
Fast Projection onto the Capped Simplex with
Applications to Sparse Regression in Bioinformatics

Andersen Ang⇤
Dept. of Combinatorics and Optimization

University of Waterloo
ms3ang@uwaterloo.ca

Jianzhu Ma
Institute for Artificial Intelligence

Peking University
majianzhu@pku.edu.cn

Nianjun Liu
Dept. of Epidemiology and Biostatistics

Indiana University Bloomington
liunian@indiana.edu

Kun Huang
Dept. of Biostatistics and Health Data Science

Indiana University
kunhuang@iu.edu

Yijie Wang⇤

Dept. of Computer Science
Indiana University Bloomington

yijwang@iu.edu

Abstract
We consider the problem of projecting a vector onto the so-called k-capped simplex,
which is a hyper-cube cut by a hyperplane. For an n-dimensional input vector with
bounded elements, we found that a simple algorithm based on Newton’s method is
able to solve the projection problem to high precision with a complexity roughly
about O(n), which has a much lower computational cost compared with the existing
sorting-based methods proposed in the literature. We provide a theory for partial
explanation and justification of the method.
We demonstrate that the proposed algorithm can produce a solution of the projection
problem with high precision on large scale datasets, and the algorithm is able to
significantly outperform the state-of-the-art methods in terms of runtime (about
6-8 times faster than a commercial software with respect to CPU time for input
vector with 1 million variables or more).
We further illustrate the effectiveness of the proposed algorithm on solving sparse
regression in a bioinformatics problem. Empirical results on the GWAS dataset
(with 1,500,000 single-nucleotide polymorphisms) show that, when using the
proposed method to accelerate the Projected Quasi-Newton (PQN) method, the
accelerated PQN algorithm is able to handle huge-scale regression problem and it
is more efficient (about 3-6 times faster) than the current state-of-the-art methods.

1 Introduction
The k-capped simplex [17] is defined as �k :=

�
x 2 Rn

��x>1  k, 0  x  1

, where k 2 R
is an input parameter, 0 and 1 are vectors of zeros and vector of ones in Rn, respectively (resp.),
and the sign  is taken element-wise. Geometrically, for some k > 0, the set �k represents an
n-dimensional hyper-cube [0,1]n with a corner chopped off by the half-space x>1  k. If the
half-space constraint x>1  k in �k is replaced by the hyper-plane constraint x>1 = k, for some
k > 0, this set represents the slice of the hyper-cube cut by the hyper-plane, and we denote this set as
�=

k . In this paper, we consider the problem of projecting a vector y onto the k-capped simplex:

x⇤ = proj�k
(y) = argmin

x

n 1

2
kx� yk22 s.t. x 2 �k (or �=

k)
o
. (1)

⇤Both authors contributed equally.
35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Remark 1. (On the input k) In this paper, we assume 0 < k < 1 is properly selected such that

the set �k (and �=
k) has a nonempty interior, and therefore the projection is feasible. I.e., we assume�

p 2 Rn
| p>1  k

\
�
q 2 Rn

| 0  q  1

6= ? (and similarly for �=

k). In this setting, a

unique global minimizer x⇤
of Problem(1) exists, since the function kx� yk22 is strongly convex. The

value of k is closely related to the root of a piecewise-linear equation that plays a critical role in the

solution of Problem (1), see discussion in § 2.

Problem (1) generalizes the projection onto the probability simplex [4, 5] which has many applications.
In this paper, we consider the application in sparse regression in bioinformatics, see § 4.
To the best of our knowledge, for an input vector y 2 Rn, the state-of-the-art algorithm [17] for
solving the Projection (1) has a time complexity of O(n2). We found that a simple heuristic algorithm
based on Newton’s method is able to solve the same problem to high precision with a complexity
roughly O(n) on average, based on exploiting the 2nd-order information of a scalar minimization
problem on the Lagrangian multiplier of Problem (1); see § 2.3.

Contributions We proposed a simple algorithm based on Newton’s method, as an alternative to the
sorting-based method to solve Problem (1). We first convert the problem into a scalar minimization
problem, then we show that such scalar problem can be solved using Newton’s iteration, see Theo-
rem 1. We then show that the proposed method is superior to the current state-of-the-art method in
terms of runtime. For a vector with dimension 106, the proposed method is about 6-8 times faster
than a commercial solver. Furthermore, we give numerical results to show the effectiveness of the
proposed method on solving sparse regression in a bioinformatics problem on a real-world dataset
with one million data points, see § 4.

