
Kernel Identification Through Transformers

Fergus Simpson
Secondmind

Cambridge, UK
fergus@secondmind.ai

Ian Davies ∗
InstaDeep

London, UK

Vidhi Lalchand
University of Cambridge

Cambridge, UK

Alessandro Vullo
Secondmind

Cambridge, UK

Nicolas Durrande
Secondmind

Cambridge, UK

Carl Rasmussen
University of Cambridge

Cambridge, UK

Abstract

Kernel selection plays a central role in determining the performance of Gaussian
Process (GP) models, as the chosen kernel determines both the inductive biases
and prior support of functions under the GP prior. This work addresses the chal-
lenge of constructing custom kernel functions for high-dimensional GP regression
models. Drawing inspiration from recent progress in deep learning, we introduce a
novel approach named KITT: Kernel Identification Through Transformers. KITT
exploits a transformer-based architecture to generate kernel recommendations in
under 0.1 seconds, which is several orders of magnitude faster than conventional
kernel search algorithms. We train our model using synthetic data generated from
priors over a vocabulary of known kernels. By exploiting the nature of the self-
attention mechanism, KITT is able to process datasets with inputs of arbitrary di-
mension. We demonstrate that kernels chosen by KITT yield strong performance
over a diverse collection of regression benchmarks.

1 Introduction

In recent years deep parametric models have become a prominent class of model for supervised
learning and have delivered impressive empirical performance over a wide range of tasks. An im-
portant limitation, however, is that in their conventional form deep models do not provide prediction
uncertainty. While their Bayesian counterparts try to achieve this, they require significant modi-
fications to the training procedure and are computationally expensive. Uncertainty quantification
in deep models is widely considered to be an open problem, the large array of research proposing
alternative Bayesian neural networks underscores this [10, 12, 17].

On the other hand, kernel driven methods within the Bayesian framework like Gaussian processes
(GPs) account for prediction uncertainty by design. While GPs provide a flexible framework for
inferring distributions over functions, the inductive biases are controlled by the kernel function1. A
well chosen kernel will typically yield dramatically better performance than a poorly chosen one.

How should we learn expressive kernels for high-dimensional tasks? This has frequently been high-
lighted as a central question for the continued relevance of GP methods [11]. This work uses rep-
resentations generated by a deep neural network to identify suitably expressive kernels for high-
dimensional GP regression tasks. Kernel recommendation is performed by a decoder with access
to a large vocabulary of primitive kernels and products of primitive kernels. The decoder maps an

∗Work undertaken while at Secondmind
1also called covariance function or covariance kernel

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

encoded representation of a dataset to a kernel that can be used to model it. The representation is
attained by encoding the dataset, treated as a sequence of (input, output) pairs D = {xi, yi}Ni=1,
utilising the permutation-equivariant nature of self-attention networks.

By training KITT with a sufficiently rich vocabulary of kernels, it can predict suitable kernels for a
diverse array of real datasets. This work presents the following novel contributions:

• Inspired by the successes of image captioning networks, we develop a novel framework
named KITT for amortised kernel search. KITT takes raw datasets for predictive modelling
as input and proposes kernels composed from a large vocabulary of kernel functions.

• KITT’s architecture introduces two novel features: it is entirely agnostic to the length and
dimensionality of the data we wish to perform inference on, and it offers double permuta-
tion invariance (this ensures its outputs are invariant to permutations in either input dimen-
sions or data points).

• We show that KITT can deliver kernel predictions in under 0.1 seconds.
• We introduce a novel variant of the linear kernel which forms a key component of KITT’s

vocabulary.
• We demonstrate that the kernels identified by KITT offer strong performance against other

baselines which deal with kernel engineering in the context of GPs.

2 Background

This section offers a brief review of the two topics which are central to this work, namely Gaussian
Processes and Transformers.

Gaussian Processes. GPs offer a highly versatile framework for predictive modelling [23] with
generalisation properties controlled by a kernel function parameterised by hyperparameters. The
functional form of the kernel governs the global attributes of the supported functions, such as
smoothness and periodicity. However, a suitable kernel function is unknown a priori and the choice
of the kernel function is a fundamental model selection problem. Once a kernel has been chosen,
training conventionally proceeds by learning a point estimate of the hyperparameters that maximise
the GP log marginal likelihood θ∗ = argmaxθ log p(y|θ). The marginal likelihood is available in
closed-form for models with Gaussian likelihoods. Below we briefly summarise the standard GP
framework.

