
Appendix

A Implementation details

A.1 Model implementation details

The Swap-VAE consists of an encoder and a symmetric decoder. Denote d as the total number of
neurons and k as the latent space dimension. The encoder contains three linear layers with output
size [d, k, k], each but the last layer is followed by batch normalization, with eps = 0.00005 and
momentum = 0.1, and the ReLU activation. The decoder contains three linear layers with output
size [k, k, d] where each but the last layer contains a Batch normlization and the ReLu activation
similar as above. The last layer of the decoder is followed by a SoftPlus activation with beta = 1
and threshold = 20. For synthetic experiments, all models are trained using a Nvidia Titan RTX
GPU for 100,000 iterations using an Adam optimizer with a learning rate of 0.0001. We used a batch
size of 256 for both synthetic experiments and monkey reaching experiments.

Following the standard linear evaluation procedure in self-supervised learning works (32; 34), we
used an one linear layer network as the linear decoder for the decoding accuracy. For the linear
decoder, we used the Adam optimizer with learning rate 0.005 and weight decay 0.00001 throughout,
for both reach and temporal decoding tasks. The hyperparameters are decided based on a grid search
of learning rate and weight decay on the supervised pre-trained feature space for reach directions.

A.2 BlockSwap implementation details

Our BlockSwap latent augmentation operation is implemented as shown in Fig S1. Here we use the
colors blue and green to represent two ‘styles’, and the colors pink and purple to represent the same
‘content’ that is shared by two augmented views.

Figure S1: BlockSwap latent space augmentation. The model separates the latent space into two parts and
solves an instance-specific alignment over time and neurons in the first part of the space, while building good
reconstructions at the output of the decoder using both parts of the latent space.

A.3 Dataset details

Data collection. We used the neural activity dataset that is collected from two rhesus macaque
monkeys (Chewie and Mihi). They were trained to move the computer cursor to reach a target
on a screen. Chewie is instructed to move the cursor from the center of the screen (wait for 500-
1500 ms) to the target (in 1000-1300 ms) immediately after the target appears. Mihi, differently, is
instructed to wait another 500-1500 ms to plan the movement after the target appears but before an
auditory ‘Go’ cue. Their spiking neural activities on primary motor cortex (M1) were recorded by
surgically implanted electrode arrays. The neural activities were thresholded and sorted during the
data collection stage.

Data pre-processing. For the monkey reaching dataset, after the data is binned, we compute the
variance of each neurons and remove the static neurons with zero variance. This procedure results in
a total numbers of neurons of 163 for Chewie day1, 148 for Chewie day 2, 163 for Mihi day 1, and
152 for Mihi day 2.

14



B Comparing performance across multiple initializations

In this section, we first include the standard deviation of the benchmark models after 5 repeats, and
then we investigate the variance of Swap-VAE in details.

B.1 Stability of the benchmark models

In table S1 and table S2, we include the standard deviation of the benchmark models that is computed
based on 5 random seeds. The model initial weights, the model training, and the linear evaluation
layer are all randomized differently based on the random seed. Here, the MYOW results are from the
reproduced version based on the hyperparameters, augmentations, and optimization details that we
selected for BYOL.

Table S1: Accuracy (in %) for the benchmark models in reach direction classification task. The standard
deviation is computed over 5 random initializations.

Supervised pi-VAE beta-VAE BYOL MYOW

Chewie-1 acc 61.59(±2.04) 66.30(±1.30) 64.34(±1.08) 62.12(±2.27) 67.61(±1.41)
δ-acc 77.58(±1.28) 82.93(±1.34) 80.83(±1.08) 81.27(±1.08) 81.63(±2.18)

Chewie-2 acc 69.71(±1.85) 61.33(±0.86) 60.24(±3.18) 57.25(±1.11) 63.06(±3.68)
δ-acc 78.18(±2.96) 73.63(±1.80) 80.09(±1.75) 76.89(±1.30) 81.46(±3.28)

Mihi-1 acc 62.86(±1.08) 62.63(±1.42) 58.11(±1.52) 60.03(±0.95) 64.94(±2.24)
δ-acc 79.10(±1.20) 79.20(±2.30) 75.98(±1.10) 78.82(±1.68) 82.29(±3.94)

Mihi-2 acc 60.72(±1.74) 62.70(±0.90) 60.23(±0.96) 59.94(±1.39) 57.30(±1.51)
δ-acc 74.02(±3.18) 76.89(±1.28) 77.89(±1.18) 78.10(±1.85) 71.80(±1.48)

Table S2: Accuracy (in %) for the benchmark models in temporal decoding classification.The standard deviation
is computed over 5 random initializations.

