
Supplementary Material for Kernel Identification
Through Transformers

A Background: Self-Attention

Since the attention mechanism is rarely used within the GP literature, we provide a brief review of
the topic in this section. Below we follow the description of attention as given by Vaswani et al. [8],
including extensions to self-attention and multi-head self-attention.

The dot-product attention mechanism [8] takes as input a set of queries, keys and values. The queries
and keys have dimension Dz and the values have dimension Dv which may differ from Dz . The
operation of dot-product attention then generates weights from the queries and keys which are used
to produce a linear mapping of the input values.

Attention(Q,K, V) = softmax
(
QK>√
Dz

)
V , (5)

where the Q, K and V matrices denote the row-wise collection of queries, keys and values respec-
tively. The softmax operation is applied row-wise with scaling to avoid the inputs exploding which
hampers training. Intuitively, attention enables the input values to be processed to yield representa-
tions which account for the context of all other values in the sequence.

Dot-product self-attention acts on a single sequence of inputs, using it to generate queries, keys and
values for the attention mechanism described above. Queries, Keys and Values are generated by
right multiplication with learned weight matrices, WQ, WK and WV respectively. Self-attention
is therefore a mathematical operation which takes as input, a set of vectors of length D collected
row-wise in Z, Z ≡ {zi}Ni=1, zi ∈ RD, and computes a weighted sum of vectors for each index i,

yi =
∑
j

wijzj . (6)

The weights, which collectively form a matrix W , are a function of the input vectors in Z,

W = softmax
(
Ŵi/
√
D
)

where Ŵ = ZWQW
>
KZ
> . (7)

When this operation is repeated H times with individual sets of matrices {Wh
Q,W

h
K ,W

h
V }Hh=1 the

resulting operation is called Multi-Head Self Attention (MHSA). Let ah denote the attention encoded
output of a single head, the output of multi-head attention is then computed as,

MHSA(Z) ≡ Multihead(Z,Z,Z) = concat(a1, ...aH)︸ ︷︷ ︸
N×HD

W0 ∈ RD , (8)

where ah = Attentionh(ZW
h
Q, ZW

h
K , ZW

h
V) . (9)

HereW0 ∈ RHD×D is the final trainable projection matrix which brings the outputs of the individual
heads back to the original dimension D.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

B Proofs

B.1 On encoding sets of datasets

Our transformer architecture is trained on input-output datasets where the output is drawn from GP
priors with a known kernel. Each labeled example is thus a self-contained dataset. This introduces
some challenges in ensuring that each dataset’s encoding is not sensitive to the ordering of the data
points within each dataset . A training instance D = {{xi,j}Dj=1, yi}Ni=1 ∈ RN×D+1 denotes a
rank-2 input tensor which carries the interpretation of a set of N vectors in RD+1. For instance,
[xi,1, . . . , xi,D, yi] is the ith vector. Hence, we wish to preserve invariance of the encoded represen-
tation with respect to a permutation of the rows within each dataset.

ENCODER(Dπ) = ENCODER(D) (10)

where Dπ = {{xπ(i),j}Dj=1, yi}Ni=1, and π : {1, . . . , N} → {1, . . . , N} is a bijective permutation
function on the row indices. This is addressed by Proposition 1.

Further, we want to ensure that the encodings of each dataset are equivariant to the ordering of
the input dimensions (columns) in each dataset. If ν : {1, . . . , D} → {1, . . . , D} is a bijective
permutation function on the column indices then,

ENCODER(Dν) = ν(ENCODER(D)) (11)

whereDν = {{xi,ν(j)}Dj=1, yi}Ni=1. Note that the position of dimension (D+1) denoting the output
column in each training instance is always preserved. We address this permutation equivariance in
Proposition 2.

