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A Preliminary results

In this section, we present some preliminary results that will be useful in proving Theorem 3.2,
Theorem 3.3 and Proposition 3.4. We draw upon existing theory on properties of random kernel
matrices and extend these properties to cluster-correlated data. Specifically, we show the convergence
of eigenvalues and eigenvectors of an empirical kernel matrix based on clustered data.

Let (X ,F , P ) be a probability space and H be a Hilbert space over (X ,F , P ) with a symmetric
kernel function k : X × X → R. Let H be a compact operator onH, defined by

Hg(x) =

∫
X
k(x, x′)g(x′)dP (x′) for x ∈ X , g ∈ H.
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LetHn be the Hilbert space over (X ,F , Pn), where Pn = 1
n

∑n
j=1 δXj is the empirical version of

P for a given n ∈ N. Let Hn : Hn → Hn be the empirical version of the operator H , defined by

Hng(x) =

∫
X
k(x, x′)g(x′)dPn(x

′) for x ∈ X , g ∈ Hn.

Equivalently, Hn can be viewed as an n× n real matrix whose (i, j)-th entry is

{Hn}i,j =
1

n
k(Xi, Xj).

This is the empirical kernel matrix scaled by a factor of 1/n.

Here we restrict our discussion to a reproducing kernel Hilbert space (RKHS)H, where the kernel
function k is positive semi-definite. We also assume that the operator H is Hilbert–Schmidt, with
E[k2(X,X ′)] <∞.

Let λ(T ) denote the spectrum of a compact, symmetric operator T . Then λ(H) and λ(Hn) are
the sets of eigenvalues for H and Hn, respectively. Since Hn is an operator on Rn, we add to its
spectrum an infinite number of zeros, such that λ(H) and λ(Hn) are comparable. For an operator
with a positive semi-definite kernel, the associated eigenvalues are non-negative.

For any two compact, symmetric operatorsA andB with positive semi-definite kernels, let a1 ≥ a2 ≥
· · · ≥ 0 be the eigenvalues in λ(A) arranged in a non-increasing order and let b1 ≥ b2 ≥ · · · ≥ 0 be
the eigenvalues in λ(B) arranged in a non-increasing order. Following the work by Koltchinskii et al.
[1], we can define a distance measure δ2 on `2(N) such that

δ2(λ(A), λ(B)) =
[∑

i

(ai − bi)2
]1/2

.

As shown in [1], the measure δ2 is a well-defined distance between spectra of Hilbert–Schmidt
operators or operators on Rn. It satisfies the triangle inequality with

δ2(λ(A), λ(B)) ≤ δ2(λ(A), λ(C)) + δ2(λ(C), λ(B))

for any operators A, B and C.

We now consider a sample Xn = (X1, · · · , Xn) with clustered correlation among the observations,
as defined in Section 2.1 of the main text.
Assumption A.1. Assume that Xn can be divided into m i.i.d. clusters of fixed size d (i.e., n =
md). The observations X1, · · · , Xn are identically distributed according to P , and the clusters
{[Xdi−d+1, Xdi−d+2, · · · , Xdi]}mi=1 are independent from each other while having identical within-
cluster correlation structure.

A.1 Convergence of eigenvalues

We show that, with clustered data, the set of eigenvalues for Hn converges to the set of eigenvalues
for H as the number of clusters goes to infinity. We first introduce a lemma that will be useful in
proving this statement.
Lemma A.2. Suppose that Assumption A.1 holds for the sample Xn. Let Vn be a V-statistic based
on Xn with a bivariate symmetric kernel function f(x, x′):

Vn :=
1

n2

n∑
i=1

n∑
j=1

f(Xi, Xj).

Assume that Vn is non-degenerate and the class C := {x 7→ f(x, x′) : x′ ∈ X} is a P -Donsker class
[2], then

Vn
p→ E[f(X,X ′)] as m→∞,

where X ′ is an independent copy of X .

The proof of Lemma A.2 is provided in Appendix E.

We have assumed that the operator H is Hilbert–Schmidt and the kernel k is positive semi-definite.
By Mercer’s Theorem (see, e.g. Theorem 3.6 of [3]), there exists an orthonormal set {φr : r ∈ J}
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of H, where J ⊆ N, and a sequence of descending non-negative real numbers {λr : r ∈ J} with∑
r∈J λ

2
r <∞ such that

k(x, x′) =
∑
r∈J

λrφr(x)φr(x
′).

Here the set λ(H) := {λr : r ∈ J} is the set of eigenvalues for H , and the set {φr : r ∈ J}
is the corresponding set of eigenfunctions. For any fixed R ∈ N, we further define kR(x, x′) :=∑R
r=1 λrφr(x)φr(x

′).

The following theorem states the convergence of eigenvalues of the empirical kernel matrix. The
theorem and associated proof are adapted from Theorem 3.1 of Koltchinskii et al. [1], where we
extend the assumption from i.i.d. data to clustered data.
Theorem A.3. Assume that the kernel k(·, ·) is symmetric and positive semi-definite, and
E[k2(X,X ′)] < ∞. Suppose that Assumption A.1 holds for the sample Xn, and C := {x 7→
(k − kR)2(x, x′) : x′ ∈ X} is a P -Donsker class for any R ∈ N. Then we have

δ2(λ(Hn), λ(H))
p→ 0 as m→∞. (1)

As a result, the r-th largest eigenvalue of Hn converges in probability to the r-th largest eigenvalue
of H , for each r.

Proof. Symmetric kernel k and E[k2(X,X ′)] <∞ ensure that the operator H is Hilbert–Schmidt.
For the decomposition k(x, x′) =

∑
r∈J λrφr(x)φr(x

′), we consider first the basic case where
J = {1, · · · , R0} for some R0 <∞, and then the general case where J = N.

In the basic case, we have k(x, x′) =
∑R0

r=1 λrφr(x)φr(x
′). Following the argument of Koltchinskii

et al. [1], we can prove that (1) holds, using tools of operator perturbation theory. The majority of the
proof in the basic case would be similar to that of Koltchinskii et al. and we skip the details here.
To account for clustered data, in Eq. (3.4) of [1], we apply the law of large numbers (LLN) to the
clusters instead of individual observations.

We next focus on the general case where J = N. For any fixed R < ∞, let HR be the integral
operator with kernel kR(x, x′) =

∑R
r=1 λrφr(x)φr(x

′). Then we have

lim
R→∞

δ2(λ(H), λ(HR)) = lim
R→∞

[ ∞∑
r=R+1

λ2r

]1/2
= 0. (2)

Let HR,n be an n× n real matrix (i.e., an operator on Rn) whose (i, j)-th entry is

{HR,n}i,j =
1

n
kR(Xi, Xj).

