
A A comprehensive review of non-Euclidean contraction theory

Matrix measures Let ‖ · ‖ be a norm on Rn and its induced norm on Rn×n. The matrix measure
of A ∈ Rn×n with respect to ‖ · ‖ is

µ(A) := lim
h→0+

‖In + hA‖ − 1

h
. (21)

It is well known that this limit is well posed because the right-hand side is non-increasing in h, due to
the convexity of the norm. For arbitrary n× n matrices A and B, the following properties hold:

sub-additivity: µ(A+B) ≤ µ(A) + µ(B), (22a)
weak homogeneity: µ(αA) = αµ(A), ∀α ≥ 0, (22b)
convexity: µ(θA+ (1− θ)B) ≤ θµ(A) + (1− θ)µ(B), ∀θ ∈ [0, 1], (22c)
norm/spectrum: −‖A‖ ≤ −µ(−A) ≤ <(λ) ≤ µ(A) ≤ ‖A‖, ∀λ ∈ spec(A), (22d)
translation: µ(A+ cIn) = µ(A) + c, ∀c ∈ R, (22e)
product: max{−µ(A),−µ(−A)}‖x‖ ≤ ‖Ax‖, ∀x ∈ Rn, (22f)

norm of inverse: µ(A) < 0 =⇒ ‖A−1‖ ≤ −1/µ(A). (22g)

Note that convexity is an immediate consequence of sub-additivity and weak homogeneity. Addi-
tionally, by property (22d), the matrix measure is upper bounded by the matrix norm and may be
negative. We refer to [Desoer and Haneda, 1972], and references therein, for the proof of these and
additional properties enjoyed by matrix measures.

We will be specifically interested in diagonally weighted `1 and `∞ norms defined by

‖x‖1,[η] =
∑
i

ηi|xi| and ‖x‖∞,[η]−1 = max
i

1

ηi
|xi|, (23)

where, given a positive vector η ∈ Rn>0, we use [η] to denote the diagonal matrix with diagonal
entries η. The corresponding matrix norms and measures are

‖A‖1,[η] = max
j∈{1,...,n}

n∑
i=1

ηi
ηj
|aij |, µ1,[η](A) = max

j∈{1,...,n}

(
ajj +

n∑
i=1,i6=j

|aij |
ηi
ηj

)
, (24)

‖A‖∞,[η]−1 = max
i∈{1,...,n}

n∑
j=1

ηj
ηi
|aij |, µ∞,[η]−1(A) = max

i∈{1,...,n}

(
aii +

n∑
j=1,j 6=i

|aij |
ηj
ηi

)
. (25)

Finally, we include the Euclidean norm `2. Given a positive definite P , we define the weighted `2
norm by

‖x‖2,P 1/2 =
√
x>Px.

Then the following equalities are well known, e.g., see [Desoer and Haneda, 1972, Davydov et al.,
2021],

µ2,P 1/2(A) = λmax

(PAP−1 +A>

2

)
= min{b ∈ R | A>P + PA � 2bP} (26)

= max{x>PAx | x>Px = 1}. (27)

Weak pairings We briefly review the notion of a weak pairing (WP) on Rn from [Davydov et al.,
2021]. A WP on Rn is a map J·, ·K : Rn × Rn → R satisfying:

(i) (sub-additivity and continuity of first argument) Jx1 + x2, yK ≤ Jx1, yK + Jx2, yK, for all
x1, x2, y ∈ Rn and J·, ·K is continuous in its first argument,

(ii) (weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and J−x,−yK = Jx, yK, for all x, y ∈
Rn, α ≥ 0,

(iii) (positive definiteness) Jx, xK > 0, for all x 6= 0n,

(iv) (Cauchy-Schwarz inequality) | Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2, for all x, y ∈ Rn.



For every norm ‖ · ‖ on Rn, there exists a (possibly not unique) compatible WP J·, ·K such that
‖x‖2 = Jx, xK, for every x ∈ Rn. If the norm is induced by an inner product, the WP coincides with
the inner product.

Specifically, from [Davydov et al., 2021, Table III], we introduce the WPs J·, ·K1,[η] : Rn × Rn → R
and J·, ·K∞,[η]−1 : Rn × Rn → R, defined by

Jx, yK1,[η] = ‖y‖1,[η] sign(y)>[η]x and Jx, yK∞,[η]−1 = max
i∈I∞([η]−1y)

η−2
i yixi. (28)

where I∞(x) = {i ∈ {1, . . . , n} | |xi| = ‖x‖∞}. One can show the so-called Lumer equalities
(generalizing equation (27)):

µ1,[η](A) = max
‖x‖1,[η]=1

sign(x)>[η]Ax, (29)

µ∞,[η]−1(A) = max
‖x‖∞,[η]−1=1

max
i∈I∞([η]−1x)

([η]−1x)i([η]−1Ax)i. (30)