Lemma 1: The self-attention mechanism (for each head) defined in A is permutation equivariant.

softmax
(
ZπWQW

T
KZ

T
π√

D

)
ZπWV = π

(
softmax

(
ZWQW

T
KZ

T

√
D

)
ZWV

)
∀ π ∈ SN

where Zπ = π(Z) denotes a permutation of the rows in Z, π ∈ SN where SN denotes the set of all
permutations of the row indices {1, . . . , N}.

Proof. First, we note that the softmax and scaling are element-wise operations and don’t interfere
with the ordering of rows; in order to prove the permutation equivariance we just need to focus on
the matrix multiplication operations.

To prove:
ZπJZ

T
π ZπWV = π(ZJZTZWV) (12)

where we have pre-multiplied WQW
T
K = J (by the associativity of matrix multiplication).

Without loss of generality assume,

Z =

[
a b
c d

]
Zπ =

[
c d
a b

]
ZTπ =

[
c a
d b

]
J =

[
j1 j2
j3 j4

]
WV =

[
v1 v2
v3 v4

]
(13)

First, we note that the operation ZTZ is permutation invariant, ZTπ Zπ = ZTZ

ZTπ Zπ =

[
c a
d b

] [
c d
a b

]
=

[
c2 + a2 cd+ ab
cd+ ab b2 + d2

]
=

[
a c
b d

] [
a b
c d

]
= ZTZ

Hence, the LHS term in (12) becomes,

ZπJZ
T
π ZπWV = Zπ JZ

TZWV︸ ︷︷ ︸
H

= ZπH = π(ZH) (14)

where the final equality can be shown to be true by assuming without loss of generality,

H =

[
h1 h2
h3 h4

]
,

2

Hence,

ZπH =

[
c d
a b

] [
h1 h2
h3 h4

]
=

[
ch1 + dh3 ch2 + dh4
ah1 + bh3 ah2 + bh4

]
= π

([
ah1 + bh3 ah2 + bh4
ch1 + dh3 ch2 + dh4

])
= π

([
a b
c d

] [
h1 h2
h3 h4

])
= π(ZH)

Note that this proof shows equivariance of self-attention in a rank 2 input tensor case (Z ∈ RD×D)
however the proof can be generalised to higher rank inputs. For example, if Z ∈ RD×E×J is a rank
3 input tensor and we permute the indices on the E dimension ZD×E×J → ZD×π(E)×J = ZπE ,
then, the output of self-attention is permuted on the same dimension.

MHSA(ZπE) = πE(MHSA(Z)) (15)

In the full encoder architecture, the attention mechanism is applied internally as part of a sequence of
blocks called set attention blocks SAB[5]1. The block operation leaves the architecture permutation
equivariant.

Lemma 1.1: The set attention block SAB(Z) is permutation equivariant.

SAB(Z) := LayerNorm(C + Z)

where C denotes a context vector computed with the Attention Mechanism A.

C = rFF(MHSA(Z))

Proof. We know that the MHSA(·) operation is permutation equivariant and LayerNorm is an in-
dependent element-wise operation with no parameters. It remains to verify that the feed-forward
operation leaves the outputs permutation equivariant.

Without loss of generality assume that the outputs of MHSA(Z) are given by an N -D tensor A ∈
RD×D...×D. The feed-forward layer with k hidden units applies a matrix Wk of dimension D × k
along the last axis of the inputs yielding a tensor output rFF(A) = AWk of shape D × . . . D × k.
Essentially, each sub-tensor of shape (1 × . . . × D) (row of size D) is multiplied by the weight
matrix independently and identically to yield the output sub-tensors of shape (1 × . . . 1 × k) (row
of size k). Since this operation is applied row-wise it is permutation equivariant to the order of the
order of the sub-tensors in A⇒ rFF(Aπ) = π(rFF(A)).

Proposition 1: Let SN denote the set of all permutations of the row-wise indices {1, 2, . . . , N} and
Dπ denote an input dataset with the ordering of indices given by π ∈ SN The sequence encoding
component SEQ ENC is invariant to a permutation of the indices within a dataset D.