Scope, limitation, and impact We emphasize that the proposed method is not aimed at replacing
all the well-established sorting-based methods in the literature, but to provide an alternative method
for solving the projection problem in a special case. To be specific, we found that, when the input
vector y has bounded elements (i.e., |yi|  ↵, for ↵ up to 1000), the proposed algorithm in this paper
is able to solve the projection problem much faster than the existing methods in the literature. It is
important to note that, when the bound ↵ becomes very huge (say a million), the proposed method
sometimes converges slower than existing methods. Although limited in the scope of application,
however, we argue that the proposed method is still very useful for applications that the input vectors
are bounded. Using bioinformatics as an example, on an ordinary PC, we are able to reduce the
runtime on identifying the genetic factors that contribute to dental caries (i.e., tooth decay) from
half-hour to just 3 minutes; see § 4.

Paper organization In § 2, we give the background material, show the main theorem, and discuss
the proposed algorithm. In § 3, we show experimental results to verify the efficiency of the proposed
algorithm on solving Problem (1). In § 4, we illustrate the effectiveness of the proposed method on
solving sparse regression in a large bioinformatics dataset. We conclude the paper in § 6 and provide
supplementary material in the appendix.

2 Projection onto the capped simplex
In this section, we discuss how to solve Problem (1). By introducing a Lagrangian multiplier �, we
convert (1) to a scalar problem in the form of min� !(�), see (5). Then, we provide a theorem for
characterizing the function !(�). More specifically, we show that !(�) is n-smooth, i.e., the Lipschitz
constant of the derivative !0(�) grows linearly as the dimension n, which makes the gradient method
ineffective to solve Problem (5) due to very small stepsize for input vector y that has many variables.
This motivates us to switch to the 2nd-order method, i.e., Newton’s method, to solve Problem (5).
We end this section by discussing the properties of proposed Newton’s method.

2.1 Reformulate the projection problem to a scalar minimization problem
Consider the case of projection onto �=

k
2. Problem (1) is equivalent to Problem (2): by introducing

a Lagrangian multiplier � that corresponds to the equality constraint, we form a partial Lagrangian
L(x, �), and arrive at the min-max problem (2), where we keep the inequality constraint on x as

min
0x1

max
�2R

:
n
L(x, �) =

1

2
kx� yk2 + �(x>1� k)

o
. (2)

2For projection onto �k, we can use the same approach by adding nonnegativity constraint � � 0 in (2).

2

-2

-1

0

1

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1

0

1

0 1 0 1 2
-2

-1

0

1

-0.5

0

0 1 2
0
1
2

Figure 1: Illustration on solving Problem (5) on a toy example with y = [0.1, 1.5,�1] 2 R3, k = 1.5
and �0 = �1.1. The line l2 intersects the piecewise-liner function l1 at �⇤, which is the root of l2.
The idea of the sorting-based methods is to find such root by sorting the 3 elements of y and try
each of the 3 linear segment of l1 to find the root. The proposed method (Algorithm 1) solves the
problem in 2 iterations, hence it gains speed-up. In the middle we plot !00 and the iteration of �t. The
right-most plots show the iteration of !0 and !00 (see Theorem 1 for their explicit expression). Note
that l1, l2 may not intersect each other for some (y, k), in this case l2 has no root and the sorting-based
methods do not work. However, the proposed algorithm can still produce an approximate solution.
Closed-form solution on x Let �⇤ be the optimal � in (2), then the minimizer x⇤ of (2) is

x⇤(�⇤) = argmin
0x1

(
L(x) =

nX

i=1

1

2
x2
i + (�⇤

� yi)xi

)
(4)
= min

n
1, [v(�⇤)]+

o
, (3)

where [·]+ = max{ · , 0 }, both max,min in (3) are taken element-wise, and v(�) is defined as

v(�) = y � �1. (4)

As stated in the introduction, under a sufficiently large k > 0, such x⇤ exists in the relative interior
of �=

k , which implies Slater’s condition is true and thereby strong duality holds, i.e., we have the
first equality sign in (3). Furthermore, we can swap the order of the min-max in (2) since it has a
saddle point. By swapping the order of min-max, and using (3), we convert Problem (2) to a scalar
minimization problem on �:

min
�2R

:

⇢
!(�) := �L

⇣
min

�
1, [v(�)]+

, �
⌘�

, (5)

where the negative sign comes from flipping the maximization on � to minimization. Now, it is clear
that if we solve (5), we can construct the solution x⇤ as in (3) to solve Problem (1). Many papers
[4, 5, 17] in the literature follow such a direction on solving the projection problem, in which they
solve Problem (5) using a sorting-based technique to find the root of the piecewise-linear function
!0(�) = 0 (see Theorem 1 for the expression of !0).
In this paper, we solve (5) by Newton’s method. It is important to note that we can solve the same
problem using gradient descent, but we found that it has a slow convergence, because !(�) can have
a huge smoothness constant (see Theorem 1) and thus the feasible stepsize for the gradient step such
that the function value will decrease is very small, which contributes to a slow convergence. We also
observed that empirically the proposed method in this paper (see Algorithm 1) yields a much faster
convergence (about 6-8 times faster) than the sorting-based methods, especially when the input vector
y has a huge dimension; see § 3 for the experimental results.
Before we proceed, we illustrate the idea of solving the projection on a toy example, see Fig.1.