By the result (1) established in the basic case, we have

lim
m→∞

δ2(λ(HR,n), λ(HR)) = 0 in probability for all R <∞. (3)

Now, by Hoffman–Wielandt Inequality (Theorem 2.2 of [1]), we have

lim
R→∞

lim
m→∞

δ2(λ(HR,n), λ(Hn)) ≤ lim
R→∞

lim
m→∞

‖HR,n −Hn‖HS

= lim
R→∞

lim
m→∞

[ 1

n2

∑
1≤i,j≤n

(k − kR)2(Xi, Xj)
]1/2

.
(4)

Here Vn := 1
n2

∑
1≤i,j≤n(k−kR)2(Xi, Xj) is a V-statistic with kernel f(x, x′) = (k−kR)2(x, x′).

By Lemma A.2, which shows the convergence in probability of a V-statistic based on clustered data,
we have

Vn
p→ E[(k − kR)2(X,X ′)] as m→∞,

where X ′ is an independent copy of X . Therefore, (4) becomes

lim
R→∞

lim
m→∞

δ2(λ(HR,n), λ(Hn)) ≤ lim
R→∞

E[(k − kR)2(X,X ′)]1/2

= lim
R→∞

[ ∞∑
r=R+1

λ2r

]1/2
= 0 in probability.

(5)
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Finally, combining (2), (3) and (5), we have

lim
m→∞

δ2(λ(Hn), λ(H))

≤ lim
R→∞

lim sup
m→∞

[
δ2(λ(Hn), λ(HR,n)) + δ2(λ(HR,n), λ(HR)) + δ2(λ(HR), λ(H))

]
= 0 in probability.

Suppose γr is the r-th largest eigenvalue of Hn, and recall that λr is the r-th largest eigenvalue of H .
For any r ∈ N, we have that

|γr − λr| ≤
[∑

i

(γi − λi)2
]1/2

= δ2(λ(Hn), λ(H))
p→ 0 as m→∞.

We have thus proved the theorem.

We now show that some common kernel functions such as linear kernels and Gaussian kernels satisfy
the conditions in Theorem A.3.

For any X ⊆ Rp, the linear kernel k(x, x′) = xTx′ has exactly p non-zero eigenvalues. Therefore,
the linear kernel trivially satisfies the basic case in the proof of Theorem A.3.

Next, we show that conditions in Theorem A.3 hold for a Gaussian kernel k(x, x′) = exp(−‖x−
x′‖22/(2σ2)) under X = R and a normal distribution P . The case where X is multi-dimensional can
be generalized from the univariate case.
Proposition A.4. Suppose that X = R and P = N (0, τ2). Given a Gaussian kernel k(x, x′) =
exp(−(x − x′)2/(2σ2)), it holds that the class C := {x 7→ (k − kR)

2(x, x′) : x′ ∈ X} is a
P -Donsker class.

Proof. We utilize the fact that, classes of functions with uniformly bounded variation are P -Donsker
[4]. We will show that there exists some M <∞ such that the total variation norm ‖ · ‖V of each
function f in C satisfies: ‖f‖V ≤M . The total variation norm of a differentiable function f is of the
form: ‖f‖V =

∫
|f ′(x)|dx.

As shown in Section 4.3.1 of [5], the eigenvalues λr and eigenfunctions φr of the Gaussian kernel
k(x, x′) = exp(−(x− x′)2/(2σ2)), with r = 0, 1, 2, · · · , are of the following form:

λr =

√
2a

A
Bk, φr(x) = exp(−(c− a)x2)Hr(

√
2cx),

where Hr(x) = (−1)r exp(x2) d
r

dxr exp(−x2) is the r-th order Hermite polynomial, a = 1/(4τ2),
b = 1/(2σ2) and

c =
√
a2 + 2ab, A = a+ b+ c, B = b/A.

Therefore, we can express kR(x, x′) =
∑R−1
r=0 λrφr(x)φr(x

′) in a closed form.

Both k and kR are differentiable. Fixing x′ ∈ X , by definition of total variation norm, we have

‖(k − kR)2(·, x′)‖V =

∫ ∣∣∣ d
dx

(k − kR)2(x, x′)
∣∣∣dx

=

∫ ∣∣∣2(k − kR)(x, x′)[− 1

σ2
(x− x′)k(x, x′)− k∗R(x, x′)

]∣∣∣dx,
where k∗R(x, x

′) =
∑R−1
r=0 λrφ

∗
r(x)φr(x

′), with

φ∗r(x) =

{
exp(−(c− a)x2)

[
− 2(c− a)x

]
if r = 0,

exp(−(c− a)x2)
[
2r
√
2cHr−1(

√
2cx)− 2(c− a)xHr(

√
2cx)

]
if r > 0.

By triangle inequality and Cauchy-Schwarz inequality, ‖(k − kR)2(·, x′)‖V is uniformly bounded
(with respect to x′) as long as the following terms are uniformly bounded:∫

(x− x′)2k2(x, x′)dx,
∫
k2(x, x′)dx,

∫
k2R(x, x

′)dx,

∫
(k∗R(x, x

′))2dx.
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We have:∫
(x− x′)2k2(x, x′)dx =

∫
(x− x′)2 exp

(
− (x− x′)2

σ2

)
dx =

√
πσ EP0

[(X − x′)2] =
√
πσ3

2
,

where the expectation is evaluated according to the distribution P0 = N (x′, σ2/2). Similarly, it is
easy to show that

∫
k2(x, x′)dx =

√
πσ.

To show that
∫
k2R(x, x

′)dx is uniformly bounded, by Cauchy-Schwarz inequality, it suffices to show
that

∫
φ2r(x)dx and φr(x′)φs(x′) are uniformly bounded for any r, s ∈ {0, · · · , R− 1} and x′ ∈ X .

We have∫
φ2r(x)dx =

∫
exp(−2(c− a)x2)H2

r (
√
2cx)dx =

√
π

2(c− a)
EP1 [H

2
r (
√
2cX)],

where the expectation is evaluated according to the distribution P1 = N (0, 1/[4(c− a)]). The r-th
order Hermite polynomial is a polynomial of degree r. Since a normal distribution has finite r-th
moments for any non-negative integer r, the term EP1

[H2
r (
√
2cX)] is finite.

Let M1 = maxr∈{0,··· ,R−1} EP1 [H
2
r (
√
2cX)], then

∫
φ2r(x)dx ≤M1 for all r ∈ {0, · · · , R− 1}.