Sup-Time pi-VAE beta-VAE BYOL MYOW
Chewie-1 53.80(±1.68) 49.56(±1.33) 48.24(±1.20) 42.30(±0.98) 22.45(±1.62)
Chewie-2 55.58(±1.52) 54.45(±1.83) 63.76(±1.84) 39.69(±1.15) 31.96(±3.28)
Mihi-1 55.93(±2.09) 52.66(±2.10) 54.10(±0.98) 43.46(±0.87) 21.88(±2.24)
Mihi-2 58.75(±0.39) 48.03(±1.21) 47.89(±1.37) 38.16(±1.22) 22.09(±1.27)

B.2 Stability of the SwapVAE

To examine the robustness and stability of our model, we run experiments to study the performance of
Swap-VAE over different random initializations (see Table S3). We report the mean and the standard
deviation of the model accuracy in two ways, where ‘Whole’ denotes the result we obtain when we
train and evaluate the whole networks with 5 different random seeds, and in ‘Evaluation’ we further
select the model with the best performance from the previous five models and then retrain the linear
decoding layer training using 5 random initializations. Our results confirm that Swap-VAE maintains
a gap over other methods and provides insights into the different sources of variance in our model.

Table S3: Accuracy and standard deviation (in %) for reach direction classification on neural datasets.

Whole Evaluation
Mean SD Mean SD

Chewie-1 acc 72.81 1.40 74.47 0.27
δ-acc 85.04 0.94 86.25 0.26

Chewie-2 acc 68.97 3.41 75.37 0.62
δ-acc 83.66 1.81 86.12 0.29

Mihi-1 acc 64.26 0.89 66.00 0.71
δ-acc 82.18 1.55 83.31 0.66

Mihi-2 acc 66.12 0.87 66.94 0.58
δ-acc 82.74 0.77 84.24 0.11

15



Figure S2: Visualization of the representations learned by Swap-VAE. For each dataset, the reach
directions, the dynamics, and the reach directions with the dynamics for each classes are plotted after
applying tSNE to embed the data.

16



C Additional latent space quality experiments

C.1 Latent space visualizations

In Fig S2, we show the Swap-VAE latent subspaces visualizations for Chewie and Mihi. Similar to
Fig 3, we plot the latent space structure by applying tSNE to the Content and Style spaces individually
for all four datasets. For each dataset, the content space is shown on the left side while the style space
is shown on the right side. For each dataset, the first row is colored based on the reach directions,
the second row is colored based on the dynamics, and the third row is colored based on the reach
directions with the average ‘trajectory’ of each reach direction represented.

C.2 Time decoding details

The time decoding accuracy is computed similarly as the reach direction accuracy, but in this case,
the supervised model is trained to predict how far into each reach each sample is. The first bin
always marks the beginning of a reach and each reach is restricted to its first 9 bins, resulting in a
classification problem with 9 classes.

C.3 Multi-task decoding scores

Figure S3: Visualizations of reach and temporal decoding accuracy. Each plot contains the reach and
time decoding for a different neural recording, where we compare the decoding from either the Full,
Content, or Style space of our model with other baseline methods. For the supervised decoder, we
train two different decoders on either the reaching or temporal decoding task.

D Additional details on the generative quality experiment

We describe the details on the generative quality experiment (Section 4.2) here. With a pre-trained
and fixed Swap-VAE, we generate datapoints for data augmentation as below: We compute the latent
representation of an existing datapoint, and split it to a ‘content’ latent and a ‘style’ latent as defined
by the model. To generate a new datapoint, the ‘content’ latent is fixed and the ‘style’ latent is varied
with added noise. In practice, the noise is randomly sampled from 0.2×N (0, I). A new latent vector
is constructed by concatenating the original ‘content’ vector with the new ‘style’ vector, and is then
passed into the decoder to generate new instance-specific neural activities.

While the generated neural activities can effectively improve existing supervised models when the
generative models themselves surpass the supervised models (Chewie-1 and Mihi-2), they do not
improve existing supervised models when the generative models have similar or worse performance
as the supervised models (Chewie-2 and Mihi-1). It is reasonable to surmise that the performance
of the generative model is the upper bound of the supervised model trained via generated neural
activities. However, we note that the generated neural activities are still valuable for other downstream
tasks.