GPs are distributions over functions from which one can sample realised function values for given
inputs. Concretely, for observations X = {xi}Ni=1, and positive definite kernel function kθ(·, ·),
with hyperparameters θ, f(·) ∼ GP(0, kθ). Typically, we observe noisy realisations of the latent
function which are corrupted with Gaussian noise, yi = f(xi) + εi, εi ∼ N (0, σ2

n), and infer the
kernel hyperparameters through maximising the likelihood of the model.

The GP marginal likelihood objective, p(y|θ), is obtained by marginalising the likelihood y|f ∼
N (f , σ2

nI) over the prior f |X,θ ∼ N (0,Kθ),

p(y|θ) =
∫
p(y|f)p(f |θ) df = N (0,Kθ + σ2

nI) , (1)

where f = f(X) denotes a vector of realised function values, andKθ denotes theN×N covariance
matrix corresponding to evaluations of the covariance function at the N training inputs, (Kθ)i,j =
kθ(xi,xj).

A long standing question is how best to select an appropriate kernel function for a given task. One
approach is to search over a discrete space of kernels, defined by combining a selection of primitive
kernels with a predefined grammar [2, 6]. Typically, a greedy search is performed to identify the
kernel offering the best representation of the data. Ideally, the quality of the kernel is quantified by
the Bayesian model evidence, which can be computed by marginalising the marginal likelihood over
the hyperparameters. However, since the integral is challenging to compute, each kernel’s suitability
is instead usually determined via a proxy for the model evidence, such as the Bayesian Information
Criterion (BIC) [25].

For a principled, Bayesian approach to kernel design, instead of selecting a single kernel, one ought
to consider multiple candidates. In other words, it is desirable to marginalise over the space of

2

kernels, not only over the space of functions for a single kernel.

p(y|D) =
∑
i

p(y|Ki,D)p(D|Ki)p(Ki) . (2)

This yields a rich posterior distribution comprised of a mixture of Gaussians. A conventional ker-
nel search makes three key approximations. First, that contributions from all but the single chosen
kernel K∗ can be neglected; second, that contributions from all but the maximum likelihood hy-
perparameters θ∗ can be neglected; third, that the proxy for the model evidence is a reliable one.
There are several regimes, for example where the data is sparse or noisy, where all three of these
assumptions do not hold. We shall aim to improve upon all three of these issues.

Transformers Transformers are a form of deep neural network which rely upon the attention
mechanism [32] to capture global context. While they were originally proposed to tackle machine
translation tasks [29], they have rapidly attained state-of-the-art performance in a number of other
areas of machine learning [14, 21, 22]. Of particular relevance to this work, they have been success-
fully applied to image captioning [5, 33], a task which involves summarising the key characteristics
of rich data in a grammatical form. This has a striking parallel to the challenge of selecting an ap-
propriate kernel, especially since a form of grammar can be used to construct a broad selection of
GP kernels.

The self-attention mechanism of transformers naturally lends itself to the permutation-invariant set-
ting, as demonstrated by Zaheer et al. [34]. This invariance to permutations in the ordering of inputs
has been exploited to create Set Transformers, introduced in Lee et al. [18]. The AHGP model [19]
uses a variant of the Set Transformer to infer the hyperparameters of the spectral mixture kernel.

Like all deep networks, transformers thrive when presented with an abundance of training data.
Fortunately, for the task we have at hand, the training set is unlimited in size as we may sample
training data from GPs with known kernels.

As stressed by Liu et al. [19], selecting an architecture which reflects the appropriate invariances is
vital. The AHGP model is designed to be invariant to permutations in the ordering of the datapoints.
We go one step further, and introduce a model which is doubly permutation invariant: its output is
also invariant to permutations in the input dimension (whereas AHGP is equivariant to the input
dimensions).

3 KITT

In this section we describe and motivate KITT, a network which takes as inputs a set of datapoints
{xi, yi}, and outputs a kernel recommendation in the form of a ‘caption’, by utilising a kernel
grammar. The code is available at https://github.com/frgsimpson/kitt.

Kernel Grammar and Vocabulary: Throughout the GP literature, the most commonly used ker-
nels belong to a limited set of primitive functions. In this work, we utilise eight primitive kernels:
the squared exponential; periodic; white noise; three variants of the Matern kernel

(
1
2 ,

3
2 ,

5
2

)
; the

cosine kernel, and our novel variant of the linear kernel. This list comprises six stationary isotropic
kernels, one stationary anisotropic kernel (cosine), and one non-stationary kernel (linear).