Note that φr(x′) = exp(−(c− a)(x′)2)Hr(
√
2cx′) is a bounded function for any r: Intuitively, the

exponential part changes at a larger rate than the polynomial part, and exp(−(c−a)(x′)2) is bounded
between 0 and 1. Therefore, there exists c0, · · · , cR−1 > 0 such that supx′∈X |φr(x′)| ≤ cr for each
r = 0, · · · , R− 1.

Let M2 = maxr,s∈{0,··· ,R−1} crcs, then |φr(x′)φs(x′)| ≤ M2 for all r, s ∈ {0, · · · , R − 1} and
x′ ∈ X . Similarly, we can show that

∫
(k∗R(x, x

′))2dx is also uniformly bounded.

As a result, for each σ2 and τ2, there exists M <∞ such that, for any x′ ∈ X , the function f(x) =
(k − kR)2(x, x′) has a total variation bounded by M . Thus C = {x 7→ (k − kR)2(x, x′) : x′ ∈ X}
is a P -Donsker class.

A.2 Convergence of eigenvectors

We next show that, under sufficient conditions, the eigenvectors of the scaled empirical kernel matrix
Hn would converge in probability to the corresponding eigenfunctions for the operator H , as the
number of clusters goes to infinity. In particular, the i-th element of the r-th eigenvector of Hn

converges in probability to the r-th eigenfunction of H evaluated at Xi, up to some scaling.

Let λ(H) := {λr : r ∈ N} be the set of eigenvalues for H , and {φr : r ∈ N} be the corresponding
set of eigenfunctions for H . Let λ(Hn) := {γr : r = 1, · · · , n} be the set of eigenvalues for Hn.
Let ur = (ur(Xi), · · · , ur(Xn))

T be the r-th eigenvector for Hn.

Here (and in the proofs in Appendix B-D) we assume that all eigenvalues in λ(H) have multiplicity
one for simplicity. In the case where certain eigenvalues have multiplicity larger than one and the
corresponding eigenfunctions are not unique, we can always find an orthogonal matrix that transforms
the set of eigenvectors {ur : r = 1, · · · , n} to match the components of {φr : r ∈ N}, as considered
by Zhang et al. (2012) (Lemma 8 in [6]).

For each r where γr > 0, define the function

gr,n(x) :=
1√
nγr

n∑
j=1

k(x,Xj)ur(Xj).

As discussed by Bengio et al. [7], the function gr,n can be viewed as an eigenfunction for Hn. In
particular, it is easy to show that gr,n(Xi) =

√
nur(Xi) for each i.

The following proposition states the convergence of eigenvectors of the kernel matrix. The proposition
and associated proof are adapted from Proposition 2 from Bengio et al. [7], while accommodating
the clustered correlation among the observations.
Proposition A.5. Suppose that Assumption A.1 holds for the sample Xn. Assume that the conditions
in Theorem A.3 hold and that, for each r, the function x 7→ gr,n(x) converges uniformly in probability
to a non-random limit function gr,∞ as m→∞, with E[g2r,∞(X)] <∞. Then for each r, i, we have

gr,n(Xi) =
√
nur(Xi)

p→ φr(Xi) as m→∞.
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Proof. We restrict our discussion to positive γr and λr’s. By algebraic manipulation, we have

gr,n(x) =
1√
nγr

n∑
j=1

ur(Xj)k(x,Xj)

=

√
n

γr

n∑
j=1

[ 1√
n
gr,n(Xj)

] 1
n
k(x,Xj)

=
1

nγr

n∑
j=1

gr,n(Xj)k(x,Xj).

The above result shows that gr,n is an eigenfunction of Hn with eigenvalue γr. Our goal is to show
that gr,∞ is an eigenfunction of H with eigenvalue λr. Following the argument of [7], by triangle
inequality, for any fixed x ∈ X , we can derive∣∣∣gr,n(x)− 1

λr

∫
gr,∞(x′)k(x, x′)dP (x′)

∣∣∣
≤
∣∣∣ 1

nλr

n∑
j=1

gr,∞(Xj)k(x,Xj)−
1

λr

∫
gr,∞(x′)k(x, x′)dP (x′)

∣∣∣
+
∣∣∣λr − γr
nλrγr

n∑
j=1

gr,∞(Xj)k(x,Xj)
∣∣∣

+
∣∣∣ 1

nγr

n∑
j=1

k(x,Xj)[gr,n(Xj)− gr,∞(Xj)]
∣∣∣

=: An +Bn + Cn.

(6)

Next we study each of the above terms.

First, by LLN applied to clusters, we have

An =
∣∣∣ 1

nλr

n∑
j=1

gr,∞(Xj)k(x,Xj)−
1

λr

∫
gr,∞(x′)k(x, x′)dP (x′)

∣∣∣
=

1

dλr

∣∣∣ 1
m

m∑
j=1

[ dj∑
`=dj−d+1

gr,∞(X`)k(x,X`)
]
− d

∫
gr,∞(x′)k(x, x′)dP (x′)

∣∣∣
p→ 0 as m→∞.

(7)

Note that, since E[k2(X ′, X)] < ∞, we have E[k2(x,X)] = E[k2(X ′, X)|X ′ = x] < ∞ for any
fixed x ∈ X .

From Theorem A.3, we know that γr
p→ λr for each r, and thus γr is bounded in probability.

Therefore, by LLN applied to clusters,

Bn =
∣∣∣λr − γr
nλrγr

n∑
j=1

gr,∞(Xj)k(x,Xj)
∣∣∣

≤
∣∣∣λr − γr
λrγr

∣∣∣∣∣∣ 1
n

n∑
j=1

gr,∞(Xj)k(x,Xj)
∣∣∣

p→ 0×
∣∣∣E[gr,∞(X)k(x,X)]

∣∣∣ = 0 as m→∞,

(8)

where we use Cauchy-Schwarz inequality:∣∣∣E[gr,∞(X)k(x,X)]
∣∣∣ ≤ E[

∣∣gr,∞(X)k(x,X)
∣∣] ≤ (E[g2r,∞(X)]E[k2(x,X)]

)1/2
<∞.
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Finally, again by LLN applied to clusters, we have

Cn =
∣∣∣ 1

nγr

n∑
j=1

k(x,Xj)[gr,n(Xj)− gr,∞(Xj)]
∣∣∣

≤ 1

nγr

n∑
j=1

∣∣∣k(x,Xj)[gr,n(Xj)− gr,∞(Xj)]
∣∣∣

≤ 1

γr
sup
x′∈X

∣∣∣gr,n(x′)− gr,∞(x′)
∣∣∣× 1

n

n∑
j=1

|k(x,Xj)|

p→ 0× E[|k(x,X)|] = 0 as m→∞,

(9)

where we use the uniform convergence assumption

sup
x′∈X

∣∣∣gr,n(x′)− gr,∞(x′)
∣∣∣ p→ 0 as m→∞

and the fact that E[|k(x,X)|] <∞ for any fixed x (given E[k2(x,X)] <∞).