Lipschitz maps Given a norm ‖ · ‖ with induced matrix norm ‖ · ‖ and induced matrix measure
µ(·), a map F : Rn → Rn is Lipschitz continuous with constant Lip(F) ∈ R≥0 if

‖F(x1)− F(x2)‖ ≤ Lip(F)‖x1 − x2‖ for all x1, x2 ∈ Rn. (31)

If the map F is differentiable, then F is Lipschitz continuous with constant Lip(F) if and only if

‖DF(x)‖ ≤ Lip(F) for all x ∈ Rn. (32)

One-sided Lipschitz maps Given a norm ‖ · ‖ with compatible WP J·, ·K and associated matrix
measure µ(·), a continuous map F : Rn → Rn is one-sided Lipschitz continuous with constant
osL(F) ∈ R if

JF(x1)− F(x2), x1 − x2K ≤ osL(F)‖x1 − x2‖2 for all x1, x2 ∈ Rn. (33)

If the map F is differentiable, then F is one-sided Lipschitz continuous with constant osL(F) ∈ R if
and only if

µ(DF(x)) ≤ osL(F) for all x ∈ Rn. (34)

In other words, when the map F is differentiable, the two definitions (33) and (34) are equivalent. Note
that (i) the one-sided Lipschitz constant is upper bounded by the Lipschitz constant, (ii) a Lipschitz
map is always one-sided Lipschitz, but the converse is not necessarily true, and (iii) the one-sided
Lipschitz constant may be negative. For instance, consider the scalar function f(x) = −x− x3. It is
easy to check that this function is not globally Lipschitz and Lip(f) =∞. However, f is one-sided
Lipschitz with osL(f) = −1.

In the following example, we compare the regions Lip(A) < 1 and osL(A) < 1 for a matrix
A ∈ R2×2 with respect to the `∞-norm.

Example 6. Let A =

[
a b
b a

]
, it is easy to see that condition Lip(A) < 1 for `∞-norm can be

written as ‖A‖∞ = |a| + |b| < 1. One can also define the average operator Aα using parameter
α ∈ (0, 1] as follows:

Aα = (1− α)I2 + αA.

Figure 4 compares the regions Lip(A) < 1, Lip(Aα) < 1, and osL(A) < 1 based on the parameters
a and b. It can be shown that as α→ 0+, the condition Lip(Aα) < 1 converges to osL(A) < 1.

B Novel results about non-Euclidean matrix measures

In this appendix we provide some results regarding the matrix measure and matrix norm for weighted
`1 and `∞-norms.

Lemma 7 (Non-Euclidean contraction estimates). Let A = [aij ] ∈ Rn×n and η ∈ Rn>0,
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Figure 4: The left figure shows the region Lip(A) ≤ 1, the middle figure shows the region Lip(Aα) ≤ 1 for
α = 1

2
, and the right figure shows osL(A) ≤ 1. Both Lip and osL are with respect to the `∞-norm

(i) For every α ∈ R such that |α| ≤ (maxi |aii|)−1,

‖In + αA‖1,[η] = 1 + αµ1,[η](A),

‖In + αA‖∞,[η]−1 = 1 + αµ∞,[η]−1(A).

(ii) the minimizer and minimum value of minα≥0 ‖In + αA‖∞,[η]−1 can be computed via the
linear program:

min
α,t

t

1 + α(aii + ri) ≤ t, i ∈ {1, . . . , n},
−1 + α(−aii + ri) ≤ t, i ∈ {1, . . . , n},
α ≥ 0.

where ri =
∑
j 6=i

ηj
ηi
|aij |.

Proof. Regarding part (i), we compute

‖In + αA‖∞,[η]−1 = max
i∈{1,...,n}

{
|1 + αaii|+ α

n∑
j=1,j 6=i

ηj
ηi
|aij |

}
. (35)

Since |α| ≤ (maxi |aii|)−1, we know |α||aii| ≤ 1 for all i ∈ {1, . . . , n}. Therefore 1 + αaii ≥ 0
and |1 + αaii| = 1 + αaii, for every i ∈ {1, . . . , n}. In summary, replacing in (35),

‖In + αA‖∞,[η]−1 = max
i∈{1,...,n}

{
1 + αaii + α

n∑
j=1,j 6=i

ηj
ηi
|aij |

}
= 1 + αµ∞,[η]−1(A).

The proof of the formula relating the weighted `1-norm and the weighted `1-matrix measure will
follow mutatis mutandis to the above proof for `∞-norm and we omit it in the interest of brevity.

Regarding part (ii), using formula (35), we get

‖In + αA‖∞,[η]−1 = max
i∈{1,...,n}

{
|1 + αaii|+ αri

}
= max
i∈{1,...,n}

{
1 + αaii + αri,−1− αaii + αri

}
.

The result then follows.

