivation or task engagement. Consistent with this hypothesis,
we found that one of the slow latent processes (τ = 1.4 s) was strongly correlated with reaction
time during successful reaches (Pearson ρ = 0.40, p = 3.4× 10−28). Interestingly, the information
contained about reaction time in this long timescale latent dimension was largely complementary to
that encoded by the distance to preparatory states in the ‘fast’ dimensions (Appendix C), suggesting
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Figure 4: Analysis of a period without task participation. (a) Cursor speed over the course of the
recording session. Blue horizontal lines indicate the last successful trial before and first successful
trial after a period with no active task participation (blue shading). (b) Latent similarity matrix as
a function of time during the task. The latent dynamics during task participation occur in a largely
orthogonal subspace to the dynamics during the period with no active task participation. (c) Plot of
latent state over time for a long-timescale latent dimension strongly correlated with reaction time
(τ = 1.4 s).

that motor preparation and task engagement are orthogonal processes both contributing to task
performance.

The experimental recordings were also characterized by a period of approximately five minutes
towards the end of the recording session during which the monkey did not participate actively in the
task and the cursor velocity was near-constant at zero (Figure 4a). When analysing neural activity
across the periods with and without task participation, we found that neural dynamics moved to
a different subspace as the monkey stopped engaging with the task (Figure 4b). Importantly, we
were able to simultaneously capture these context-dependent changes as well as movement-specific
and preparatory dynamics (Section 3.2) by fitting a single model to the full 30 minute dataset. This
suggests that bGPFA can capture behaviorally relevant dynamics within individual contexts even
when trained on richer datasets with changing contexts.

Finally, we wondered how the neural activity patterns during periods with and without task participa-
tion were related to the long-timescale latent dimensions predictive of task engagement. Here we
found that the slow latent process considered above also exhibited a prominent change to a different
state as the monkey stopped participating in the task (Figure 4). This is consistent with our hypothesis
that this latent process captures a feature related to task engagement which slowly deteriorated during
the first 24 minutes of the task followed by a discrete switch to a state with no engagement in the task.
During the period of active task participation, this latent dimension was also correlated with time
within the session. Indeed, reach number and latent state were both predictive of reaction time, but
with the latent trajectory exhibiting a slightly stronger correlation (Pearson ρ = 0.40 vs. ρ = 0.37).
It is not surprising that task engagement decreases with time, and it is in this case difficult to tease
apart how motivation and time are differentially represented in such latent processes. However, based
on the strong and abrupt modulation by task participation, this latent dimension appears to represent
an aspect of engagement with the task beyond the passing of time.

Taken together, we thus find that bGPFA is capable of capturing not only single-reach dynamics and
preparatory activity but also complementary processes evolving over longer timescales, which would
be difficult to identify with methods designed for the analysis of many shorter trials.

4 Discussion

Related work The generative model of bGPFA can be considered an extension of the canonical
GPFA model proposed by Yu et al. [59] to include a Gaussian prior over the loading matrix C
(Section 2.1). In this view, bGPFA is to GPFA what Bayesian PCA is to PCA [5]; in particular, it
facilitates automatic relevance determination to infer the dimensionality of the latent space from data
[5, 41, 53]. Similar to previous work in the field, we also use variational inference to facilitate arbitrary
observation noise models, including non-Gaussian models more appropriate for electrophysiological
recordings [12, 25, 34, 50, 60, 61]. While variational inference has proven a useful framework for
such non-conjugate likelihood models, alternative approaches exist including the use of polynomial
approximations to the non-linear terms in the likelihood [24]. Another major challenge in the
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development of GP-based latent variable models such as bGPFA is to ensure scalability for longer
time series. In this work, we utilize advances in variational inference [30, 47] to facilitate scalability
to the large datasets recorded in modern neuroscience. In particular, we contribute a new circulant
variational GP posterior expressed partly in the Fourier domain that is both accurate and scalable.
This is similar to Keeley et al. [25], who address the problem of scalability by assuming independence
across Fourier features and formulating variational inference in the Fourier domain. However, we
instead perform inference in the time domain and include additional factors in our variational posterior
that ensure smoothness over time and allow for non-stationary posterior covariances. In contrast to
these approaches, Zhao and Park [60] rely on a low rank approximation to the prior covariance for
inference and temporal subsamples for hyperparameter optimization to overcome the computational
cost of model training. A conceptually similar approach employed by Duncker and Sahani [12] is
the use of inducing points which has been studied extensively in the Gaussian process literature
[17, 18, 52]. However, such low rank approximations can perform poorly on long time series where
the number of inducing points needed is proportional to the recording duration [6].