From this small set of primitive kernels, we wish to construct a larger array of more expressive ker-
nels. This can be achieved by leveraging the closure properties of kernel functions [27]. Permitted
operations include addition, multiplication, convolution, composition, and affine transformations.
For simplicity, this work shall only consider two operators: addition and multiplication.

Whilst this grammar of addition and multiplication appears superficially simple, it has some id-
iosyncrasies that would make it challenging for a network to learn. For example, if a network is
unaware that multiplication is commutative, it would have to learn to recognise k1 ∗ k2 and k2 ∗ k1
separately, for all combinations of k1 and k2. It would also need to learn that multiplying a noise
kernel with another stationary kernel yields another noise kernel. Encoding this information a priori
greatly facilitates the learning process. To achieve this, we enlarge the vocabulary by defining prod-
uct kernels as single ‘words’, rather than incorporating products as part of the grammar (the full list
is provided in the Appendix). This allows us to exclude redundant combinations from consideration.
For example, only a single token is used to represent both k2 ∗ k1 and k1 ∗ k2. While this enlarges

3

Decoder

Encoder

Inputs: (x, y) tuples
Shape: (n, d+1)

Per Dimension Encodings
Shape: (d, k)

PROMPT: <START>

Decoder

PROMPT: <START>
 + Matern 1/2

Decoder

PROMPT: <START>
 + Matern 1/2
 + Matern 3/2

Decoder
PROMPT: <START>
 + Matern 1/2
 + Matern 3/2
 + RBF ✕ Matern 1/2

<END>RBF ✕ Matern 1/2Matern 3/2Matern 1/2

PREDICTION: Matern 1/2 + Matern 3/2 + RBF ✕ Matern 1/2

Figure 1: The architecture for KITT, partly motivated by image captioning networks, which also act
to transform a rich dataset into a grammatical expression of its contents.

the vocabulary, we can be confident that the network will be able to cope, since there will still be far
fewer ‘words’ than can be found in natural language tasks where transformers are known to excel.
We use products of two primitive kernels as part of the base vocabulary and found that incorporating
higher order products do not significantly change performance.

A further advantage of defining product kernels at the vocabulary level is that we need no longer
include operators inside the vocabulary. The multiplication is already baked into the expanded set
of kernels, while the addition takes place implicitly, much like the white space between words in
a natural language task. This precludes the construction of nested structures of operators, which
would allow for even richer kernels. However, since this work represents a first attempt at perform-
ing a kernel search with a neural network, we choose to keep the captioning task to be a relatively
simple one, and leave more complex grammatical compositions as an opportunity for future explo-
ration. Even with this relatively simple grammar, if we permit a caption of four words from a base
vocabulary of 32, we are effectively searching across a space of around 36 000 kernels.

Priors. While the priors we impose upon the hyperparameters will have some impact during op-
timisation, it is their influence upon the generation of KITT’s training data that is of central im-
portance to this work. Random samples are drawn from the hyperparameter priors p(θ) and input
locations x ∼ U(−2.5, 2.5) before each random sample of y is generated. The variances and length-
scale parameters of all kernels (including product kernels) are assigned lognormal priors, such that
log θ ∼ N (0, 1).

The cosine kernel is unique among KITT’s vocabulary, in that it is inherently anisotropic, which can
be important if a preferred direction exists within the data. Samples drawn from the kernel manifest
as plane waves which propagate along a characteristic direction of the kernel. If we were to impose
a lognormal prior (or any other positively constrained prior) on its lengthscales, this would restrict
the direction of the kernel to a small fraction 21−D of its permitted parameter space. We therefore
adopt a different approach in this case, assigning ` ∼ Cauchy(0, 5) for the lengthscales.

Training. KITT is trained entirely on synthetic data. Each training example is generated from
a randomly selected kernel, with a randomly drawn set of hyperparameters. This data could be
generated on the fly, but since this can be a computationally expensive process, we generated a
training set in advance which comprised of 200, 000 labeled examples. While the model can be
constructed for an arbitrary number of inputs points and input dimensions, during training we restrict
ourselves to the case of 4 input dimensions and 64 input points per sample. The loss function
corresponds to − log p(k|D), the negative log probability the network assigned to the correct term
in the vocabulary. The Adam optimiser was used with an initial learning rate of 10−4, and a decay
schedule with a decay rate of 0.1 every 50, 000 iterations. Due to the relatively noisy nature of the
classification task, a relatively large batch size of 128 was found to be beneficial. The vocabulary
included product kernels of at most two terms in addition to the primitive kernels, yielding a final
vocabulary of size 34.