E Ablation experiments

E.1 Different latent dimensions

We conducted two types of ablation experiments that tackle two questions:

17



• What would happen if we split the 128-dim latent space unevenly between content and style,
and how does the proportion effect the performance?

• What would happen if we allocate 128-dim to the ‘Content’ latent space, which equals the
latent space dimension of other models, and have additional ‘Style’ latent dimensions?

Dimension of content vs. style variables. In Table S4, we fix the Full latent space dimension to
be 128-dim, and vary the size of the Style latent space dimension. From the table, we observe that
our models have comparably good performance when splitting the latent variables into different
configurations. Note that when s = 128, the proposed model would converge to a beta-VAE model
(see Table 1 for beta-VAE performances).

Table S4: Accuracy (in %) for different latent space separation.
s = 0 s = 16 s = 32 s = 64 s = 96

Chewie-1 acc 62.56 68.85 69.65 73.44 71.22
delta-acc 79.23 82.27 83.63 85.38 82.63

Chewie-2 acc 59.80 65.56 65.75 66.06 67.23
delta-acc 77.34 82.55 84.14 82.26 83.50

Mihi-1 acc 62.92 65.60 63.62 65.15 64.20
delta-acc 79.39 79.56 80.28 81.16 80.49

Mihi-2 acc 64.10 65.15 63.25 67.78 63.28
delta-acc 80.46 81.55 79.75 84.05 79.90

Testing latent spaces of different dimensionality. Here, we fix the Content space dimension to
be 128-dim, and add additional Style latent space dimensions. In Table S5, we report the accuracy
under linear evaluation on the Content latent space only. This comparison is reasonable since only
the 128-dim Content space is regularized by the alignment loss to classify the reach directions. This
result shows that our model has the possibility to achieve even better performances when the Content
space has the equal dimension as other models.

Table S5: Accuracy (in %) for different additional Style latent space dimensions.
s=32 s=64 s=128

Chewie-1 acc 72.82 74.13 69.79
delta-acc 83.39 84.74 85.47

Chewie-2 acc 65.09 68.42 67.47
delta-acc 82.03 82.88 86.14

Mihi-1 acc 65.82 68.90 62.32
delta-acc 82.29 84.88 78.44

Mihi-2 acc 66.52 65.03 65.67
delta-acc 80.94 82.22 81.80

We also note that the accuracy evaluated using the Full latent space features is in general similar or
slightly better than the presented values.

E.2 Disentanglement score for different ablation models

One interesting question to ask is that: does BlockSwap facilitate disentanglement? In order to answer
this question, we provide the disentanglement score for all of the loss function ablations that we
tested in table S6. Our results suggest that keeping the alignment loss and the original reconstruction
term but removing the BlockSwap augmentation (No-Swap) does not facilitate better disentanglement
compared with beta-VAE. Removing the alignment term but including the BlockSwap (no L2)
provides better disentanglement. Removing the alignment term and the original reconstruction term
(Swap-only) provides the closest disentanglement score as our model. Swap-VAE provides the best
disentanglement performance.

18



Table S6: Multi-task disentanglement score for different ablation models.
beta-VAE no L2 No-Swap Swap-only Ours

0.2070 0.3455 0.2089 0.4914 0.5380

E.3 More details about data augmentation operations

The model we presented in the paper used only used Dropout (S-Aug) and Temporal shift (T-Aug) as
two data augmentation operations. We are aware that more possible data augmentation operations
exist, e.g. the Pepper operation and Noise operation. However, when we tried to add those data
augmentations into our model, the model performance did not improve further. It is reasonable to
surmise that generative models may not need data augmentation operations that are as intense as that
in recent self-supervised learning works.

19


	Introduction
	Background and Related Work
	Variational autoencoders and their application in neural data analysis
	Instance-specific alignment and self-supervision

	Methods
	Model for neural datasets
	Unifying instance-specific alignment and generative modeling
	BlockSwap: A novel latent space augmentation for disentanglement
	Representational quality and disentanglement metrics

	Experiments
	Synthetic experiments
	Experiments on neural datasets
	Model ablations: Testing our BlockSwap augmentation

	Conclusion
	Implementation details
	Model implementation details
	BlockSwap implementation details
	Dataset details

	Comparing performance across multiple initializations
	Stability of the benchmark models
	Stability of the SwapVAE

	Additional latent space quality experiments
	Latent space visualizations
	Time decoding details
	Multi-task decoding scores

	Additional details on the generative quality experiment
	Ablation experiments
	Different latent dimensions
	Disentanglement score for different ablation models
	More details about data augmentation operations