By (7), (8) and (9), we see that (6) becomes∣∣∣gr,n(x)− 1

λr

∫
gr,∞(x′)k(x, x′)dP (x′)

∣∣∣ p→ 0 as m→∞,

i.e., gr,n(x) converges in probability to 1
λr

∫
gr,∞(x′)k(x, x′)dP (x′) pointwise for each x ∈ X .

We already know that gr,n
p→ gr,∞ pointwise. By uniqueness of limit, we obtain

λrgr,∞(x) =

∫
gr,∞(x′)k(x, x′)dP (x′),

indicating that gr,∞ is an eigenfunction of H with eigenvalue λr, i.e., gr,∞ = φr.

Finally, consider any observation Xi from the random sample Xn. By the uniform convergence
assumption for gr,n(x), we have, for any ε > 0,

Pr
(
|gr,n(Xi)− φr(Xi)| > ε

)
≤ Pr

(
sup
x∈X
|gr,n(x)− φr(x)| > ε

)
→ 0 as m→∞.

Therefore, for each r, i, we have

gr,n(Xi) =
√
nur(Xi)

p→ φr(Xi) as m→∞,

completing the proof.

B Proof of Theorem 3.2

We first introduce a lemma that will be useful in proving the theorem. The following lemma is
adapted from Theorem 4.2 of [8] and Lemma 9 of [6].

Lemma B.1. Let {AR,m} be a double sequence of random vectors indexed by R and m. Let {BR}
and {Cm} be sequences of random vectors and D be a random vector. Suppose that we have

AR,m
p→ BR as m→∞ for each R, and BR

d→ D as R→∞. Further suppose that

lim
R→∞

lim sup
m→∞

Pr(‖AR,m − Cm‖ > ε) = 0

for any ε > 0. Then Cm
d→ D as m→∞.

The proof of Lemma B.1 is provided in Appendix E.
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B.1 Proof of Theorem 3.2

To prove Theorem 3.2, we adopt a strategy similar to the proof for Theorem 3 of Zhang et al. (2012)
[6]. Let u∗X,r :=

√
γX,ruX,r and u∗X,r :=

√
γY,ruY,r for each r. Define

Qrs :=
1√
n

(
u∗X,r

)T(
u∗Y,s

)
=

1√
n

n∑
i=1

u∗X,r(Xi)u
∗
Y,s(Yi),

where u∗X,r(Xi) and u∗Y,r(Yi) are the i-th elements of u∗X,r and u∗Y,r, respectively. We then note that

nHSIC(Pn) =
1

n
tr(K̃XK̃Y ) =

1

n

∑
1≤r,s≤n

[(
u∗X,r

)T(
u∗Y,s

)]2
=

∑
1≤r,s≤n

Q2
rs.

We will break the proof of Theorem 3.2 into two parts:

(i) If X ⊥⊥ Y , then for any fixed L ∈ N, we have

∑
1≤r,s≤L

Q2
rs

d→
L2∑
t=1

`tz
2
t as m→∞, (10)

where zt’s are i.i.d. standard normal variables, and `t’s are the eigenvalues of E[wwT ], withw being
the random vector obtained by stacking the columns in the L× L matrixN , whose (r, s)-th entry is

Nrs =
1√
d

d∑
i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi).

(ii) The result (10) still holds when L = n→∞, which is satisfied as m→∞. In other words,

nHSIC(Pn) =
∑

1≤r,s≤n

Q2
rs

d→
∞∑
t=1

`tz
2
t as m→∞,

where `t’s are now the eigenvalues of the infinite matrix E[w∞wT
∞], with w∞ being the infinite

random vector whose elements are of the form:

1√
d

d∑
i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi) for r, s ∈ N.

Alternatively, `t’s can be viewed as the solutions to the eigenvalue problem

`tψt,rs

=
1

d

∞∑
p,q=1

E
[( d∑

i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi)

)( d∑
i=1

√
λX,pλY,qφX,p(Xi)φY,q(Yi)

)]
ψt,pq

for some double sequence {ψt,rs}∞r,s=1 ∈ R.

We focus on proving part (i) of the theorem. Assume that the null hypothesis H0 : X ⊥⊥ Y hold, and
consider a fixed L ∈ N.

For i = 1, · · · ,m, let vi be the random vector obtained by stacking the columns in the L× L matrix
Mi, whose (r, s)-th entry is

Mi,rs =
1√
d

di∑
j=di−d+1

u∗X,r(Xj)u
∗
Y,s(Yj).

Let wi be the random vector obtained by stacking the columns in the L × L matrix Ni, whose
(r, s)-th entry is

Ni,rs =
1√
d

di∑
j=di−d+1

√
λX,rλY,sφX,r(Xj)φY,s(Yj).

8



Since X ⊥⊥ Y , we have

E[φX,r(Xi)φY,s(Yi)] = E[φX,r(Xi)]E[φY,s(Yi)] = 0 for all i,

where we use the assumption that the kernels k̃X and k̃Y are centered. Therefore, we have E[w] = 0
and it follows that Cov[w] = E[wwT ].

By multivariate central limit theorem, we then have

1√
m

m∑
i=1

wi
d→ N(0,E[wwT ]) as m→∞.

By Theorem A.3 and Proposition A.5, for any Xi, Yi and any fixed r, we have 1

1

n
γX,r

p→ λX,r,
1

n
γY,r

p→ λY,r as m→∞;

√
nuX,r(Xi)

p→ φX,r(Xi),
√
nuY,r(Yi)

p→ φY,r(Yi) as m→∞.
Recall that u∗X,r(Xi) =

√
γX,ruX,r(Xi) and u∗Y,r(Yi) =

√
γY,ruY,r(Yi). Therefore, by continuous

mapping theorem and Slutsky’s theorem, for any fixed r and s,

u∗X,r(Xi)u
∗
Y,s(Yi)

p→
√
λX,rλY,sφX,r(Xi)φY,s(Yi) as m→∞.

As a consequence, we have vi
p→ wi for each i. Using Lemma B.1 with AR,m = 1√

R

∑R
i=1 vi,

BR = 1√
R

∑R
i=1wi, Cm = 1√

m

∑m
i=1 vi and D ∼ N (0,E[wwT ]), we can derive

1√
m

m∑
i=1

vi
d→ N (0,E[wwT ]) as m→∞.