Heteroscedastic noise. When taking the product between the white noise and any stationary ker-
nel, we recover another noise kernel. These redundant expressions are omitted from KITT’s vocab-
ulary. However, the result of the product between the noise kernel and the (non-stationary) linear
kernel merits special attention. The linear kernel is defined as

KLIN(x,x
′) = σ2(x− c)(x′ − c) , (3)

4

Figure 2: Negative log likelihood values for three different noise models when used alongside the
RBF kernel. All of the datasets clearly benefit from the modelling of heterescedastic noise, while
three benefit from the additional freedom offered by the shift parameter.

where σ2 denotes the vector of variances for the linear kernel, and c represents the shift parameter.
Unlike the other primitive kernels, the linear kernel possesses independent variance terms for each
input dimension.

The product between the linear kernel and the noise kernel generates a form of noise whose variance
changes linearly with respect to the inputs. This presents an opportunity to model heteroscedastic
noise, within the conventionally homoscedastic domain of GP regression models. When modelling
real world tasks, this potentially offers a major advantage, since the noise variance often changes
across the input space.

Note that if we simply set c = 0, as is often assumed when working with the linear kernel, then the
linearly varying noise term is extremely limited. The noise variance could only ever increase as we
move away from the origin. As with the cosine kernel, this reduces us to a small fraction (21−D) of
the viable parameter space. In order to lift this restriction, we introduce a ‘shift’ vector in the linear
kernel, such that the origin is free to move along each input dimension. This naturally leads us to ask
what an appropriate prior for this shift vector would be. We consider it equally likely that the noise
amplitude increases or decreases with x. To reflect this belief, and accounting for our normalised
inputs, we seek a prior of the form dσ2/dx ∼ N (0, 0.1). For large displacements, we note that the
shift parameter can be approximately expressed as the ratio of two normally distributed variables:
the gradient of the noise and the noise amplitude at the origin. This observation suggests a suitable
prior on c is given by the Cauchy distribution. We adopt c ∼ Cauchy(0, 5) throughout.

Model Architecture. The kernel’s likelihood p(D|K) is invariant to permutations of the ordering
of the datapoints, and to permutations of the ordering of the input dimensions. KITT’s output of
kernel recommendations should therefore exhibit these two important properties. Zaheer et al. [34]
demonstrated that a function f(X) which is invariant to permutations in the elements of X can be
expressed in the form ρ (

∑
i φ(xi))), where ρ and φ are differentiable functions. This was exploited

by Lee et al. [18] in constructing the Set Transformer. The scenario we encounter is slightly more
complex in that there is a two-tiered hierarchy of invariances. We seek a function over the training
set D, which can be expressed as a collection of high dimensional data vectors Di: f({D}) =
ρ [
∑
i φ(Di)]. Here the function φ(Di) must be invariant over the permutations of the different input

dimensions. This can therefore be decomposed in a similar manner, φ(Di) = ρ′
[∑

j φ
′(Dij)

]
.

Combining these two equations leaves a final expression of the form

f({D}) = ρ

∑
i

ρ′

∑
j

φ′(Dij)

 , (4)

where i and j can be either dimensions or datapoints. This can be interpreted as: encode over j; pool
over j; encode over i; pool over i; decode. This formalism sets the foundations for our choice of
architecture, as shown in Figure 1. At a lower level, KITT is comprised of the following components
whose acronyms we define here:

5

• rFF: Row-wise feed-forward layer with ReLU •MP: Mean pooling function
• SAB: Set Attention Block [18] • LayerNorm: Layer Normalisation [1]
•Multihead: Multi-Headed Attention Mechanism [29].

Encoder: The encoder has the architecture of a transformer with self attention blocks. Our goal is
to encode datasets Dj = {xi, yi}Ni=1 of shape N × (D + 1) where xi ∈ RD and yi ∈ R; we need
to incorporate both invariance to ordering of the data points (row-wise shuffle) and equivariance to
a re-ordering of the dimensions (column-wise shuffle). In order to achieve this, our encoder has two
sub-components responsible for encoding along the sequence and dimension axes respectively:

1. SEQ ENC: RN×(D+1) → RD×E . A sequence encoding component which acts on input datasets
and outputs dimension-level representations G ≡ {gd}Dd=1, gd ∈ RE where E is the embedding
dimension. The sequence encoder forward pass is formulated as:

SEQ ENC(D) = MP(SAB×6(rFF(D)))
Where mean pooling is applied over the sequence. Our implementation of the SAB component
[18] differs slightly from that of Lee et al. [18], SAB(Z) = LayerNorm(C + Z), where we have
defined C = Dropout(rFF[Multihead(Z,Z,Z)]) [29].