SEQ ENC(D) = SEQ ENC(Dπ) ∀ π in SN

Proof. The sequence encoder forward pass is formulated as:

SEQ ENC(D) = MP(SAB×6(rFF(R(D))))

where R is a reshape operation which takes a rank-2 tensor input of size (N ×D + 1) and outputs
a rank-3 tensor of shape (D ×N × 2). This reshaped tensor is formed by stacking row-wise of the
N × 2 sub-tensors corresponding to each dimension yielding {{(xi,j , yi)}Ni=1}Dj=1. Let Dπ denote

1We note that our implementation of the set attention block differs slightly in its use of dropout and residual
connections from that of Lee et al. [5].

3

R
ep

re
se

nt
at

io
n

pe
r d

im
en

si
on

D
en

se
 L

ay
er

 S
et

 A
tte

nt
io

n
B

lo
ck

 (x
6)

P
oo

lin
g

(o
ve

r s
eq

ue
nc

e)

 S
et

 A
tte

nt
io

n
B

lo
ck

 (x
6)

D
en

se
 L

ay
er

 (R
eL

U
)

D
en

se
 L

ay
er

 (R
eL

U
)

D
ec

od
er

 P
ro

m
pt

E
m

be
dd

in
g

La
ye

r

D
ro

po
ut

D
ec

od
er

 B
lo

ck
 (x

3)

D
en

se
 L

ay
er

S
of

tm
ax

O
ut

pu
t P

ro
ba

bi
lit

ie
s

x dimensions(d)
+1

batch size

se
qu

en
ce

le

ng
th

Input Shape: (b, n, (d + 1))

SEQ_ENC DIM_ENC
DECODER

ENCODER = DIM_ENC ० SEQ_ENC()

R
es

ha
pe

Figure 6: KITT architecture adapted from image captioning network Xu et al. [9].

a training instance (a dataset) of shape (N × D + 1) where π denotes a permutation of the rows.
The output of the reshape operation R is a rank-3 input tensor of shape D × π(N) × 2 where
the order of data points has been permuted for each dimension. rFF is permutation equivariant as
it acts on rows of the input dataset, hence rFF(R(Dπ)) = π(rFF(R(D))). The SAB block [5] is
permutation equivariant from Lemma 1.1. We know that permutation equivariant layers stacked
together are permutation equivariant [10]. Hence, a composition of SAB layers (SAB×6) with rFF
is permutation equivariant.

Further, the mean-pooling operation MP applied across the sequence (N) in each dimension is
permutation invariant by definition, hence,

SEQ ENC(Dπ) = MP(SAB×6(rFF(R(Dπ)))) (16)
= MP(π(SAB×6(rFF(R(D)))) (17)
= MP(SAB×6(rFF(R(D)))) (18)
= SEQ ENC(D) (19)

Proposition 2: Let QD denote the set of all permutations of the column-wise indices (dimensions)
{1, 2, . . . , D} and Dν denote an input dataset with the ordering of indices given by ν ∈ QD. The
sequence encoder SEQ ENC and dimension encoder DIM ENC components are equivariant to a
permutation of the dimensions within a dataset D.

ENCODER(Dν) = ν(DIM ENC(SEQ ENC(D))) ∀ ν ∈ QD

Proof. First, we tackle the sequence encoder SEQ ENC. Let Dν denote a training instance of shape
(N × D + 1) where ν denotes a permutation of the input columns2. The output of the reshape
operation is a 3d input tensor of shape (D × N × 2). Since the feed-forward layer rFF applies to
each N × 2 sub-tensor independently and identically it renders the output permutation equivariant,
rFF(R(Dν)) = ν(rFF(R(D))).
The SAB×6 block is permutation equivariant from Lemma 1.1. The mean-pooling operation col-
lapses the dimension of size N (i.e. it is applied across the sequence of data points in each dimen-
sion) yielding an output which is permutation equivariant to the order of dimensions.