We perform an eigendecomposition of E[wwT ] such that E[wwT ] = UΛUT , where Λ is a diagonal
matrix containing the eigenvalues of E[wwT ] and U is an orthogonal matrix.

Let Z = UT
[

1√
m

∑m
i=1 vi

]
. Then by continuous mapping theorem, we have

Z
d→ N (0,UT E[wwT ]U) = N (0,UTUΛUTU) = N (0,Λ) as m→∞.

It follows that ∑
1≤r,s≤L

Q2
rs =

∑
1≤r,s≤L

[ 1√
n

n∑
i=1

u∗X,r(Xi)u
∗
Y,s(Yi)

]2
=

∑
1≤r,s≤L

[ 1√
m

m∑
i=1

1√
d

di∑
j=di−d+1

u∗X,r(Xj)u
∗
Y,s(Yj)

]2
=
[ 1√

m

m∑
i=1

vi

]T [ 1√
m

m∑
i=1

vi

]
=
[ 1√

m

m∑
i=1

vi

]T
UUT

[ 1√
m

m∑
i=1

vi

]

= ZTZ
d→

L2∑
t=1

`tz
2
t as m→∞,

where `t’s are the eigenvalues of E[wwT ] and zt’s are i.i.d. standard normal variables.

To prove part (ii) of the theorem, we can use Lemma 9 from Zhang et al. (2012) [6]. The argument
would be similar to that in [6] and we skip the details here.

1Here we assume that the (i, j)-th entry of the centered kernel matrix K̃X (K̃Y ) well approximates
k̃X(Xi, Xj) (k̃Y (Yi, Yj)). To address data dependence of the entries of K̃X and K̃Y , we could show that,
under regularity conditions, these empirically centered kernel functions converge uniformly in probability to k̃X
and k̃Y , as considered in Proposition 2 of [7].
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C Proof of Theorem 3.3

We first introduce a lemma that will help with the proof. The following lemma is in the same
spirit as Lemma B.1, while replacing convergence in distribution with convergence in probability in
assumptions and results.
Lemma C.1. Let {AR,m} be a double sequence of random vectors indexed by R and m. Let {BR}
and {Cm} be sequences of random vectors and D be a random vector. Suppose that we have
AR,m

p→ BR as m→∞ for each R, and BR
p→ D as R→∞. Further suppose that

lim
R→∞

lim sup
m→∞

Pr(‖AR,m − Cm‖ > ε) = 0

for any ε > 0. Then Cm
p→ D as m→∞.

The proof of Lemma C.1 is provided in Appendix E.

C.1 Proof of Theorem 3.3

To begin the proof for Theorem 3.3, we assume that there exists some r, s ∈ N such that
E[φX,r(X)φY,s(Y )] 6= 0. We can find a fixed L ∈ N such that r, s ≤ L. Let Qrs, w,wi,vi
be defined as in the proof of Theorem 3.2 (Appendix B.1).

Since E[φX,r(X)φY,s(Y )] 6= 0, we have

E
[ 1√

d

d∑
i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi)

]
=
√
dE
[√

λX,rλY,sφX,r(X)φY,s(Y )
]
6= 0.

It follows that E[w] 6= 0. By weak law of large numbers, we have

1

m

m∑
i=1

wi
p→ E[w] as m→∞.

Using Theorem A.3, Proposition A.5 and Lemma C.1 with AR,m = 1
R

∑R
i=1 vi, BR = 1

R

∑R
i=1wi,

Cm = 1
m

∑m
i=1 vi and D = E[w], we can derive

1

m

m∑
i=1

vi
p→ E[w] as m→∞.

Therefore, by continuous mapping theorem,

1

m

∑
1≤r,s≤L

Q2
rs =

[ 1
m

m∑
i=1

vi

]T [ 1
m

m∑
i=1

vi

]
p→ E[w]T E[w] > 0 as m→∞.

As a consequence, ∑
1≤r,s≤L

Q2
rs

p→∞ as m→∞.

For a fixed L, we can always find a large enough m such that n = md ≥ L and thus

1

n
tr(K̃XK̃Y ) =

∑
1≤r,s≤n

Q2
rs ≥

∑
1≤r,s≤L

Q2
rs.

It follows that
nHSIC(Pn) =

1

n
tr(K̃XK̃Y )

p→∞ as m→∞.

Finally, we show that, when k̃X and k̃Y are characteristic kernels [9],

E[φX,r(X)φY,s(Y )] 6= 0 for some r, s ∈ N ⇔ X 6⊥⊥ Y.

10



(1) Given X ⊥⊥ Y , then E[φX,r(X)φY,s(Y )] = E[φX,r(X)]E[φY,s(Y )] = 0 for all r, s ∈ N. As
a contrapositive, E[φX,r(X)φY,s(Y )] 6= 0 for some r, s ∈ N implies X 6⊥⊥ Y . This holds true
regardless of the kernels being used.

(2) Given that E[φX,r(X)φY,s(Y )] = 0 for all r, s ∈ N. Then for any f ∈ H̃X , g ∈ H̃Y , we have
Cov(f(X), g(Y )) = E[f(X)g(Y )] = 0, since any f and g can be expressed as linear combinations
of φX,r’s and φY,s’s, respectively. Hence, the largest singular value of CXY , which is the maximized
covariance between functions in H̃X and H̃Y , must be zero. Consequently, the squared Hilbert-
Schmidt norm of CXY , ‖CXY ‖2HS ≡ HSIC(PXY ), is also zero. When k̃X and k̃Y are characteristic
kernels, HSIC(PXY ) = 0 if and only if X ⊥⊥ Y [9]. As a result, HSIC(PXY ) = 0 implies that
X ⊥⊥ Y .

As a contrapositive, X 6⊥⊥ Y implies E[φX,r(X)φY,s(Y )] 6= 0 for some r, s ∈ N.

D Proof of Proposition 3.4

Assume that the conditions in Theorem 3.2 hold. We would like to show that, under the null hypothesis
H0 : X ⊥⊥ Y , the statistic nHSIC(Pn) =

1
n tr(K̃XK̃Y ) has the same asymptotic distribution as

T̃ =
1

m

n2∑
t=1

˜̀
tz

2
t ,

where zt’s are i.i.d. standard normal variables and ˜̀
t’s are eigenvalues of Ṽ Ṽ T , with Ṽ =

[ṽ1, · · · , ṽm]. Each vector ṽi is obtained by stacking the columns in the n× n matrix M̃i, whose
(r, s)-th entry is

M̃i,rs =
1√
d

di∑
j=di−d+1

u∗X,r(Xj)u
∗
Y,s(Yj),

where u∗X,r(Xj) is the j-th element of u∗X,r =
√
γX,ruX,r, and u∗Y,s(Yj) is the j-th element of

u∗Y,s =
√
γY,suY,s.