2. DIM ENC: RD×E → RD×E A dimension encoding component: DIM ENC which acts on
dimension level encodings to generate final representations {hd}Dd=1 of dimension E. The di-
mension encoder forward pass is formulated as:

DIM ENC(G) = rFF×2(SAB×6(G))

The encoder forward pass entails passing each input data set to the sequence encoding component
followed by the dimension encoding component.

ENCODER(D) = DIM ENC(SEQ ENC(D))

Proposition 1: Let SN denote the set of all permutations of the row-wise indices {1, 2, . . . , N} and
Dπ denote an input dataset with the ordering of indices given by π ∈ SN The sequence encoding
component SEQ ENC is invariant to a permutation of the indices within a dataset D.

SEQ ENC(D) = SEQ ENC(Dπ) ∀ π ∈ SN

Proposition 2: Let QD denote the set of all permutations of the column-wise indices (dimensions)
{1, 2, . . . , D} and Dν denote an input dataset with the ordering of indices given by an arbitrary
ν ∈ QD. The sequence encoder SEQ ENC and dimension encoder DIM ENC components are
equivariant to a permutation of the dimensions within a dataset D.

ENCODER(Dν) = ν(DIM ENC(SEQ ENC(D))) ∀ ν ∈ QD

We include proofs for propositions 1 and 2 in the supplementary.

Decoder: KITT’s decoder iteratively builds a caption from the encoded dataset representations,
generated by the encoder described above, and a prompt which consists of the kernel expression
thus far (see Fig. 1). Our decoder closely resembles the one proposed in Vaswani et al. [29] except
that we remove the positional encodings and adjust the number of layers. The decoder uses self-
attention blocks to first attend to the prompt and then to attend to the representations from the
encoder using the processed dataset representations as query values. These two applications of
attention are alternated in several layers until a new component kernel is proposed from a distribution
generated from the final representations. We note that this component kernel proposition is invariant
to the ordering of the dataset representations and thus to a shuffling of the dimensions of the original
dataset. Hence, the model is fully invariant. The end-to-end process is depicted in Figure 1 and a
detailed schematic of the decoder is included in the supplementary material.

Scalability. Training of KITT is only performed once. Once training of the network is completed,
all inference procedures require only a single forward pass through the network. As a result, instead
of the O(N3) cost commonly associated with explicit marginal likelihood evaluations, the cost of
a forward pass through KITT is O(DN2 + D2). Due to effective parallelisation of the attention
mechanism on GPUs, noted by Vaswani et al. [29], and the modest size of the KITT network, we
experience near constant wall clock time in practice.

6

Figure 3: Left and centre: Classification performance for random samples drawn from primitive
kernels across a range of test sizes and dimensionality. The vertical dashed lines denote the condi-
tions under which the network was trained. Right: The time taken to predict a kernel for each of
the UCI datasets. While KITT’s overhead remains approximately constant, the tree search becomes
impractical for larger inputs.

Inference. Given some new dataset D, inference proceeds as below, closely mimicking the proce-
dure used to generate a caption for images. Note that the best caption is not necessarily constructed
by choosing the best kernel at each step of the decoder.

1. Pass the data D into the encoder; pass the resulting encodings and an (initially empty)
kernel expression E into the decoder.

2. Retrieve the output probabilities, selecting the kernel k with the highest probability and
append the chosen kernel (or operator) to our full kernel expression E .

3. Repeat steps 1 & 2 until either the < STOP> token is selected or the maximum caption
length is reached.

4. Repeat steps 1-3 several times but now select kernels stochastically, weighted by their
probability, to construct a set of high-ranking kernel expressions.

5. For each of the top three candidate kernels expressions, as ranked by their total probability
assigned by the network, we optimise the associated hyperparameters with BFGS [9].

6. Combine the posterior distribution of the forecasts based on either the overall probability
assigned by the network, or another proxy for the model evidence such as the Bayesian
Information Criterion.

In summary, we select a kernel based upon the output of the pretrained KITT network, before opti-
mising the hyperparameters in a conventional manner.