2.2 The derivatives and the huge smoothness constant
Now we talk about the derivatives of !(�) with respect to (w.r.t.) �. First, we show that !(·) is
continuously differentiable and we derive its 1st and 2nd order derivatives. Then we show that the
Lipschitz constant L of !0(·) is n, which is the dimension of the input vector y 2 Rn. With a huge L,
we observed that gradient descent has a slow convergence on minimizing !(�), hence we propose to
use the 2nd-order method, i.e., Newton’s method, to solve (2); see § 2.3.
We now present the main theorem in this paper, which is about the derivatives of !(�).
Theorem 1. The function !(�) is convex and twice differentiable with

!0(�) = k �min
⇣
1, [v(�)]+

⌘>
1 is n-Lipschitz, and !00(�) =

nX

i=1

I0<vi<1 � 0, (6)

where I is an indicator function that IA = 1 if A is true and IA = 0 otherwise.

3

Now we present two lemmas to prove the Theorem 1. For the first lemma, recall that for all a, b 2 R,

max{a, b} =
1

2

⇣
a+ b+ |a� b|

⌘
and min{a, b} =

1

2

⇣
a+ b� |a� b|

⌘
. (?)

Lemma 1. 8x,y 2 Rn
, we have

���min
�
1, [x]+

�
�min

�
1, [y]+

����
2
 kx� yk2.

Proof. By triangle inequality and (?), for all a, b 2 R, we have
��min(a, 1)�min(b, 1)

�� <
��a� b

��
and

��[a]+ � [b]+
�� <

��a� b
�� . Therefore,

��min(1, [x]+)�min(1, [y]+)
��
2

��[x]+ � [y]+

��
2
 kx� yk2.

The second lemma is related to the notion of optimal value function [3, Section 4].
Lemma 2. [Theorem 4.1 [3]] Let X be a metric space and U be a normed space. Suppose that

for all x 2 X , the function L(x, ·) is differentiable and that L(x, �) and D�L(x, �) (the partial

derivative of L(x, �) w.r.t. �) are continuous on X ⇥ U . Let � be a compact subset of X . Then the

optimal value function �(�) := inf
x2�

L(x, �), is (Hadamard) directionally differentiable. In addition,

if 8� 2 U , L(·, �) has a unique minimizer x(�) over �, then �(�) is differentiable at � and the slope

of �(�) w.r.t. � is given by �0(�) = D�L(x(�), �).

Now we are at the position to prove Theorem 1.

Proof of Theorem 1. To prove the differentiability of !(�), we apply Lemma 2 with X = Rn, U = R
and � = {x 2 X : 0  x  1}. Immediately we have that: i. L(x, ·) is differentiable; ii. L(x, �)
and D�L(x, �) = x>1 � k are continuous on X ⇥ U ; iii. � is a compact subset of X ; and iv.
8� 2 U , L(x, �) has a unique minimizer x(�) = min

�
1, [y � �1]+

�
over �. The last one follows

that rxL(x, �) = 0 has a unique solution and further indicates that x(�) = min
�
1, [y � �1]+

�
=

argmin
x2�

L(x, �). Now applying Lemma 2 gives �(�) = inf
x2�

L(x, �) = L
�
min(1, [y � �1]+), �

�
is

differentiable, and the slope is

�0(�) = min
�
1, [y � �1]+

�>
1� k = �!0(�). (7)

We now show the derivative on !0(�) w.r.t. � is the number of element of the vector v = y� �1 that
is strictly between 0 and 1. Let S0, S1, S be the sets of indices i that vi  0, vi � 1, and 0 < vi < 1,
resp.. Now, expressing �0 in (7) using the sets S0, S1, S gives

�0(�) =

X

i2S0

0 +
X

i2S1

1 +
X

i2S

(yi � �)

!
� k = |S1|+

X

i2S

yi

!
� |S|� � k, (8)

which gives �0(�) = �|S|�+constant, hence, !00(�) = ��00(�) = �(�|S|) which gives (6).
It is clear that L(x, �) in (2) is convex in x and the constraint set is closed and convex. For (y, k)
that the feasible set for x is nonempty, by von Neumann Lemma [15], there exists a saddle point for
Problem (2), as a result, �(�) is concave and !(�) = ��(�) is convex.
Lastly, we show the Lipschitz constant of !0(�) is n: let v(�) = y � �1, then