The following results are related to [Fang and Kincaid, 1996, Theorem 3.8] and [He and Cao, 2009,
Lemma 3] and, indirectly, to [Qiao et al., 2001]. In comparison with [Fang and Kincaid, 1996, He
and Cao, 2009], we prove sharper bounds for a more general setting.
Lemma 8 (Matrix measure inequalities under multiplicative scalings). For each A ∈ Rn×n, C ∈
Rn×n diagonal positive, and η ∈ Rn>0,



(i) max
d∈[0,1]n

µ∞,[η](−C + [d]A) = max
{
µ∞,[η](−C), µ∞,[η](−C +A)

}
, and

(ii) max
d∈[0,1]n

µ1,[η](−C +A[d]) = max
{
µ1,[η](−C), µ1,[η](−C +A)

}
.

Proof. Define the short-hand ri = aii +
∑n
j=1,j 6=i |aij |ηi/ηj and note

µ∞,[η](−C) = max
i∈{1,...,n}

{−ci}, µ∞,[η](−C +A) = max
i∈{1,...,n}

{−c+ ri}, and

µ∞,[η](−C + [d]A) = max
i∈{1,...,n}

{−ci + diri}.

Since 0 ≤ di ≤ 1, we note

ri ≤ 0 =⇒ diri ≤ 0 =⇒ −ci + diri ≤ −ci,
ri > 0 =⇒ diri ≥ 0 =⇒ −ci + diri ≤ −ci + ri.

Therefore

max
d∈[0,1]n

max
i : ri≤0

{−ci + diri} = max
i : ri≤0

max
di∈[0,1]

{−ci + diri} = max
i : ri≤0

{−ci} ≤ µ∞,[η](−C),

max
d∈[0,1]n

max
i : ri>0

{−ci + diri} = max
i : ri>0

max
di∈[0,1]

{−ci + diri} = max
i : ri≤0

{−ci + ri} ≤ µ∞,[η](−C +A).

In summary

max
d∈[0,1]n

µ∞,[η](−C + [d]A) = max
d∈[0,1]n

max
i∈{1,...,n}

{−ci + diri}

= max
d∈[0,1]n

max
{

max
i : ri≤0

{−ci + diri}, max
i : ri>0

{−ci + diri}
}

≤ max
{
µ∞,[η](−C), µ∞,[η](−C +A)

}
.

On the other hand, we note that

max
d∈[0,1]n

µ∞,[η]([d]A− C) ≥ max
{
µ∞,[η]([0n]A− C), µ∞,[η]([1n]A− C)

}
= max

{
µ∞,[η](−C), µ∞,[η](−C +A)

}
,

thereby proving the equality in statement (i). Next, recall µ1,[η](B) = µ∞,[η](B
>) for all B and

compute

max
d∈[0,1]n

µ1,[η](−C +A[d]) = max
d∈[0,1]n

µ∞,[η](−C + [d]A>)

= max
{
µ∞,[η](−C), µ∞,[η](−C +A>)

}
= max

{
µ1,[η](−C), µ∞,[η](−C +A)

}
.

This concludes the proof of statement (ii).

In the same style as [Winston and Kolter, 2020, Proposition 1] and [Revay et al., 2020, Theorems 1
and 2], the next lemma provides a parametrization of all matrices satisfying a µ∞ constraint.
Lemma 9 (Parametrization of matrices with bounded `∞ measure). For any γ ∈ R,

(i) given any A ∈ Rn×n with µ∞(A) ≤ γ, there exists a T ∈ Rn×n such that A = T −
diag(|T |1n) + γIn,

(ii) given any T ∈ Rn×n, the matrixA = T−diag(|T |1n)+γIn ∈ Rn×n satisfies µ∞(A) ≤ γ,

where we let |T | denote the entry-wise absolute value of T .

Proof. Regarding statement (i), define

tij = aij for all i 6= j ∈ {1, . . . , n},

tii =
1

2

(
aii +

n∑
j=1,j 6=i

|aij | − γ
)
, for i ∈ {1, . . . , n}.



Because µ∞(A) ≤ γ, we know aii +
∑n
j=1,j 6=i |aij | ≤ γ for each i. This implies that tii ≤ 0 and

therefore tii − |tii| = aii +
∑n
j=1,j 6=i |aij | − γ. It is an easy transcription now to show that this

equality and the off-diagonal equality tij = aij together imply A = T − diag(|T |1n) + γIn.

Regarding statement (ii), note that aij = tij for all j 6= i, and aii = tii −
∑n
j=1 |tij |+ γ. Then, for

all i,

aii +

n∑
j=1,j 6=i

|aij | =
(
tii −

n∑
j=1

|tij |+ γ
)

+

n∑
j=1,j 6=i

|tij |

= tii − |tii|+ γ =

{
γ, if tii ≥ 0,

−2|tii|+ γ, if tii < 0.

Therefore, aii +
∑n
j=1,j 6=i |aij | ≤ γ for all i and, in turn, µ∞(A) ≤ γ.