4 Experimental Results

In this section we explore KITT’s ability to predict kernels for synthetic data and standard regression
benchmarks. We present four baselines to assess the performance of KITT on regression data.
AHGP [19] is another deep network designed to assist GP inference, as outlined in 2. The neural
kernel network [28], offers a differentiable form of kernel composition. We also include a greedy
kernel search algorithm based upon the Automatic Statistician procedure outlined in Duvenaud et al.
[7]. These three algorithms span a wide range of computational overheads, with AHGP being the
fastest and the kernel search being the slowest. As a more familiar reference point, we also include
the RBF-ARD baseline, which uses the same priors described previously.

Ground Truth Recovery. Identifying primitive structure is an important building block in being
able produce sensible kernel recommendations for real-data in high dimensions. Capturing this
structure is the aim of our encoder. In order to test the ability of the encoder to capture primitive
structure, we form a classification transformer by taking the KITT encoder and appending a dense
layer followed by a softmax activation. The resulting model is trained on datasets of fixed size and
dimensionality to predict kernels for synthetic datasets drawn from GPs with known kernels. We
demonstrate test performance in terms of accuracy for varying test input sizes and dimensions. We
draw 300 random samples from a selection of primitive kernels, for varying combinations of test size
and dimensionality. The results shown in Figure 3 demonstrate that the classifier is able to reliably

7

Figure 4: Negative predictive log likelihood values on UCI regression tasks for a variety of kernel
selection methods. KITT remains competitive with the most computationally intensive approach,
the tree search, while offering the advantage of being several orders of magnitude faster. The ‘E’
denotes sole use of the encoder followed by a classification layer to select kernels, while ‘E+D’
generates captions with the decoder.

generalise its structure detection capabilities to higher dimensional tasks, which were unseen during
training of the network. As is expected, a moderately sized dataset of at least∼ 200 points is needed
to achieve a reasonable level of prediction accuracy, and this continues to improve with increasingly
large datasets.

UCI Regression. We evaluate KITT on eight real-world UCI regression tasks2, spanning a range
of input sizes and input dimensions (from 4 to 14). We adopt the same benchmarking methodology
as Liu et al. [19], which includes a 90/10 train/test split, and subsampling 2,000 datapoints for those
cases where the dataset exceeds this number. For each dataset, we predict a kernel caption with a
maximum expression length of three terms. The caption is either constructed sequentially by the
decoder, or in the case of the classifier, by summing the three highest scoring kernels.

The resulting NLPD values from KITT, and three other approaches to kernel design, are shown in
Figure 4. Uncertainties are estimated from repeated experiments with ten different splits. KITT
consistently outperforms the other transformer-based model, AHGP, and is competitive with the far
slower tree search method (see Figure 3). We also perform an ablation study, details of which can
be found in the supplementary material, demonstrating that KITT outperforms a random selection
from its vocabulary.

We note that the AHGP performance is weaker than that of the RBF. This is significant because the
RBF is a subset of the Spectral Mixture Product model, equivalent to a single component set to zero
mean frequency. This suggests that the AHGP network perhaps focused on learning how to identify
the lengthscale of the primary component of the multi-component Spectral Mixture Product.

For a deeper understanding of KITT’s performance, Figure 5 compares the network’s output against
realised test performance on the Yacht dataset, across all 34 kernel classes. The three kernels KITT
assigned high probability to, namely Linear × RBF, Linear × Matern32 and Linear × Matern52,
correspond to the three strongest test performances.

Computational overhead. One of the most compelling features of KITT is the speed at which
inference can be performed. Identifying a suitable kernel for a previously unseen dataset only entails
a single forward pass through the encoder, and a small number through the decoder, each of which
requires around two hundredths of a second. Furthermore, as illustrated in the right hand panel of
Figure 3, the time-cost of prediction is robust to increasing data-set sizes and dimensionality.

The KITT network was trained on a Tesla V100 GPU for approximately eight hours, with Adam
[16]. This procedure occurred only once, and does not need to be repeated when performing infer-
ence. To generate a kernel prediction requires a small fraction of a second, and is largely insensitive

2A recurring misconception in the literature is that the predictive errors on the Naval dataset are so small that
they may be neglected, and these are sometimes listed as “0.00”. We stress that they are small only because of
the small variance of the raw data. This should have no bearing on its significance alongside the other datasets,
and the RMSE should not be rounded down to zero.