���!0(�1)� !0(�2)
��� =

���min
⇣
1,
⇥
v(�1)

⇤
+

⌘>
1�min

⇣
1,
⇥
v(�2)

⇤
+

⌘>
1
���
2

 k1k2 ·
���min

�
1, [v(�1)]+

�
�min

�
1, [v(�2)]+

����
2

Lemma 1


p
nkv(�1)� v(�2)k2 =

p
nk�11� �21k2 = n|�1 � �2|.

2.3 Solving the projection by Newton’s method
Now it is clear that we solve Problem (1) by solving the scalar minimization problem (5) using
Newton’s method, see Algorithm 1.
Before we discuss the case of projection onto �k, we first give some remarks about Algorithm 1.

4

Algorithm 1: Newton’s method for solving Problem (1) onto �=
k

1 Input: a nonzero vector y, and initialize �0 2 (max(yi)� 1,max(yi)) ;
2 for t = 1, 2, ... do
3 v = y � �t�11;

4 �t = �t�1 �
!0(�t�1)

!00(�t�1)
, for !0(�t�1) = k �min

�
1, [v]+

�>
1, !00(�t�1) =

nX

i=1

I0<vi<1;

5 end
6 return x⇤ = min(1, [v]+)

Quantify the performance of the algorithm: feasibility gap As the goal of solving Problem (1)
is to find a vector inside the k-crapped simplex �=

k , hence we can define the feasibility gap as

dist(x,�=
k)

2 := dist
⇣
x,
�
u 2 Rn

| u>1 = k
 ⌘2

+ dist
⇣
x,
�
u 2 Rn

| 0  u  1
 ⌘2

.

By the definition of the algorithm, x⇤ is always inside the interval [0,1], so we can simplify the
feasibility gap as dist

�
x,
�
u 2 Rn

| u>1 = k
 �

= |x>1� k|. For the toy example in Fig.1, we can
see that such a gap is monotonically decreasing for the proposed algorithm.

Range for �⇤ and !00(�⇤) for general problem In general, the minimizer �⇤ can take any value in
[�1,+1] (with 1 included) for any (y, k). Also, by definition, !00(�⇤) can take any value in [0, n].
Hence, cases like !00(�⇤) = 0 and/or �⇤

2 {±1} are possible. For example, suppose k = n, then
for any bounded y 2 Rn, one can find that a root of !0(�) = !00(�) = 0 is � = �1. Furthermore,
if the parameter k is too large (or too small) such that l1 and l2 in Fig.1 do not intersect each other, it
is possible for the algorithm to produce �⇤ with !00(�⇤) = 0 and/or �⇤ 2 {±1}.

On k, and the feasible range of � In practice, k is a user-defined value that is related to the sparsity
of the desired solution vector, so k is usually (much) smaller than n, therefore we focus on the case
k ⌧ n (in § 4, we will illustrate the experimental result on solving bioinformatics problems on
real-world datasets, where we used k ⌧ n). In the following, we discuss �, assuming 0 < k ⌧ n is
selected such that the Problem (1) is feasible to solve. Now we use the toy example in Fig.1 as an
illustration. As Problem (1) is feasible, we have l1 and l2 in Fig.1 intersect at a �⇤ /2 {±1} (in the
toy example, �⇤ is unique). Now for the update of � in Algorithm 1 to work, we need !00(�) 6= 0.
Notice that !00(�) = 0 () {vj  0 or vj � 1} 8j, i.e., the “bad region” such that !00(�) = 0 is
the intersection of all Ij := {�  yj � 1 or yj  �}. Therefore, the feasible range for � such that
!00(�) 6= 0 is the complement of such bad region, i.e,

� 2 R\
\

j

Ij ⇢

i
min

�
yi
�
� 1,max

�
yi
�h
, (9)

where]a, b[denotes the open interval a < x < b, and min(yi),max(yi) are the smallest and largest
value in y, resp.. We can make use of this to design an initialization of �0. For example, we can
simply set �0 2 [min(yi) � 1 + �,min(yi) � �] for a small constant � > 0, which has the cost of
O(1). Or, we can search �0 within the interval (9), with a worst-case complexity of O(n log n),
by sorting all the n elements of yi and trying all the n feasible intervals. Refer to the toy example
in Fig.1, we see that once �0 is initialized within the feasible range, the algorithm will produce a
sequence {�t}t2N that converges to the minimizer �⇤. The convergence is guaranteed based on the
convergence theory of Newton’s method. Furthermore, if �⇤

6= 1, the sequence {�t}t2N will not
diverges to infinity since all !00(�) 6= 0, based on the following corollary.
Corollary 2. If �⇤

6= 1 is the minimizer of Problem (5), then !00(�⇤) 6= 0.