We conclude with a simple graph-theoretical interpretation of the main well-posedness condition
µ∞(A) < 1. Loosely speaking, we call −aii the self-attenuation of neuron i and

∑n
j=1,j 6=i |aij | the

strength of its outgoing synapses. Then

µ∞(A) < 1 ⇐⇒ aii +

n∑
j=1,j 6=i

|aij | < 1 for all i

⇐⇒ for each neuron, strength of outgoing synapses < 1+ self-attenuation. (36)

C Proofs and additional results on non-differentiable activation functions

C.1 Proofs of Theorems 1 and 2

Proof of Theorem 1. Regarding (ii) =⇒ (i), note that, for every x ∈ Rn and every 0 < α ≤ α∗,
µ(DFα(x)) ≤ ‖DFα(x))‖ ≤ γ`,c(α).

As a result, αµ(DF(x)) = µ(DFα(x))− 1 + α ≤ −1 + α+ γ`,c(α). Thus,

µ(DF(x)) ≤ 1− 1− γ`,c(α)

α
, for all x ∈ Rn.

By choosing α = α̂ = 2c
(2c+`+1)(`+1) <

c
(c+`+1)(`+1) , we get

µ(DF(x)) ≤ 1− 1− γ`,c(α̂)

α̂
= 1− 1− (1− α̂c)

α̂
= 1− c, for all x ∈ Rn.

Thus, supx∈Rn µ(DF(x)) ≤ 1− c. This implies that osL(F) ≤ 1− c.
Regarding (i) =⇒ (ii), using the mean value theorem for vector valued functions, we compute

‖Fα(x)− Fα(y)‖ =
∥∥∥∫ 1

0

DFα(tx+ (1− t)y)dt(x− y)
∥∥∥ ≤ ‖DFα(x, y)‖‖x− y‖,

where DFα(x, y) =
∫ 1

0
DFα(tx+ (1− t)y)dt, for every x, y ∈ Rn.

Next, to obtain an upper bound on ‖DFα(x, y)‖, we first derive a lower bound on ‖DF
−1

α (x, y)‖. We
start by noting that, the product property (22f) implies ‖Av‖ ≥ −µ(−A)‖v‖, for every v ∈ Rn and
every A ∈ Rn×n. Therefore, for every v ∈ Rn,

‖DF
−1

α (x, y)v‖ ≥ −µ(−DF
−1

α (x, y))‖v‖. (37)

SinceDFα(x, y) = In+α(−In+DF(x, y)) and α < c
(c+`+1)(`+1) ≤ 1

`+1 , we can use the Neumann
series to get

DF
−1

α (x, y) =

∞∑
i=0

(−1)iαi(−In +DF(x, y))i. (38)



We first compute an upper bound for µ(DF(x)). Since osL(F) ≤ 1 − c, by the subadditive prop-
erty (22a) of the matrix measures, we get

µ(−In +DF(x, y)) = µ

(∫ 1

0

(−In +DF(tx+ (1− t)y))dt

)
≤
∫ 1

0

µ
(
− In +DF(tx+ (1− t)y)

)
dt ≤ −c. (39)

Now, we use equation (38) to obtain

‖DF
−1

α (x, y)v‖ ≥ −µ
( ∞∑
i=0

(−1)i+1αi(−In +DF(x, y))i
)
‖v‖

≥ −
(
µ(−In) + αµ(−In +DF(x, y))

+

∞∑
i=2

αiµ
(
(−1)i+1(−In +DF(x, y))i

))
‖v‖

≥ (1 + αc−
∞∑
i=2

(α(`+ 1))i)‖v‖ =
(

1 + αc− α2(`+ 1)2

1− α(`+ 1)

)
‖v‖, (40)

where the first inequality holds by (37), the second inequality holds by subadditive property of the
matrix measures (22a), and the third inequality holds because, using (39) and (22d), we obtain the
upper bound:

µ
(
(−1)i+1(−In +DF(x, y))i

)
≤ ‖(−In +DF(x, y))i‖ ≤ (1 + `)i, for all i ∈ Z≥0.

Note that α ∈ ]0, c
(c+`+1)(`+1) [. Equation (40) implies that, for each w ∈ Rn and v = DFα(x, y)w,

‖DFα(x, y)w‖
‖w‖ =

‖v‖
‖DF

−1

α (x, y)v‖
≤ γ`,c(α).

As a result, ‖DFα(x, y)‖ ≤ γ`,c(α) and

‖Fα(x)− Fα(y)‖ ≤ γ`,c(α)‖x− y‖, for all x, y ∈ Rn.

Regarding parts (iii) and (iv), a straightforward calculation shows that, if 0 < α < c
(c+`+1)(`+1) ,

then 1/
(

1 + αc − α2(`+1)2

1−α(`+1)

)
< 1. The result then follows from the Banach fixed-point theorem.

Regarding part (v), we define the function ξ : ]0, c
(c+`+1)(`+1) [→ R>0 by ξ(α) = 1+αc− α2(`+1)2

1−α(`+1) .
Then it is clear that ξ(α) = 1/γ`,c(α). Note that

dξ

dα
= (c+ `+ 1)− `+ 1

(1− α(`+ 1))2
,

d2ξ

dα2
= − 2(`+ 1)2

(1− α(`+ 1))3
.