8

Figure 5: A comparison of KITT’s kernel predictions against their test performance, on the Yacht
dataset. Each dot represents one of the 34 kernels in KITT’s vocabulary. KITT successfully identifies
the three top performing kernels, and assigns low probability to the 31 alternative options.

to the size of the input data, as seen in the right hand panel of Figure 3. Once a kernel has been
recommended, training typically required a further ten seconds. It is possible this step could also
be greatly accelerated in future, if KITT were used in tandem with a hyperparameter optimisation
network, similar to AHGP [19].

5 Related work

In this section we review approaches that either directly, through kernel construction, or indirectly
target the issue of model selection in GPs.

Amortised Hyperparmeter Learning (AHGP): Liu et al. [19] also use self-attention based trans-
formers, but with the goal of amortising hyperparameter learning. They train on input-output regres-
sion based datasets to estimate the final set of GP hyperparameters that would otherwise be learnt
as a result of maximizing the marginal likelihood. In order to circumvent kerrnel selection they
choose the flexible spectral mixture (SM) kernel with a fixed number of components per dimension,
yielding a kernel with product structure over dimensions. The SM kernel arises from modelling the
spectral density (Fourier dual) of a kernel function as a Gaussian mixture. Our work differs from
AHGP as we focus on kernel design rather than optimising hyperparameter values.

Kernel Engineering: There are several examples in the GP literature of kernels being handcrafted
to model one- or two-dimensional data [6, 7, 8, 24]. While this may be feasible in low-dimensional
data with the aid of visual inspection, it is much less straightforward in a high-dimensional settings.
Automated kernel engineering approaches search over a finite space of kernel structures which are
progressively built by adding and multiplying a small number of base kernels. The focus is on
devising an effective search algorithm over discrete structures where the end result is a composite
kernel built from simpler known base kernels. This is largely the idea behind the Automatic Statis-
tician project [15] where a greedy search procedure searches over all possible operators and sub-
expressions to select the highest scoring combination. Our work similarly operates on a universe of
compositional kernel structures but with a distinctly different model where we regress kernel labels
on data sets with end-to-end gradient based training yielding a fast and scalable method.

Deep Kernels: There are other methods that bring to bear both the benefits of deep architecture and
the analytical flexibility of kernel methods for the problem of representation learning [4, 13, 31]. The
methods work by transforming the inputs to a GP with a neural network (NN) and jointly learning
the parameters of the NN and the GP. The contention is that a simple base kernel (like a squared
exponential (SE) kernel) works better when applied to the representations learnt by the NN than
when applied to the raw input. These works try to side-step the problem of learning a sophisticated
kernel apt for the data by focusing instead on learning a transformation of inputs. However, these
methods can suffer from overfitting due to the joint training of millions of parameters of the NN in
conjunction with the GP hyperparameters [20].

Novel Kernels: Other noted work includes the spectral mixture kernel which reparameterizes the
kernel in terms of its spectral density (see Bochner’s Theorem [3]) and derives closed form kernels
which can be used as drop-in replacements for any stationary kernel function [26, 30].

9

6 Discussion

This work proposes a novel approach to addressing the kernel selection problem in GPs. By lever-
aging the potential for unlimited training data, we train a transformer-based model to identify the
likelihood of a sample given a kernel class. Despite being trained solely on synthetic data, KITT is
capable of selecting suitable kernels for previously unseen, real-world datasets. While we focus our
efforts on the case of one-dimensional outputs, similar models could be developed for multi-output
regression, classification, latent variable modelling and time-series prediction tasks. A major advan-
tage of a pre-trained model for kernel structure detection is the speed of inference. By being able to
recommend a kernel in a fraction of a second, KITT is dramatically faster than competing methods
such as greedy search algorithms or differentiable kernel networks. Furthermore, it offers superior
scalability. Empirically, we found that KITT is capable of pattern discovery across a broad range of
input dimensions and dataset sizes. It was found to predict competitive kernels for high-dimensional
real valued regression tasks. The ground truth experiments demonstrate its generalisation ability
where it is able to identify structure in high-dimensional datasets. This work presents a powerful
hybrid approach where kernel selection is informed by representation learning, by inferring a range
of kernels compatible with the data. This achieves two aims of expressivity and ensemble uncer-
tainty while spurring new possibilities for informed model selection in Gaussian processes. Given
the high degree of complementarity with AHGP, which offers near-instantaneous optimisation of
hyperparamters, there appears promising prospects for transformers to enhance the development,
flexibility and scalability of Gaussian Process models.

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their helpful feedback. VL acknowl-
edges funding from the Alan Turing Institute and Qualcomm Innovation Fellowship (Europe).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Francis Bach. High-dimensional non-linear variable selection through hierarchical kernel
learning. arXiv preprint arXiv:0909.0844, 2009.