Proof. As !0(�⇤) = 0, then �⇤ (7)
=

k�|S1|+
P

i2S yi

|S| 6= 0 and hence |S| 6= 0 and !00(�⇤) 6= 0.

Computational cost The cost of the Algorithm 1 mainly comes from line 4, which has a per-
iteration cost of O(n). Assuming it takes the algorithm T iterations to converge, then the total cost
inside the loop is TO(n). Theoretically speaking, it can take Newton’s method many iterations to
converge, but empirically we observed that the algorithm usually converges in a small number of
iterations, so T is small, see Table 2 in § 3. In comparison, it costs O(n2) for the method proposed in
[17] for solving the root of the piecewise-linear equation !0(�) = 0.

5

Comparisons with existing methods To the best of our knowledge, all existing works solve
the projection problem (or a similar type of projection problem) by finding the root of !0(�) = 0
[4, 5, 17]3, in which they solve such a piecewise-linear equation by sorting-based techniques. As these
methods do solve !0(�) = 0 exactly, so when the projection problem is feasible, they will eventually
produce an exact result. In contrast, the proposed method is an iterative numerical algorithm, so it is
possible that, due to numerical issues, the proposed method does not produce an exact solution but
only an approximate solution. However, we argue that, for application with an input vector that has a
huge dimension, the proposed method is good enough.
If the equation !0(�) = 0 turns out to have no root for the input pair (y, k), in this case, all the
sorting-based methods will fail, but the proposed algorithm is still able to produce an approximate
solution, which can be useful in practice.
Lastly, as the proposed method has a lower computational cost, the method is very suitable for the
projection of high dimensional vectors, see § 3. The proposed method also finds application on
large-scale bioinformatics problems, see § 4.

The case of projection onto �k If we want to project onto �k, the same algorithm can be used
with the following twists: i. The feasibility gap becomes

dist
⇣
x,
�
u 2 Rn

| u>1  k
 ⌘

=

⇢
0 if x>1  k
x>1� k else

, and

ii. � has to be nonnegative, which can be done simply as � = [�]+. Note that now it is possible for
!00(�) = 0, since the safe range (9) may become empty after � = [�]+, for some input vector y.

3 Experiment on comparing the projection algorithms
Now we show the experimental results to demonstrate the efficiency of the proposed projection algo-
rithm. The algorithm is implemented in MATLAB4, and is compared with the MATLAB command
quadprog (a MATLAB general-purpose solver for the quadratic program), the C++ implementation
of [17], and a state-of-the-art commercial solver Gurobi [7] that uses the interior-point method [9]
to solve the projection problem. All experiments were conducted on a PC with an Intel Xeon CPU
(3.7GHz) and 32GB memory.

The result of Table 1: fast convergence of the proposed method across data size We compared
the methods on the simulation data used in [17]. We generate vector y 2 Rn with yi uniformly
sampled from [�0.5, 0.5]. We pick k as an integer between 1 and n by random, and we pick the
dimension n 2 {50, 102, 103, 104, 105, 106, 107, 108}. We repeat the experiments 100 times, and the
comparison results are shown in Table 1. We see that as n increases, the efficiency of the proposed
algorithm becomes more and more significant. For large n, many methods take more than 60 seconds
(denoted as ’-’ in Table 1). The results confirmed that the proposed projection method is the most
efficient one among these methods. In the following experiments, we only compare the proposed
algorithm and the commercial solver Gurobi, as they are the two most efficient methods.

The result of Table 2: it only takes a small number of iterations for the algorithm to converge
We currently do not have a solid theory on characterizing the exact convergent rate for Algorithm 1,
hence we performed experiments to showcase the relationship between T (the number of iterations
for Algorithm 1 to converge) and n (the number of dimension of the input vector y). From Table
2, we see an expected result that runtime and T increase with n, and the table empirically supports
the claim that it only takes a small number of iterations for the proposed method to converge. For
example, for n = 106, the empirical complexity of the proposed approach is about 10O(n), which is
much lower than O(n log n) and O(n2) with such a large n.

The result of Fig. 2: fast convergence of the proposed method across range We compare the
performance of the methods on solving the projection problem w.r.t. different range of the elements of
y. Here, we generate y 2 Rn uniformly from [�↵,+↵] with n = 105 and ↵ = {1, 10, 100, 1000}.
As shown in Fig. 2, the proposed algorithm converges much faster than the commercial solver. The
figure also shows that the performance of the proposed method is not sensitive to ↵.