Since d2ξ
dα2 ≤ 0, we conclude that ξ is a concave function on ]0, c

(c+`+1)(`+1) [ and its maximum is

achieved at α∗ for which dξ
dα (α∗) = 0. By a straightforward calculation, we get

α∗ =
κ

c

(
1− 1√

1 + 1/κ

)
and it is easy to see that the optimal value is as claimed in the theorem statement.

Proof of Theorem 2. We restrict ourselves to the norm ‖ · ‖∞,[η]−1 ; the proof for ‖ · ‖1,[η] is similar
and omitted in the interest of brevity.



Regarding part (i), first we note that diagL(F) ≤ osL(F) < 1, since for every i ∈ {1 . . . , n} and
every x ∈ Rn

DFii(x) ≤ DFii(x) +
∑
j 6=i
|DFij(x)| ηiηj = µ∞,[η]−1(DF(x)) ≤ osL(F) < 1. (41)

This implies that 1
1−diagL(F) > 0 and (1 − osL(F))/(1 − diagL(F)) ≤ 1. Moreover, for every

x ∈ Rn,

‖(1− α)In + αDF(x)‖∞,[η]−1 = ‖In + α(−In +DF(x))‖∞,[η]−1 .

Next, we study the diagonal entries of −In + DF(x). By the definition of diagL(F) and by equa-
tion (41),

− 1 + diagL(F) ≤ −1 +DFii(x) < 0 (for every i ∈ {1, . . . , n} and x)
=⇒ |1− diagL(F)| ≥ | − 1 +DFii(x)|
=⇒ 1− diagL(F) ≥ maxi | − 1 +DFii(x)|

=⇒ 1

1− diagL(F)
≤ 1

maxi | − 1 +DFii(x)| .

Therefore, α ≤ 1
maxi |−1+DFii(x)| and we can use Lemma 7(i) to deduce that

‖(1− α)In + αDF(x)‖∞,[η]−1 = 1 + αµ∞,[η]−1(−In +DF(x))

= 1 + α(−1 + µ∞,[η]−1(DF(x))) for all x ∈ Rn

≤ 1 + α(−1 + osL(F)) = 1− α(1− osL(F)) < 1.

where the second equality follows from the translation property (22e) of matrix measures, and the
inequality holds because µ∞,[η]−1(DF(x)) ≤ osL(F) for all x, and the last inequality holds because
osL(F) < 1. This means that Lip(Fα) < 1, for every 0 < α ≤ 1

1−diagL(F) and the result follows
from the Banach fixed-point theorem.

Regarding part (ii), we note the contraction factor is a strictly decreasing function of α. At α = 0 the
factor is 1 and at the maximum of value of α that is, at α∗ = (1− diagL(F))−1 the contraction factor
is still positive since (1− osL(F))/(1− diagL(F)) ≤ 1. Hence the minimum contraction factor is
achieved at α∗.

C.2 Proof of Theorem 3 and comparison with the literature

Before we prove Theorem 3, it is useful to compare it with similar results in the literature. The result
in [Lim, 1985, Lemma 1] is more general than Theorem 3 by allowing F to be a multi-valued map
defined on a metric space. However, Theorem 3(ii) uses the one-side Lipschitz constant and provides
a tighter upper bound on the distance between fixed-points of F compared to its counterpart in [Lim,
1985, Lemma 1].

Proof of Theorem 3. Let J·, ·K be a WP for the norm ‖ · ‖X on Rn.

Regarding part (i), for every u ∈ Rm, we note that by definition of osLx(F), for every u ∈ Rr,

JF(x, u)− F(y, u), x− yK ≤ osLx(F)‖x− y‖2X ,
This implies that osL(Fu) ≤ osLx(F) < 1, for every u ∈ Rr. Thus, by Theorem 1(iii), Fu has a
unique fixed-point x∗u.

Regarding part (ii), let J·, ·K be a WP for the norm ‖ · ‖X on Rn and compute

‖x∗u − x∗v‖2X = Jx∗u − x∗v, x∗u − x∗vK (by compatibility)
= JFu(x∗u)− Fv(x

∗
v), x

∗
u − x∗vK

≤ JFu(x∗u)− Fu(x∗v), x
∗
u − x∗vK + JFu(x∗v)− Fv(x

∗
v), x

∗
u − x∗vK (by sub-additivity)

≤ osLx(F)‖x∗u − x∗v‖2X + ‖Fu(x∗v)− Fv(x
∗
v)‖X ‖x∗u − x∗v‖X (by Cauchy-Schwarz)

≤ osLx(F)‖x∗u − x∗v‖2X + Lipu(F)‖u− v‖U‖x∗u − x∗v‖X .
This implies that (1−osLx(F))‖x∗u−x∗v‖X ≤ Lipu(F)‖u−v‖U and the result of part (ii) follows.