Here we present a sketch proof extended from the proof for Theorem 1 of Gretton et al. (2009) [10].
From Theorem 3.2, we have that

nHSIC(Pn) =
1

n
tr
(
K̃XK̃Y

)
d→
∞∑
t=1

`tz
2
t as m→∞,

where `t’s are the eigenvalues of the infinite matrix Σ := E[w∞wT
∞], with w∞ being the infinite

random vector whose elements are of the form:

1√
d

d∑
i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi) for r, s ∈ N.

A natural estimator for `t’s is the set of eigenvalues for the empirical matrix Σ̂, given by

Σ̂ :=
1

m

m∑
i=1

ṽiṽ
T
i

=
1

m
(ṽ1 · · · ṽm)

ṽ
T
1
...
ṽTm


=

1

m
Ṽ Ṽ T .

Letting ˜̀
t’s be the eigenvalues of Ṽ Ṽ T , we would like to show that

∞∑
t=1

( 1

m
˜̀
t − `t

)
z2t

p→ 0 as m→∞. (11)
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Following the proof of Theorem 1 in [10], the key step to establish (11) is to show that
∑
t |

1
m
˜̀
t −

`t|
p→ 0 as m→∞.

By an extension of the Hoffman–Wielandt inequality, we have
∞∑
t=1

∣∣∣ 1
m

˜̀
t − `t

∣∣∣ ≤ ‖Σ̂−Σ‖1,

where ‖ · ‖1 is the trace norm (the sum of singular values of the operator).

For i = 1, · · · ,m, let w̃i be the random vector obtained by stacking the columns in the n× n matrix
Ñi, whose (r, s)-th entry is

Ñi,rs =
1√
d

di∑
j=di−d+1

√
λX,rλY,sφX,r(Xj)φY,s(Yj).

We can then write

‖Σ̂−Σ‖1 =
∥∥∥ 1

m

m∑
i=1

ṽiṽ
T
i − E[w∞wT

∞]
∥∥∥
1

≤
∥∥∥ 1

m

m∑
i=1

ṽiṽ
T
i −

1

m

m∑
i=1

w̃iw̃
T
i

∥∥∥
1
+
∥∥∥ 1

m

m∑
i=1

w̃iw̃
T
i − E[w̃1w̃

T
1 ]
∥∥∥
1

+
∥∥∥E[w̃1w̃

T
1 ]− E[w∞wT

∞]
∥∥∥
1

=: An +Bn + Cn.

We can show that An
p→ 0 as m → ∞ due to the convergence of the eigenvalues and eigenvector

elements of K̃X and K̃Y to the eigenvalues and eigenfunctions of k̃X and k̃Y , using Theorem A.3
and Proposition A.5. Furthermore, Bn

p→ 0 as m → ∞ due to Proposition 12 from [11]. Finally,
Cn → 0 as m → ∞ due to the convergence of the finite truncation of a linear operator (e.g., see
Proposition 2.1 from [12]). As a consequence, we have

∞∑
t=1

∣∣∣ 1
m

˜̀
t − `t

∣∣∣ ≤ ‖Σ̂−Σ‖1
p→ 0 as m→∞,

which gives us

T̃ =
1

m

n2∑
t=1

˜̀
tz

2
t

p→
∞∑
t=1

`tz
2
t as m→∞,

completing the proof.

E Proofs of the lemmas

Lemma A.2. Suppose that Assumption A.1 holds for the sample Xn. Let Vn be a V-statistic based
on Xn with a bivariate symmetric kernel function f(x, x′):

Vn :=
1

n2

n∑
i=1

n∑
j=1

f(Xi, Xj).

Assume that Vn is non-degenerate and the class C := {x 7→ f(x, x′) : x′ ∈ X} is a P -Donsker class,
then

Vn
p→ E[f(X,X ′)] as m→∞,

where X ′ is an independent copy of X .

Proof. We utilize empirical process theory in this proof. For a given bivariate function f , we use the
notation Pf to denote the function

x 7→
∫
f(x, x′)dP (x′),

12



and we define P1P2f for any set of probability measures P1, P2 as the mapping

(x, x′) 7→
∫ ∫

f(x, x′)dP2(x
′)dP1(x).

Using these notations, we can write Vn = P 2
nf and E[f(X,X ′)] = P 2f .

By symmetry of f , we have

Vn = P 2
nf = P 2f + P 2

nf − P 2f

= P 2f + Pn(Pn − P )f + (Pn − P )Pf
= P 2f + (Pn − P )(Pn − P )f + P (Pn − P )f + (Pn − P )Pf
= P 2f + 2(Pn − P )Pf + (Pn − P )2f.

(12)

Letting f1 := Pf , note that

(Pn − P )Pf =
1

n

n∑
i=1

(
f1(Xi)− E[f1(X)]

)
=

1

md

m∑
i=1

di∑
j=di−d+1

(
f1(Xj)− E[f1(X)]

)

=
1

m

m∑
i=1

(1
d

di∑
j=di−d+1

f1(Xj)− E[f1(X)]
)

p→ E
[1
d

d∑
j=1

f1(Xj)− E[f1(X)]
]
= E[f1(X)]− E[f1(X)] = 0 as m→∞.

(13)

We now show that (Pn − P )2f is also asymptotically negligible.

Letting f1n := (Pn − P )f , we have

sup
x∈X
|f1n(x)| = sup

x∈X

∣∣∣ ∫ f(x, x′)d(Pn − P )(x′)
∣∣∣ = sup

x∈X

∣∣∣ ∫ f(x′, x)d(Pn − P )(x′)
∣∣∣

≤ 1

d
sup
x∈X

∣∣∣ 1
m

m∑
i=1

f(Xdi−d+1, x)− Pf
∣∣∣+ · · ·+ 1

d
sup
x∈X

∣∣∣ 1
m

m∑
i=1

f(Xdi, x)− Pf
∣∣∣.

(14)

Since C = {x 7→ f(x, x′) : x′ ∈ X} is a P -Donsker class, it is also a P -Glivenko-Cantelli class (see
Chapter 19.2 of [2] for definition of these classes). Therefore, by definition of a Glivenko-Cantelli
class, each element in (14) would converge to 0 in probability as m→∞. As a result,

sup
x∈X
|f1n(x)|

p→ 0 as m→∞.