Hence, SEQ ENC(Dν) = ν(SEQ ENC(D)).
The dimension encoder DIM ENC is implemented as a stack of multi-head attention blocks SAB×6
which are permutation equivariant (as shown), hence the full encoder is a composition of permuta-
tion equivariant transformations (w.r.t. dimensions),

2The output column is always on the last axis

4

Inputs

Query Key Value

Dense Layer

Dense Layer

Dropout

Layer Norm

Dense Layer Dense Layer

Multi-Head Attention (Vaswani et al. 2017)

Q
ue

ry
K

ey
Va

lu
e

D
en

se
 L

ay
er

M
as

ke
d

M
ul

ti-
H

ea
d

A
tte

nt
io

n
(V

as
w

an
i e

t a
l.

20
17

)

D
ro

po
ut

La
ye

r N
or

m

D
en

se
 L

ay
er

D
ec

od
er

 P
ro

m
pt

s

D
en

se
 L

ay
er

E
nc

od
er

 O
ut

pu
t

K
ey

Va
lu

e

D
en

se
 L

ay
er

M
ul

ti-
H

ea
d

A
tte

nt
io

n
(V

as
w

an
i e

t a
l.

20
17

)

D
en

se
 L

ay
er

D
ro

po
ut

La
ye

r N
or

m

D
en

se
 L

ay
er

 (R
eL

U
)

D
en

se
 L

ay
er

 (R
eL

U
)

D
en

se
 L

ay
er

D
ro

po
ut

La
ye

r N
or

m

Figure 7: Left: Set Attention Block. Right: Decoder Block

DIM ENC(SEQ ENC(Dν)) = ν(DIM ENC(SEQ ENC(D)))

The encodings produced by our encoder are therefore invariant to the ordering of data points and
equivariant with respect to permutations of dimension. When coupled with the fact that we do not
add any location encoding before passing the encodings to our decoder, this renders the kernels
proposed by the full KITT model fully invariant to permutations of both the dimensions and indices
in the input dataset. This follows from the decoder treating all of the provided encodings equally,
attending to them according to the values of the queries generated by the prompt provided and the
keys calculated from the encodings themselves. More information on the architecture of the decoder
is provided in the next section.

C KITT Architecture

In this section, we expand on the discussion of KITT’s architecture in the main body of the paper
with additional detail and diagrams.

Figure 6 shows the full end-to-end KITT architecture which maps from a dataset to a distribution
over kernels. Both the encoder and the decoder utilise sets of 6 attention blocks in conjunction with
typical densely connected layers. Where no activation function is specified the dense layer simply
represents multiplication by a matrix of learned weights. These dense layers operate only on the
final dimension of the input tensors and are therefore referred to as row-wise feed forward layers
(rFF). As shown in Figure 1, the operation of the decoder is recurrent in so far as it is run several
times with the same encodings, updating the prompt with the proposed kernel from the last step at
each iteration. We only run the decoder multiple times, as it is only the prompt that changes each
time; once calculated the encoded dataset representations are cached and reused in each pass of the
decoder. Note that during training there is no need for repeated forward passes through the decoder
as the full caption is known. We are therefore able to train the decoder by passing copies of the
caption with differing masking through the decoder to effectively parallelise decoder prediction at
each point of caption generation. The mask acts to prevent looking ahead to what is to be predicted.

The internal operations of the Set Attention Blocks and the Decoder Block which form the core of
the encoder and decoder respectively are depicted in Figure 7.

Our Set Attention Blocks differ slightly from those introduced by Lee et al. [5]. Following Liu et al.
[6], we utilise dropout [4] with a rate of 0.1, and favour a single residual connection and layernorm
[2] operation as compared to the two instances of layer norm with residual connection used by Lee
et al. [5].