C.3 Non-differentiable fixed-point problems

In many machine learning applications, the activation functions are continuous but non-differentiable
and thus our results in Sections 3 do not directly apply to these problems. In this subsection, we focus
on a specific form of the fixed-point equation (5), where F = Φ ◦ H and Φ : Rn → Rn is a diagonal
activation function with absolutely continuous components and H : Rn×Rr → Rn is a differentiable
function. It can be shown that, for this class of systems, conclusions of Theorems 1, 2, and 3 still
hold with respect to weighted `∞-norms. Here, we present a result which extends Theorems 2 and 3
for H(x, u) = G(x) +Bu given some B ∈ Rn×r and with respect to the norm ‖ · ‖∞.[η]−1 .

Theorem 10 (Fixed points for non-differentiable activation functions). Consider the norm ‖·‖∞,[η]−1

on Rn for some η ∈ Rn>0 and the norm ‖ · ‖U on Rr. Additionally, consider the following perturbed
fixed point problem:

x = Φ(G(x) +Bu) := ΦG(x, u),

where Φ : Rn → Rn is a diagonal function given by (φ1(x1), . . . , φn(xn)) with non-expansive and
weakly increasing φi, G : Rn → Rn is a continuously differentiable function, and B ∈ Rn×r. Define
the average map ΦG

α(x, u) := (1−α)x+ ΦG(x, u) and pick diagL(G)− ∈ [−Lip(G), osL(G)] such
that

diagL(G)− ≤ min
i

inf
x∈Rn

DGii(x)−.

Assume that osL(G) < 1. Then,

(i) for every u ∈ Rn, the map ΦG(·, u) has a unique fixed-point x∗u;

(ii) for every 0 < α ≤ 1
1−diagL(G)−

and every u ∈ Rr, ΦG
α(·, u) is a contraction map with

contraction factor 1− α(1− osL(G)+);

(iii) for every u, v ∈ Rr, we have ‖x∗u − x∗v‖∞,[η]−1 ≤ Lipu ΦG

1−osLG+
‖u− v‖U .

Proof of Theorem 10. Regarding part (i), the assumptions on each scalar activation function imply
that (i) Φ : Rn → Rn is non-expansive with respect to ‖ · ‖∞,[η]−1 and (ii) for every p, q ∈ R, there
exists θi ∈ [0, 1] such that φi(p)−φi(q) = θi(p−q) or in the matrix form Φ(p)−Φ(q) = Θ(p−q)
where Θ is a diagonal matrix with diagonal elements θi ∈ [0, 1] and p,q ∈ Rn. As a result, we have

‖ΦG
α(x1, u)− ΦG

α(x2, u)‖∞,[η]−1 = ‖(1− α)(x1 − x2) + αΘ(G(x1)− G(x2))‖∞,[η]−1

≤ sup
y∈Rn

‖In + α(−In + ΘDG(y))‖∞,[η]−1‖x1 − x2‖∞,[η]−1 .

where the inequality holds by the mean value theorem. Then, for every α ∈ ]0, 1
1−diagL(ΘDG) ],

‖In + α(−In + ΘDG(y))‖∞,[η]−1 = 1 + αµ∞,[η]−1

(
− In + ΘDG(y)

)
≤ 1 + α

(
− 1 + µ∞,[η]−1(ΘDG(y))

)
≤ 1 + α

(
− 1 + µ∞,[η]−1(DG(y))+

)
≤ 1− α(1− osL(G)+) < 1,

where the first equality holds by Lemma 7(i), the second inequality holds by subadditive property of
matrix measures (22a), and the third inequality holds by Lemma 8(i). Moreover, since θi ∈ [0, 1], we
have θiDGii ≥ (DGii)−, for every i ∈ {1, . . . , n}. This means that

diagL(ΘDG) = min
i

inf
y∈Rn

(ΘDG(y))ii ≥ min
i

inf
y∈Rn

(DGii(y))− = diagL(G)−.

This implies that, for every α ∈ ]0, 1
1−diagL(G)−

],

‖ΦG
α(x1, u)− ΦG

α(x2, u)‖∞,[η]−1 ≤ (1− α(1− osL(G)+))‖x1 − x2‖∞,[η]−1 .

Since 1 − α(1 − osL(G)+) < 1, the map ΦG
α(·, u) is a contraction for every α ∈ ]0, 1

1−diagL(G)−
].

This concludes the proof of parts (i) and (ii),



Regarding part (iii), from formula (33) for the one-sided Lipschitz constant and formula (28) for the
relevant WP, we obtain that, for all x1, x2 ∈ Rn,

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(φi((G(x1) +Bu)i)− φi((G(x2) +Bu)i))

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i((G(x1) +Bu)i − (G(x2) +Bu)i)

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(G(x1)− G(x2))i,

Next, we recall Lumer’s equality (30) and write it as

osL(G) = sup
x1 6=x2

max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(G(x1)− G(x2))i.