Since Pf21n ≤
[
supx∈X |f1n(x)|

]2
, it follows that

Pf21n
p→ 0 as m→∞. (15)

Next, note that x 7→
∫
f(x, x′)dPn(x

′) is in the closure of the convex hull of C, and x 7→∫
f(x, x′)dP (x′) is a fixed function. By Theorems 2.10.2 and 2.10.3 of [13], f1n(x) =∫
f(x, x′)d(Pn − P )(x′) also falls in a P -Donsker class.

Finally, combining the above result (f1n belongs to a P -Donsker class) with (15), by Lemma 19.24
of [2], we have

(Pn − P )2f = (Pn − P )f1n

=
1

d

[ 1
m

m∑
i=1

f1n(Xdi−d+1)− Pf1n
]
+ · · ·+ 1

d

[ 1
m

m∑
i=1

f1n(Xdi)− Pf1n
]

= oP (m
−1/2).

(16)
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By (12), (13) and (16), we have that

Vn
p→ E[f(X,X ′)] as m→∞,

thus completing the proof.

Lemma B.1. Let {AR,m} be a double sequence of random vectors indexed by R and m. Let {BR}
and {Cm} be sequences of random vectors and D be a random vector. Suppose that we have

AR,m
p→ BR as m→∞ for each R, and BR

d→ D as R→∞. Further suppose that

lim
R→∞

lim sup
m→∞

Pr(‖AR,m − Cm‖ > ε) = 0

for any ε > 0. Then Cm
d→ D as m→∞.

Proof. Since AR,m
p→ BR as m → ∞ for each R, we have AR,m

d→ BR as m → ∞ for each R.
The rest follows from the proof for Theorem 4.2 of [8].

Lemma C.1. Let {AR,m} be a double sequence of random vectors indexed by R and m. Let {BR}
and {Cm} be sequences of random vectors and D be a random vector. Suppose that we have
AR,m

p→ BR as m→∞ for each R, and BR
p→ D as R→∞. Further suppose that

lim
R→∞

lim sup
m→∞

Pr(‖AR,m − Cm‖ > ε) = 0

for any ε > 0. Then Cm
p→ D as m→∞.

Proof. Given ε > 0, we have that

Pr(‖Cm −D‖ > ε) ≤ Pr(‖Cm −AR,m‖ > ε/3) + Pr(‖AR,m −BR‖ > ε/3)

+ Pr(‖BR −D‖ > ε/3).

Fixing R and letting m→∞, we have

lim
m→∞

Pr(‖Cm −D‖ > ε)

≤ lim sup
m→∞

Pr(‖Cm −AR,m‖ > ε/3) + lim
m→∞

Pr(‖AR,m −BR‖ > ε/3) + Pr(‖BR −D‖ > ε/3)

= lim sup
m→∞

Pr(‖Cm −AR,m‖ > ε/3) + Pr(‖BR −D‖ > ε/3),

where we use the fact that AR,m
p→ BR as m→∞ for fixed R. Now letting R→∞, we have

lim
m→∞

Pr(‖Cm −D‖ > ε)

≤ lim
R→∞

lim sup
m→∞

Pr(‖Cm −AR,m‖ > ε/3) + lim
R→∞

Pr(‖BR −D‖ > ε/3)

= 0,

where we use BR
p→ D as R → ∞ and limR→∞ lim supm→∞ Pr(‖AR,m − Cm‖ > ε) = 0.

Therefore, we have shown that Cm
p→ D as m→∞.

F Additional simulations

F.1 Type I error simulation in non-normal data

To examine the type I error control of HSICcl in the presence of non-normal data, we modify Model
(3) in the main text such that the variable Y has a non-normal distribution under the null hypothesis.

Following the general simulation setting in Section 4.1.1, we let

y0 = (β1f(xr1), β1f(xr2), β1f(xr3), · · · , βqf(xr1), βqf(xr2), βqf(xr3))T + ε.
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We then generate y := (y11, y12, y13, · · · , yq1, yq2, yq3)T by nonlinear transformations of y0. We
consider three types of transformation functions: Scenario A: fA(y) = I{y > 0}, Scenario B:
fB(y) = exp(y) and Scenario C: fC(y) = sin(y). In each scenario, y is generated by applying
the transformation function to each element of y0 such that the within-cluster correlation can be
preserved to some extent. We fix m = 500 and ρc = 0.5.

Figure F1 shows the p-value QQ-plots for HSICcl and HSICorig under Type I error simulation for all
three scenarios.

Figure F1: P-value QQ-plots for HSICcl and HSICorig under Type I error simulation for three non-
normal data scenarios. Simulation parameters are set as: m = 500, d = 3 and ρc = 0.5. The top row
shows results based on the Gaussian kernel, and the bottom row shows results based on the linear
kernel.

F.2 Effect of cluster size on performance of HSICcl

We investigate the effect of cluster size on the performance of HSICcl. We use the same simulation
setting as in Section 4.1.1, where we fix m = 500 and ρc = 0.5 and consider different cluster sizes:
d =2, 3, 4 or 5. We evaluate both type I error control and power of HSICcl. In the power simulation,
we consider Power Scenario 1 and set η = 20%.

Figure F2 shows the p-value QQ-plots for HSICcl under Type I error simulation with different cluster
sizes, when the Gaussian kernel is used. Figure F3 shows the p-value QQ-plots for HSICcl under
Type I error simulation with different cluster sizes, when the linear kernel is used.

Figure F4 shows the empirical power of HSICcl under different cluster sizes, for both the Gaussian
kernel and the linear kernel.

F.3 Comparison of HSICcl against HSICperm

An alternative way to assess the significance of the HSIC statistic is to compare the observed statistic
against its permutation distribution, which could approximate the sampling distribution of the test
statistic under the null hypothesis. This approach does not rely on asymptotic results and is suitable for
small sample sizes. We implement a permutation-based HSIC test for clustered data, HSICperm. We
construct the empirical permutation distribution of HSIC in the following way: in each permutation,
we randomly shuffle the clusters for one variable and then re-construct the HSIC statistic using the
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Figure F2: P-value QQ-plots for HSICcl under Type I error simulation with different cluster sizes.
The Gaussian kernel is used. Simulation parameters are set as: m = 500, ρc = 0.5.

Figure F3: P-value QQ-plots for HSICcl under Type I error simulation with different cluster sizes.
The linear kernel is used. Simulation parameters are set as: m = 500, ρc = 0.5.

shuffled observations; this procedure is repeated many times to obtain an empirical permutation
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Figure F4: Empirical power of HSICcl at nominal level α = 0.05 under different cluster sizes.
Simulation parameters are set as: m = 500, ρc = 0.5 and η = 20%. Power Scenario 1 is
considered.

distribution. The p-value is calculated as

pperm =

∑nperm
j=1 I{HSICperm j ≥ HSICobs}

nperm
, (17)

where nperm is the number of permutations, HSICperm j is the HSIC statistic at the jth permutation
and HSICobs is the original observed HSIC statistic.