A key difference between our encoder and the original transformer [8] is the absence of an explicit
positional encoding added to the inputs. In our setting of processing full datasets, this is not required

5

Approach Kernel Hyperparameters Reference
Tree Search (TS) Flexible ML-II Duvenaud [3]
Neural Kernel Network (NKN) Flexible ML-II Sun et al. [7]
Amortised Hyper. Inference (AHGP) Fixed (SM) Amortised Liu et al. [6]
KITT (This work) Flexible ML-II –

Table 1: A summary of the kernel selection and optimisation methods under consideration.

Dataset RBF TS NKN AHGP KITT (E + D) KITT (E)
Boston 2.40 (0.05) 2.08 (0.02) 2.39 (0.08) 2.37 (0.12) 2.37(0.04) 2.27 (0.06)
Concrete 2.96 (0.03) 2.46 (0.03) 2.84 (0.26) 3.46 (1.33) 2.65 (0.04) 2.64 (0.04)
Energy 0.56 (0.04) -0.14 (0.05) 0.21 (0.16) 0.84 (0.22) 0.08 (0.07) 0.41 (0.12)
Wine -3.94 (0.52) -3.94 (0.05) -0.85 (0.06) 0.32 (0.08) -0.88 (0.04) -0.86 (0.04)
Yacht -0.34 (0.02) -0.40 (0.03) 0.12 (0.27) 0.99 (0.09) -0.25 (0.11) -0.75 (0.06)
Kin8mn -1.12 (0.01) -1.29 (0.02) -1.29 (0.00) -0.19 (0.04) -1.14 (0.02) -1.14 (0.02)
Naval -9.74 (0.02) -8.87 (0.22) -9.92 (0.00) -5.40 (0.10) -9.84 (0.01) -9.82 (0.01)
Power 2.84 (0.03) 2.33 (0.03) 2.41 (0.02) 3.11 (0.15) 2.57 (0.05) 2.59 (0.05)

Table 2: A comparison of kernel learning approaches for UCI benchmarks. NLPD (± standard error
of mean) evaluated on average of 10 splits with 90% of the data used for training.

as the relevant positional information is naturally contained within the inputs. The position of a dat-
apoint is defined by its x values which form an integral part of the input and are therefore processed
directly by the transformer without any need for external processing. This denotes an important
generalisation of the Transformer beyond it’s original application in natural language processing to
our setting of detecting patterns in any numerical dataset.

Our decoder blocks are implemented as originally proposed by Vaswani et al. [8] when introducing
the Transformer architecture. However, unlike Vaswani et al., we omit positional encodings from
the input prompt. Positional encodings are not required when processing a kernel caption due to
the transitivity of the addition of kernels (ka + kb = kb + ka). The order of previously predicted
kernels does therefore not influence the prediction of the next kernel. It is only the set of previous
predictions which is important. In order to enable the ordering of kernels within a sum to convey
some degree of information, we adopt a formalism where kernels are stated in decreasing order of
their variance.

D Further Experimental Results

Here we present further details of our experimental results. The NLPD values illustrated in Figure
4 in the main text, corresponding to the UCI regression tasks, are shown in Table 2. The RMSE
values for the same experiments are given in Table 3. Finally, Table 4 shows that performing model
averaging across the top three kernels offers some advantage over simply selecting the top one, while
both approaches comfortably outperform a random kernel selection.

In all cases, quoted uncertainties are estimated from repeating ten different splits.

E Priors

An important step in the construction of the training data is defining a suitable set of priors for the
hyperparameters for each kernel in the vocabulary. We select priors for each individual hyperparam-
eter of the component kernels ensuring a wide support as discussed in the main text. For product
kernels we learn a single variance hyperparameter, for instance, σ2

f (k1k2k3) but each additive term
has its own variance hyperparameter. Since the priors are assigned on individual lengthscales in
each component kernel, the prior on the implied lengthscale ends up having compressed support
over a narrower range of shorter lengthscales (see figure 8). Hence, the priors for the component
lengthscale hyperparameters in product kernels are scaled to ensure a target prior over the implicit
lengthscale. This is an important correction to make, because otherwise the network will learn to
identify product kernels based upon their characteristically shorter lengthscales.