[3] Salomon Bochner et al. Lectures on Fourier integrals, volume 42. Princeton University Press,
1959.

[4] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth. Manifold
Gaussian Processes for regression. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 3338–3345. IEEE, 2016.

[5] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory
transformer for image captioning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10578–10587, 2020.

[6] David Duvenaud. Automatic model construction with Gaussian Processes. PhD thesis, Uni-
versity of Cambridge, 2014.

[7] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B Tenenbaum, and Zoubin
Ghahramani. Structure discovery in nonparametric regression through compositional kernel
search. arXiv preprint arXiv:1302.4922, 2013.

[8] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive Gaussian Processes.
In Advances in neural information processing systems, pages 226–234, 2011.

[9] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–
1059, 2016.

10

[11] Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, and Bernhard Schölkopf. New direc-
tions for learning with kernels and Gaussian Processes (dagstuhl seminar 16481). In Dagstuhl
Reports, volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[12] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In International Conference on Machine Learning,
pages 1861–1869, 2015.

[13] Geoffrey E Hinton and Russ R Salakhutdinov. Using deep belief nets to learn covariance
kernels for Gaussian Processes. In Advances in neural information processing systems, pages
1249–1256, 2008.

[14] John Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, O Ronneberger,
R Bates, A Zidek, A Bridgland, et al. High accuracy protein structure prediction using deep
learning. Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Ab-
stract Book), 22:24, 2020.

[15] Hyunjik Kim and Yee Whye Teh. Scaling up the Automatic Statistician: Scalable structure
discovery using Gaussian Processes. In Amos Storkey and Fernando Perez-Cruz, editors, Pro-
ceedings of the 21st International Conference on Artificial Intelligence and Statistics, vol-
ume 84 of Proceedings of Machine Learning Research, pages 575–584. PLMR, 2018.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. In Advances in neural information pro-
cessing systems, pages 6402–6413, 2017.

[18] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744–3753. PMLR, 2019.

[19] Sulin Liu, Xingyuan Sun, Peter J Ramadge, and Ryan P Adams. Task-agnostic amortized
inference of Gaussian Process hyperparameters. Advances in Neural Information Processing
Systems, 33, 2020.

[20] Sebastian W Ober, Carl E Rasmussen, and Mark van der Wilk. The promises and pitfalls of
deep kernel learning. arXiv preprint arXiv:2102.12108, 2021.

[21] Emilio Parisotto and Russ Salakhutdinov. Efficient transformers in reinforcement learning us-
ing actor-learner distillation. In International Conference on Learning Representations, 2021.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[23] Carl E Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[24] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for machine learn-
ing, chapter 4. Springer, 2006.

[25] Gideon Schwarz et al. Estimating the dimension of a model. Annals of statistics, 6(2):461–464,
1978.

[26] Fergus Simpson, Alexis Boukouvalas, Vaclav Cadek, Elvijs Sarkans, and Nicolas Durrande.
The minecraft kernel: Modelling correlated Gaussian Processes in the fourier domain. In
International Conference on Artificial Intelligence and Statistics, pages 1945–1953. PMLR,
2021.

[27] Alex J Smola and Bernhard Schölkopf. Learning with kernels, volume 4. Citeseer, 1998.

11

[28] Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and Roger Grosse.
Differentiable compositional kernel learning for gaussian processes. In International Confer-
ence on Machine Learning, pages 4828–4837. PMLR, 2018.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems, pages 5998–6008, 2017.

[30] Andrew Gordon Wilson. Covariance kernels for fast automatic pattern discovery and extrap-
olation with Gaussian Processes. PhD thesis, University of Cambridge, 2014.

[31] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370–378, 2016.

[32] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In International conference on machine learning, pages 2048–2057. PMLR,
2015.

[33] Jun Yu, Jing Li, Zhou Yu, and Qingming Huang. Multimodal transformer with multi-view
visual representation for image captioning. IEEE transactions on circuits and systems for
video technology, 30(12):4467–4480, 2019.

[34] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems,
pages 3391–3401, 2017.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We highlight the simplicity of
our grammar, and note that at present the optimisation of hyperparameters is currently
still required as a separate step.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the
supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Included in supple-

mentary material
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See supple-
mentary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Detailed specifications are given in Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See ’Computational overhead’ in
Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Reference to GPflow

(Matthews et al)

12

(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code and a pretrained KITT model in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