We use the same simulation setting as in Section 4.1.1, where we consider a small sample size
m = 100 and set d = 3 and ρc = 0.5. We compare HSICcl against HSICperm in both type I error
control and power. In the power simulation, we consider Power Scenario 1 and set η = 20%. In
each simulation run, 1000 permutations are conducted in HSICperm.

Figure F5 shows the p-value QQ-plots for HSICcl and HSICperm under Type I error simulation for
both the Gaussian kernel and the linear kernel. Table F1 shows the empirical power of HSICcl and
HSICperm for the two kernels.

Based on the Gaussian kernel, while HSICcl is over-conservative, HSICperm produces a valid type I
error rate; as a result, HSICperm has a higher power than HSICcl in this case. Based on the linear
kernel, HSICcl and HSICperm have similar performances. These results show that HSICperm could be
a useful surrogate for HSICcl at small sample sizes. However, the computational burden of HSICperm
is large compared to HSICcl, especially as sample sizes increase (Table G1) or as we require a more
stringent significance level (which requires a larger number of permutations).

Table F1: Empirical power of HSICcl and HSICperm at nominal level α = 0.05 under simulation
(m = 100).

Kernel HSICcl HSICperm

Gaussian 0.304 0.726
Linear 0.534 0.559

G Additional details on implementation

G.1 Code availability

In our simulations, the HSICorig method is implemented according to Broadaway et al. [14] (called
GAMuT in their work), where Davies’ exact method [15] is used to approximate the mixture of
chi-square variables in the asymptotic null distribution of HSIC. The specific code is adapted from
https://github.com/epstein-software/GAMuT (license: GPL-3.0).
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Figure F5: P-value QQ-plots for HSICcl and HSICperm under Type I error simulation. Simulation
parameters are set as: m = 100, d = 3 and ρc = 0.5. The top row shows results based on the
Gaussian kernel, and the bottom row shows results based on the linear kernel.

Both HSICorig and HSICcl use the CompQuadForm R package [16] v1.4.3: https://cran.
r-project.org/web/packages/CompQuadForm (license: GPL ≥ 2), which implements Davies’
exact method.

HSICcl is implemented as the HSICcl() function in R environment. In the Github page: https:
//github.com/pearl-liu/HSIC_cl, we provide code and instructions for using the HSICcl()
function and for reproducing the simulation results in Section 4.1.2 of the main text.

G.2 Computation time

We have estimated the computation time of HSICcl and HSICperm (with 1000 permutations; see
Appendix F.3 for details) for different number of clusters (m). For each m, we simulate 10 data
sets according to Section 4.1.1 of the main text and report the average computation time. Given
constructed kernel matrices for X and Y , the average computation times on a 12-core computer with
2.40 GHz CPUs and 256 GB memory are shown in Table G1.

Table G1: Average computation time (in seconds) of HSICcl and HSICperm (with 1000 permutations)
for different number of clusters, with cluster size 3.

Method Kernel Number of clusters, m

50 100 200 500 800 1000

HSICcl Gaussian 0.168 0.531 3.857 83.689 485.141 1109.086
Linear 0.013 0.040 0.241 2.572 10.654 21.069

HSICperm Gaussian 1.327 7.628 50.740 705.860 2802.158 5385.214
Linear 1.392 7.158 49.335 692.443 2782.553 5353.857

First, we note that HSICcl has a much shorter computation time than HSICperm for each sample size,
either based on the Gaussian kernel or based on the linear kernel.
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Next we compare computation times of HSICcl between the Gaussian kernel and the linear kernel.
For any X ∈ Rp with p < n, the associated linear kernel matrix has p non-zero eigenvalues. In
contrast, the Gaussian kernel matrix always has n non-zero eigenvalues, due to the infinite dimension
of its feature space. Therefore, based on the way the asymptotic null distribution of the HSIC
statistic is estimated in Proposition 3.4, using a linear kernel can take much shorter computation
times than using a Gaussian kernel. Specifically, the computational complexity of HSICcl based on a
Gaussian kernel is O(m2n2). While Gaussian kernels have the advantage of capturing more general
dependence patterns, linear kernels could be preferable in certain situations (e.g., when p < n) as a
computationally efficient choice.

On a high-performance computing cluster (each node with 20 cores, 2.20 GHz CPUs and ∼100 GB
memory), with divided computing jobs, it took ∼70 hours to complete the simulations in Section 4.1
using the Gaussian kernel, and ∼4 hours to complete the simulations using the linear kernel. Using
the same resources, the analysis of the MsFLASH data set in Section 4.2 took ∼13 minutes.

H MsFLASH study

H.1 Description of the MsFLASH study

The Menopause Strategies: Finding Lasting Answers for Symptoms and Health (MsFLASH) Vaginal
Health Trial was a randomized, double-blind and placebo-controlled clinical trial conducted at 2
centers in the U.S.: Kaiser Permanente Washington Health Research Institute in Seattle and University
of Minnesota in Minneapolis [17]. The trial compared the treatment efficacy for moderate-to-severe
vulvovaginal discomfort between 0.01 mg vaginal estradiol tablets or vaginal moisturizer and placebo
in 302 postmenopausal women. Vaginal swabs were collected from the participants at baseline, and 4
and 12 weeks after randomization. In a secondary study [18], based on the samples collected from
each follow-up, the vaginal microbiota was characterized via 16S ribosomal RNA (rRNA) gene
sequencing, and the vaginal metabolome was profiled using liquid chromatography-mass spectrometry.
The abundance data of microbial taxa were center log-ratio transformed to address differential read
depth and compositionality, and the abundance data of metabolites were quantile-normalized. More
details on the MsFLASH trial are described by Mitchell et al. (2018, 2021) [17, 18].

The MsFLASH trial was approved by institutional review boards of the participating institutions, and
all participants provided written informed consent. Inspection of the data set reveals no personally
identifiable information or offensive content. The data used in this study is available upon request
from the MsFLASH Data Coordinating Center.

H.2 Additional analysis results

Figure H1: Venn diagrams for the number of metabolic pathways identified to be associated with the
vaginal microbiome composition based on the MsFLASH data set (α = 5.3× 10−4). The results are
separated by kernel.
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Figure H2: Venn diagrams for the number of metabolic pathways identified to be associated with the
vaginal microbiome composition based on the MsFLASH data set (α = 5.3× 10−4). The results are
separated by method for HSIC test.
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