3Note that [4, 5] do not tackle Problem (1) as they only solve the projection onto the unit simplex.
4The code is in the appendix.

6

Table 1: Runtime in seconds (in mean±std) of different methods on various sizes n.

Method 5⇥ 101 102 103 104

quadprog 0.0128 ± 0.01058 0.0034 ± 0.0095 0.1419± 0.0183 -
C++ 0.00003± 0.00007 0.00004± 0.00004 0.0011 ± 0.0014 0.10± 0.129

Gurobi 0.002 ± 0.0048 0.0022± 0.0021 0.0041± 0.0022 0.02± 0.0032
Proposed 0.00013 ± 0.00014 0.00016 ± 0.00065 0.00039± 0.00038 0.0039± 0.0037
Method 105 106 107 108

quadprog - - - -
C++ 10.3985± 13.703 - - -

Gurobi 0.2413± 0.00117 2.8229± 0.0955 32.26 ± 0.4953 -
Proposed 0.0406± 0.0377 0.4723 ± 0.3629 4.2067 ± 2.5795 14.925 ± 2.9893

Table 2: Runtime and # iterations (in mean) on varying n, k (over 100 experiments).

Varying n
(k = 102) Time # iter. T Varying k

(n = 106) Time # iter. T

n = 104 0.0011± 0.00013 6.2± 0.4 k = 101 0.15± 0.0096 11.4± 0.49
n = 105 0.0108± 0.00081 8.0± 0.2 k = 102 0.13± 0.0054 10± 0
n = 106 0.13± 0.0054 10± 0 k = 103 0.12± 0.0084 8.5± 0.5
n = 107 2.1± 0.03 12± 0 k = 104 0.11± 0.0039 7± 0
n = 108 21.95± 0.046 13± 0 k = 105 0.10± 0.0065 5.1± 0.2

Ours Gurobi

Figure 2: Comparison between the proposed projection method and the Gurobi projection for
↵ 2 {1, 10, 100, 1000}. The thick curves are the median of the results of over 100 experiments on
100 datasets. The figure shows the superior performance of the proposed method in terms of runtime.

4 Application of the projection in sparse regression
An application of the proposed projection method is solving the cardinality-constrained `22-regularized
regression [8]:

min
kwk0k

(
F (w) :=

nX

i=1

(yi �w>xi)
2 +

1

2
⇢kwk

2
2

)
, (P ⇤)

where
�
(xi, yi) 2 Rn

⇥ R
 m
i=1

is a collection of m samples of data point with label. The sparsity-
inducing constraint kwk0  k enforces w 2 Rn to be at most k-sparse (with k non-zero elements).
A recent work [10] studied the Boolean relaxation of P ⇤, which gives the following problem

min
u2�k

(
G(u) := y>

✓
1

⇢
XD(u)X> + I

◆�1

y

)
, (PBR)

where u 2 �k means u has to be inside the k-capped simplex. Both the original work of [10] and
several follow-up papers [1, 2] showed that the solution of the Boolean relaxation PBR empirically
outperforms the solution of other sparse estimation methods on recovering the sparse features, such
as Lasso [14] and elastic net [18], especially when the sample size is small and the feature dimension
is huge. These empirical results inspired us to develop an efficient and scalable algorithm for solving
PBR, which in turn motivates the study of solving Problem (1).
Now we show extensive experimental results to demonstrate the efficiency of the proposed method
(Algorithm 1) on accelerating the Projected Quasi-Newton (PQN) method [11] on solving PBR on big

7

Figure 3: Comparison between different methods. The results are the average over 100 datasets, and
all the error bars are in mean±std. From left to right, the sub-figures are: (a) The Acc values between
different methods when n = 103, k = 10, p = 0.2, and SNR= 6; (b) The computation time of the
algorithms in (a); (c) The Acc values between different methods when p changed to 0.7; and (d) The
computation time of the algorithms in (c).

data. To be specific, we use both a simulation dataset and a real-world dataset with various sizes. We
compare the method with a state-of-the-art method, which uses a subgradient method [2] (denoted
as SS) implemented in Julia to solve a min-max problem that is equivalent to PBR. In addition, we
compare with the classical elastic net (ENet) [18] as a reference. For a fair comparison between
methods that are implemented in different programming languages, we report the computational time
for each algorithm relative to the time needed to compute a Lasso estimator with Glmnet [6, 13] on
the same programming language, and on the same dataset. Glmnet is a package that fits the data to a
generalized linear model, based on a penalized maximum likelihood estimation method. Glmnet has
been implemented in various programming languages, such as Julia, R, and MATLAB.