Next, we consider two cases. Suppose that osL(G) ≤ 0. Since θi ∈ [0, 1] for all i, we obtain

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1 ≤ 0,

since the maximum value is achieved at θi = 0 for all i. Alternatively, suppose that osL(G) > 0.
Then

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(G(x1)− G(x2))i

≤ max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(G(x1)− G(x2))i ≤ osL(G)‖x1 − x2‖2∞,[η]−1 ,

since the maximum value is achieved at θi = 1 for all i. This means that osL(ΦG) = osL(G)+. Now
we compute

‖x∗u − x∗v‖2∞,[η]−1 = Jx∗u − x∗v, x∗u − x∗vK∞,[η]−1

=
q
ΦG
u(x∗u)− ΦG

v (x∗v), x
∗
u − x∗v

y
∞,[η]−1

≤
q
ΦG
u(x∗u)− ΦG

u(x∗v), x
∗
u − x∗v

y
∞,[η]−1 +

q
ΦG
u(x∗v)− ΦG

v (x∗v), x
∗
u − x∗v

y
∞,[η]−1

≤ osL(G)+‖x∗u − x∗v‖2∞,[η]−1 + ‖ΦG
u(x∗v)− ΦG

v (x∗v)‖∞,[η]−1‖x∗u − x∗v‖∞,[η]−1

≤ osL(G)+‖x∗u − x∗v‖2∞,[η]−1 + Lipu(ΦG)‖u− v‖U‖x∗u − x∗v‖∞,[η]−1 .

This implies that (1− osL(G)+)‖x∗u−x∗v‖∞,[η]−1 ≤ Lipu(ΦG)‖u− v‖U and the result follows.

C.4 Proofs of results in Section 4

Proof of Theorem 4. The assumptions on each scalar activation function imply that (i) Φ : Rn → Rn
is non-expansive with respect to ‖ · ‖∞,[η]−1 , and (ii) for every p, q ∈ R, there exists θi ∈ [0, 1] such
that φi(p)−φi(q) = θi(p−q). Regarding the equality osLx(N) = µ∞,[η]−1(A)+, from formula (33)
for the one-sided Lipschitz constant and formula (28) for the relevant WP, we obtain that, for all
x1, x2 ∈ Rn,

JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(φi((Ax1 +Bu)i)− φi((Ax2 +Bu)i))

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i((Ax1 +Bu)i − (Ax2 +Bu)i)

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(Ax1 −Ax2)i,

Next, we recall Lumer’s equality (30) and write it as

µ∞,[η]−1(A) = sup
x1 6=x2

max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i((Ax1)i − (Ax2)i).



Next, we consider two cases. Suppose that µ∞,[η]−1(A) ≤ 0. Since θi ∈ [0, 1] for all i, we obtain
JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1 ≤ 0,

since the maximum value is achieved at θi = 0 for all i. Alternatively, suppose that µ∞,[η]−1(A) > 0.
Then

JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(Ax1 −Ax2)i

≤ max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(Ax1 −Ax2)i ≤ µ∞,[η]−1(A)‖x1 − x2‖2∞,[η]−1 ,

since the maximum value is achieved at θi = 1 for all i. This concludes the proof of formula
osLx(N) = µ∞,[η]−1(A)+. Next, since Φ is non-expansive, we compute

‖N(x1, u)− N(x2, u)‖∞,[η]−1 = ‖Φ(Ax1 +Bu)− Φ(Ax2 +Bu)‖∞,[η]−1

≤ ‖(Ax1 +Bu)− (Ax2 +Bu)‖∞,[η]−1

≤ ‖A(x1 − x2)‖∞,[η]−1 ≤ ‖A‖∞,[η]−1‖x1 − x2‖∞,[η]−1 ,

proving the formula Lipx(N) = ‖A‖∞,[η]−1 . The proof of the formula Lipu(N) = ‖B‖(∞,[η]−1),U
is essentially identical. Finally, if each φi is differentiable then we compute

diagL(N) = min
i∈{1,...,n}

inf
x∈Rnu∈Rr

DNii(x, u) = min
i∈{1,...,n}

inf
x∈Rnu∈Rr

φ′i((Ax+Bu)i)Aii

≤ min
i∈{1,...,n}

{
0, if Aii > 0

Aii, if Aii ≤ 0
= min
i∈{1,...,n}

(Aii)−, (42)

because of the properties of the activation functions. Now suppose that there exists i ∈ {1, . . . , n}
such that φi is not differentiale. Using Theorem 10(ii) with G = A, diagL(N) is chosen to be equal
to be diagL(A)− which in turn is equal to mini∈{1,...,n}(Aii)−.

Proof of Corollary 5. The results are immediate consequences of Theorem 2 (or more generally
Theorem 10 for non-differentiable activation functions) and of the Lipschitz estimates in Theorem 4.

D Adversarial attacks on implicit neural networks

In this appendix, we study the effect of different adversarial attacks on the existing implicit network
models as well as to the NEMON model.

D.1 Attack models

First, we review several attack models that are used in the literature to study the input-output resilience
of neural networks. Each attack consists of a model for generating suitable perturbations of the test
input data. Perturbations with respect to these attacks were generated using the Foolbox software
package5.