bGPFA is also closely related to Gaussian process latent variable models (GPLVMs) [33, 53] which
have recently found use in the neuroscience literature as a way of modelling flexible, nonlinear
tuning curves [22, 34, 58]. This is because integrating out the loading matrix C in p(Y |X) with a
Gaussian prior gives rise to a Gaussian process with a linear kernel. The low-rank structure of this
linear kernel yields computationally cheap likelihoods, and our variational approach to estimating
log p(Y |X) is in fact equivalent to the sparse inducing point approximation used in the stochastic
variational GP (SVGP) framework [17, 18]. In particular, our variational posterior is the same as
that which would arise in SVGP with at least D inducing points irrespective of where those inducing
points are placed (Appendix H). We also note that for a Gaussian noise model, the resulting low-rank
Gaussian posterior is the form of the exact posterior distribution (Appendix G). Additionally, since
the bGPFA observation model and prior over latents are both GPs, bGPFA is an example of a deep
GP [11] with two layers – the first with an RBF kernel and the second with a linear kernel. Finally,
our parameterizations of the posteriors q(xd) and q(fn) can be viewed as variants of the ‘whitening’
approach introduced by Hensman et al. [19] which both facilitates efficient computation of the KL
terms in the ELBOs and also stabilizes training (Section 2.2).

Conclusion & impact In summary, bGPFA is an extension of the popular GPFA model in neu-
roscience that allows for regularized, scalable inference and automatic determination of the latent
dimensionality as well as the use of non-Gaussian noise models appropriate for neural recordings.
Importantly, the hyperparameters of bGPFA are efficiently optimized based on the ELBO on training
data, which alleviates the need for cross-validation or complicated algorithms otherwise used for
hyperparameter optimization in overparameterized models [16, 22, 27, 28, 58, 59]. Our approach
can also be extended in several ways to make it more useful to the neuroscience community. For
example, replacing the spike count-based noise models with a point process model would provide
higher temporal resolution [12], and facilitate inference of optimal temporal delays across neural
populations [31]. This will likely be useful as multi-region recordings become more prevalent in
neuroscience [26]. Additionally, by substituting the linear kernel in p(Y |X) for an RBF kernel in
Euclidean space [58] or on a non-Euclidean manifold [22], we can recover scalable versions of recent
GPLVM-based tools for neural data analyses with automatic relevance determination.

While such latent variable models have already played a major role in systems neuroscience, progress
in the field is still hampered by the relative inaccessability of these methods to the general neuroscience
community. Here, we provide a ready-to-use Python package with GPU implementations of not only
bGPFA with ARD, but also standard GPFA and Factor Analysis with Gaussian and non-Gaussian noise
models. We hope that this implementation will help bridge the gap between methods development
and the practical use of these methods by the community, similar to other recent efforts to democratize
and compare latent variable models for neuroscience [44]. In future work, it will also be interesting
to extend bGPFA to non-linear observation models p(Y |X) and provide a general-purpose package
for latent variable modelling in neuroscience. As progress in neuroscience continues to accelerate,
these methods are likely to find extensive use in medical and industrial settings with applications e.g.
to brain-computer interfaces in human subjects [21, 40, 56]. With the rise of such technology transfer,
the research community should strive to maintain research transparency by providing open source
code for methods development, and to remain aware of ethical issues associated with the increasingly
narrow gap between research and applications in humans and other animals [9].
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