Sparse regression on simulation data First, we conduct experiments on simulation data generated
as follows: let [m] = {1, 2, . . . ,m}, we draw xi ⇠ N (0n,⌃), i 2 [m] independently from a
n-dimensional normal distribution with zero mean and co-variance matrix ⌃. We randomly sample
a weight vector wtrue

2 {�1, 0,+1} with exactly ktrue non-zero coefficients. Then we generate
noise vector ✏ 2 Rm, where ✏i, i 2 [m] are drawn independently from a normal distribution scaled
according to a chosen signal-to-noise ratio (SNR) defined as

p
SNR = kXwtrue

k/k✏k. Finally, we
form Y = Xwtrue + ✏, where X = [x1,x2, . . . ,xn]>. We evaluate the performance on simulation
data using accuracy defined as Acc(w) :=

��{ i : wi 6= 0, wtrue
i 6= 0 }

�� /
��{ i : wtrue

i 6= 0 }
��.

For the first simulation data, we generate 100 datasets by setting ⌃ij = p|i�j| to a Toeplitz covariance
matrix with p = 0.2, n = 1, 000, ktrue = 20, and SNR= 6. As shown in Fig. 3 (a), PQN + the
proposed projection and PQN + Gurobi have exactly the same performance in in terms of Acc value,
which is expected since the only difference between these methods is the projection algorithm. In
addition, the two methods converge quickly to Acc= 1, outperforming all the other methods. Fig. 3
(b) shows that PQN + the proposed projection is the most efficient algorithm for solving PBR among
all the tested methods.
The second simulation data is generated similarly to the first one. The only difference here is that
p = 0.7, indicting the higher correlation between the features, meaning that now it is harder to
recover the true support of wtrue. As shown in Fig. 3 (c), PQN + the proposed projection and PQN
+ Gurobi again have the same performance, and they still outperform all the other methods. Again,
PQN + the proposed projection is the most efficient algorithm for solving the problem here.
For the results on comparing the convergence between PQN and SS, as well as the details of all the
parameter settings for all the methods, see the appendix.

Sparse regression on GWAS data We conducted experiments to evaluate the efficiency of the
proposed projection algorithm on a Genome-Wide Association Study (GWAS) dataset. The data
was obtained from the dbGaP web site, under the dbGaP Study Accession phs000095.v3.p15. This
study is part of the Gene Environment Association Studies initiative with the goal to identify novel
genetic factors that contribute to dental caries through large-scale genome-wide association studies
of well-characterized families and individuals at multiple sites in the United States. The data we
used in this experiment contains 227 Caucasians with 11,626,696 Single-nucleotide polymorphisms

5https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000095.
v3.p1

8

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000095.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000095.v3.p1

0 50 100 150 200 250
Time (s)

0

5

10

15

20

25

30

35

40

45

50

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Chromosome 20 (252,257 SNPs)

Proposed projection
Gurobi projection

0 200 400 600 800 1000
Time (s)

0

5

10

15

20

25

30

35

40

45

50

O
bj

ec
tiv

e
Fu

m
ct

io
n

Va
lu

e

Chromosome 5 (750,860 SNPs)

Gurobi Projection
Proposed Projection

0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)

0

5

10

15

20

25

30

35

40

45

50

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Chromosome 2 (1,562,480 SNPs)

Gurobi projection
Proposed projection

Figure 4: Convergence comparison between PQN with the proposed projection algorithm and PQN
with Gurobi projection. From left to right, the sub-figures are: (a) Comparison on chromosome 20;
(b)Comparison on chromosome 5; and (c) Comparison on chromosome 2.

(SNPs) for all chromosomes. Here, the goal is to identify the important SNPs by performing a sparse
regression. We solve the Boolean-relaxed sparse regression problem PBR on chromosome 20, 5, and
2, which have 252,257 SNPs, 750,860 SNPs, and 1,562,480 SNPs, resp..
Fig. 4 shows the comparison result between PQN + the projection and PQN + Gurobi. We find that
PQN + the proposed projection outperforms in all three problems (with different numbers of SNPs)
in terms of computational time. In addition, PQN + the proposed projection and PQN + Gurobi
converge to the same objective function value, indicating the correctness of the proposed projection
algorithm.