6

Dataset RBF TS NKN AHGP KITT (E + D) KITT (E)
Boston 3.06 (0.21) 3.12 (0.29) 2.51 (0.15) 2.73 (0.38) 3.14 (0.27) 2.56 (0.13)
Concrete 4.89 (0.17) 3.83 (0.18) 3.69 (0.24) 3.45 (0.45) 3.75 (0.18) 3.79 (0.2)
Energy 0.43 (0.02) 0.28 (0.01) 0.25 (0.02) 0.51 (0.07) 0.26 (0.012) 0.28 (0.012)
Wine 0.65 (0.01) 0.55 (0.01) 0.52 (0.01) 0.58 (0.04) 0.546 (0.008) 0.545 (0.0074)
Yacht 0.22 (0.02) 0.22 (0.01) 0.31 (0.06) 0.46 (0.27) 0.227 (0.024) 0.187 (0.014)
Kin8mn 0.08 (9e-04) 0.08 (0.00) 0.07 (0.00) 0.19 (0.01) 0.078 (0.001) 0.078 (0.0011)
Naval 1e-05 (5e-07) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.58e-5 (5e-7) 1.6e-5 (3.5e-7)
Power 4.13 (0.12) 3.33 (0.16) 2.68 (0.07) 4.23 (0.24) 3.33 (0.17) 3.36 (0.16)

Table 3: A comparison of kernel learning approaches for UCI benchmarks. RMSE (± standard error
of mean) evaluated on average of 10 splits with 90% of the data used for training. The acronyms
used here are defined in Table 1.

Dataset Random KITT Top 1 KITT Top 3
Boston 3.48 (0.56) 3.24 (0.18) 2.56 (0.13)
Concrete 5.75 (0.91) 4.03 (0.21) 3.79 (0.2)
Energy 1.43 (0.93) 0.386 (0.012) 0.28 (0.012)
Wine 0.66 (0.02) 0.55 (0.0077) 0.545 (0.0074)
Yacht 2.15 (0.95) 0.209 (0.016) 0.187 (0.014)
Kin8mn 0.14 (0.02) 0.08 (9e-04) 0.078 (0.0011)
Naval 0.01 (0.01) 1.68e-05 (3.7e-07) 1.6e-05 (3.5e-07)
Power 5.43 (1.26) 3.44 (0.14) 3.36 (0.16)

Table 4: Predictive performance (RMSE) for three different model averaging strategies.

Remark 1: The product of two RBF kernels with identical lengthscales, l1 = l2, yields another RBF

kernel with lengthscale lprod =
l1√
2

. The product of three RBF kernels with identical lengthscales,

l1 = l2 = l3, yields another RBF kernel with lengthscale ltriple =
l1l2l3√

l21 + l22 + l23
.

Remark 2: If lengthscales l1, l2, l3 ∼ LN (µ, σ2) are independent log-normal random variables,
then their product l1l2l3 ∼ LN (3µ, 3σ2) and

√
(l2l3)2 + (l1l3)2 + (l1l2)2∼̇LN (0.5µz, 0.25σ

2
z)

where,

σ2
z = ln

[∑
e2µ+σ

2

(eσ
2 − 1)

(
∑
eµ+σ2/2)2

+ 1

]
, (20)

µz = ln
[∑

eµ+σ
2/2
]
− σ2

z

2
, (21)

is an approximation to the sum of log-normally distributed random variables [1].

Hence, ltriple∼̇LN (3µ − 0.5µz, 3σ
2 + 0.25σ2

z − 2ρ(
√
3σ)(
√
0.25σz)) where ρ is the correlation

coefficient. Since we can deduce how the implied lengthscales in product kernels are approximately
distributed, we can compute an approximate scaling factor for the priors in each of the component
kernels such that the overall shrinkage is compensated for. This corection is shown in Figure 9. The
propagation of lengthscales will differ slightly for kernels whose spectral densities are non-Gaussian,
however this is a relatively small impact.

F Experimental Details

F.1 Ground-Truth Experiments

For each combination of test-size and dimensionality, we draw 300 GP samples from known primi-
tive kernels and report test time classification accuracy. We report accuracy in terms of the fraction
(%) of samples classified to the ground truth primitive kernel (i.e. correct classifications). We report

7

Dataset N d TS KITT (E)
Boston 506 13 450.3 (32.6) 0.023 (0.001)
Concrete 1030 8 1701.2 (121.4) 0.023 (0.001)
Energy 768 8 2936.8 (364.1) 0.023 (0.001)
Wine 1599 11 2988.0 (409.5) 0.022 (0.001)
Yacht 308 6 352.9 (20.3) 0.023 (0.002)
Kin8mn 8192 8 3392.9 (104.7) 0.022 (4e-04)
Naval 11934 14 6194.2 (677.8) 0.022 (4e-04)
Power 9568 4 3174.1 (166.8) 0.022 (4e-04)

Table 5: Time taken (in seconds) to select a kernel, on an Intel i7-8700 12 CPU cores (3.20GHz,
32GB RAM) with one GPU (GTX 1070, 8GB RAM). We report means with 1 std. deviation es-
timated from 10 repetitions. For the Tree Search (TS) times, only a maximum of N = 2, 000
datapoints are used.

means and standard errors over three runs per combination. Further, we report top-3 accuracy for
the test size experiment and top-3/top-5 accuracy for the test dimensions experiment where we fixed
the size of test inputs to N = 1600 across dimensions.

F.2 ML-II Training

For all experiments, the initial set of hyperparameter values was determined by selecting the highest
marginal likelihood from 1, 000 random draws from the priors.

G Broader Impact

Selecting a kernel for a dataset to be modelled with a GP is a long-standing challenge and research
goal for GP researchers. Techniques to learn the functional form of a kernel are usually extremely
computationally intensive and can deter GP practitioners from using them. The common approach
is to use a reasonable default and focus ones efforts on scalable training once a kernel has been
fixed. We believe that a pre-trained solution such as the one we propose in our paper which removes
the burden of expensive kernel selection at experiment time may enjoy wide-spread adoption and
popularity. A sufficiently large pre-trained network available for direct download and inference
enables users to cross-check and compare their hand-crafted kernels with automated proposals.

8

Figure 8: Random samples drawn from a triple product kernel across two input dimensions - before
(top) and after (bottom) accounting for the induced shrinkage in lengthscale.

Figure 9: Left: Histogram of samples from the lengthscale prior distribution and the implied prior
distribution for a product of three RBF kernels. Right: Additionally, samples (green) from the scaled
prior ensuring that the range of lengthscales in the final product kernel has the same width as the
component kernels.

9

References
[1] Søren Asmussen and Leonardo Rojas-Nandayapa. Asymptotics of sums of lognormal random

variables with gaussian copula. Statistics & Probability Letters, 78(16):2709–2714, 2008.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] David Duvenaud. Automatic model construction with Gaussian Processes. PhD thesis, Uni-
versity of Cambridge, 2014.

[4] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–
1059, 2016.

[5] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744–3753. PMLR, 2019.

[6] Sulin Liu, Xingyuan Sun, Peter J Ramadge, and Ryan P Adams. Task-agnostic amortized
inference of Gaussian Process hyperparameters. Advances in Neural Information Processing
Systems, 33, 2020.

[7] Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and Roger Grosse.
Differentiable compositional kernel learning for gaussian processes. In International Confer-
ence on Machine Learning, pages 4828–4837. PMLR, 2018.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems, pages 5998–6008, 2017.

[9] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In International conference on machine learning, pages 2048–2057. PMLR,
2015.

[10] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems,
pages 3391–3401, 2017.

10