Results on comparing different methods on the simulated GWAS data To further demonstrate
the practical impact of solving PBR using the proposed algorithm, here we further compare different
methods using the simulated GWAS data described in [16].
We compared PBR with Lasso [14] and Elastic Net (ENet). We used the out-of-sample Mean Square
Error (MSE) to select the parameter k for PBR. For Lasso and ENet, we used cross-validation with
the minimum MES+1SE (Standard Error) to tune the hyper-parameters, which was suggested by [16].
There are three different simulated GWAS datasets as stated in [16], in which they have different
levels of correlation (LD: High, Mixed, and Low) between SNPs. All the datasets have 50,000 SNPs
and 25 significant SNPs. In Table 3, we showed the comparison when the sample size is 1000 and
100. Here we report the median and the standard deviation (in parentheses) over 100 replicates. We
can see that PBR can find more correct SNPs with low false positive rate, especially when the sample
size is only 100. For the comparisons when the sample size is 150 and 50, see the appendix.

Table 3: SNP=50,000, significant SNPs = 25.

Sample size = 1000 Sample size = 100
Lasso ENet PBR Lasso ENet PBR

High LD Correct 3(0.91) 25(0) 25(0) 2(1.01) 20(3.47) 25(1.52)
False positive 0(0) 0(0.1) 0(0) 1(0.93) 4(1.41) 1(1.03)

Mixed LD Correct 3(0.75) 18(1.47) 25(0) 2(1.35) 16(1.47) 24(2.03)
False positive 0(0) 0(1.19) 0(0) 1(0.68) 2(0.35) 2(1.24)

Low LD Correct 17(2.12) 25(0.51) 25(0) 5(2.12) 17(3.51) 23(3.07)
False positive 0(0.39) 0(2.06) 0(0) 2(0.59) 5(2.06) 3(1.47)

5 Conclusion
We propose to use Newton’s method to solve the problem of projecting a vector onto the k-capped
simplex. On the theory side, we transform the problem to a scalar minimization problem and provide
a theorem to characterize the derivatives of the cost function of such a problem. On the practical side,
we show that the proposed method outperforms existing methods on solving the projection problem,
and show that it can be used to accelerate the method on solving sparse regressions in bioinformatics
on a huge dataset.

6 Acknowledgments
The presented materials are based upon the research supported by the Indiana University’s Precision
Health Initiative. Andersen Ang acknowledges the support by a grant from NSERC (Natural Sciences
and Engineering Research Council) of Canada.

9

References
[1] D. Bertsimas and B. V. Parys. Sparse high-dimensional regression: Exact scalable algorithms

and phase transitions. The Annals of Statistics, 48(1):300 – 323, 2020.

[2] D. Bertsimas, J. Pauphilet, and B. V. Parys. Sparse Regression: Scalable Algorithms and
Empirical Performance. Statistical Science, 35(4):555 – 578, 2020.

[3] J. F. Bonnans and A. Shapiro. Optimization problems with perturbations: A guided tour. SIAM

Review, 40(2):228–264, 1998.

[4] L. Condat. Fast projection onto the simplex and the l1 ball. Mathematical Programming,
158(1):575–585, 2016.

[5] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l 1-ball for
learning in high dimensions. In Proceedings of the 25th international conference on Machine

learning, pages 272–279, 2008.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

[7] L. Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series
in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[9] Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[10] M. Pilanci, M. J. Wainwright, and L. El Ghaoui. Sparse learning via boolean relaxations.
Mathematical Programming, 151(1):63–87, 2015.

[11] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with simple
constraints: A limited-memory projected quasi-newton algorithm. In AISTATS 2009, pages
456–463. PMLR, 16–18 Apr 2009.

[12] M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine learning, pages
305–330. MIT Press, Cambridge, MA, USA, Dec. 2011.

[13] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s proportional
hazards model via coordinate descent. Journal of Statistical Software, 39(5):1–13, 2011.

[14] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society (Series B), 58(1):267–288, 1996.

[15] J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100(1):295–320,
1928.

[16] P. Waldmann, G. Mészáros, B. Gredler, C. Fürst, and J. Sölkner. Evaluation of the lasso and the
elastic net in genome-wide association studies. Frontiers in Genetics, 4:270, 2013.

[17] W. Wang and C. Lu. Projection onto the capped simplex. arXiv preprint arXiv:1503.01002,
2015.

[18] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society, Series B, 67(2):301–320, 2005.

10

	Introduction
	Projection onto the capped simplex
	Reformulate the projection problem to a scalar minimization problem
	The derivatives and the huge smoothness constant
	Solving the projection by Newton's method

	Experiment on comparing the projection algorithms
	Application of the projection in sparse regression
	Conclusion
	Acknowledgments
	Appendix
	About the reference method ENet on the experiment in Section 4
	Optimization details in Section 4
	The three methods: PQN and SS
	The experimental settings

	Convergence Comparison on Solving PBR
	Further results on comparing different methods on the simulated GWAS data
	The MATLAB codes for the projection