Continuous image inversion. The continuous image inversion attack is defined by:

Uadversarial = U + ε sign
(

1
21r1

>
m − U

)
. (43)

It is clear that this attack is independent of the neural network model. Plots of perturbed MNIST
images under the continuous image inversion attack are shown in Figure 6. In Figure 2, the right plot
compares the accuracy of the NEMON model, the implicit deep learning model [El Ghaoui et al.,
2021], and the MON model [Winston and Kolter, 2020] for ε ∈ [0.0.5].

Uniform additive `∞-noise. For this attack, the test images are perturbed by an additive noise with
`∞ magnitude sampled uniformly from the interval [0, 1]. Plots of perturbed MNIST images under
uniform additive `∞-noise are shown in Figure 6. Figure 7 shows scatter plots of the accuracy of the
NEMON model, the implicit deep learning model, and the MON model over 1000 sample attacks.

5The Foolbox implementation is licensed under the MIT License and is available at
https://github.com/bethgelab/foolbox.
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Figure 5: Images of MNIST handwritten digits perturbed by the continuous image inversion attack. For
i ∈ {1, . . . , 5}, row i corresponds to an `∞ perturbation amplitude ε = 0.1× (i− 1). In other words, the top
row has unperturbed images, the second row has images that is perturbed by an `∞ amplitude ε = 0.1, etc.

Fast gradient sign method. Given input data U ∈ Rr×m and output labels Y ∈ Rq×m, the fast
gradient sign method (FGSM) generates adversarial inputs via the formula

Uadversarial = U + ε sign
( ∂L
∂U

(Y,CX +DU)
)
, (44)

where L is the loss function used to train the network and ε provides the `∞ amplitude of the
perturbation. Plots of perturbed MNIST images under the FGSM are shown in Figure 8. Plots of
accuracy versus `∞ perturbation under the FGSM are shown in Figure 9.

Projected gradient descent method. The projected gradient descent method (PGDM) can be
thought of as perturbing the input with several steps of the FGSM. The PGDM attack can be defined
for any norm, but for consistency, we reproduce it only for the `∞-norm. For the input dataU ∈ Rr×m
and outputs Y ∈ Rq×m, PGDM defines the finite sequence of perturbations {δk}Mk=1 by

δk+1 = ProjB(ε)

(
δk + α sign

( ∂L
∂U

(Y,CX +D(U + δk)
))

, (45)

where M is some prescribed maximum number of steps, α is a stepsize, and ProjB(ε)
is the `2

orthogonal projection operator onto the entrywise `∞ closed ball with radius ε. This projection
operator corresponds to clipping each entry of the matrix so that it is in the range [−ε, ε]. Then, the
perturbed input is simply

Uadversarial = U + δM .

Plots of perturbed MNIST images under the PGDM are shown in Figure 10. Plots of accuracy versus
`∞ perturbation under the PGDM are shown in Figure 11.

D.2 Other methods to decrease the `∞ Lipschitz constant

Recall that the input-output Lipschitz constant of the model (11) with both ‖ · ‖U and ‖ · ‖Y equal to
the `∞-norm is given by

Lipu→y =
‖B‖(∞,[η]−1),(∞)‖C‖(∞),(∞,[η]−1)

1− µ∞,[η]−1(A)+
+ ‖D‖∞,∞.
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Figure 6: Images of MNIST handwritten digits as perturbed by uniform additive `∞ noise. For i ∈ {1, . . . , 5},
row i corresponds to an `∞ perturbation amplitude ε = 0.2×(i−1). In other words, the top row has unperturbed
images, the second row has images that is perturbed by an `∞ amplitude ε = 0.2, etc.

When input data, U , is perturbed, the perturbation is directly fed into the output Y via the output
equation Y = CX +DU . For this reason, a simple change to attempt to minimize the effect of input
perturbations on the output is to replace the DU term in the output equation by a static bias, i.e.,

Y = CX + b1>m,

where b ∈ Rq . This simple modification to the model changes the input-output Lipschitz constant to

Lipu→y =
‖B‖(∞,[η]−1),(∞)‖C‖(∞),(∞,[η]−1)

1− µ∞,[η]−1(A)+
.

Finally, another degree of freedom is the parameter γ < 1 in the constraint µ∞,[η]−1(A) ≤ γ. In all
previously shown experiments on MNIST, we selected γ = 0.95. From the expression for the input-
output Lipschitz constant of the network (15), µ∞,[η]−1(A) = 0.95 leads to a small denominator,
resulting in a relatively large input-output Lipschitz constant. A simple modification to moderate the
Lipschitz constant is to impose µ∞,[η]−1(A) ≤ ε for some small ε ≥ 0. This attempts to maximize
the denominator in the expression for the Lipschitz constant.

For these modifications to the models, plots of accuracy versus `∞-perturbation generated by the
FGSM are shown in Figure 12. In this figure, we set ε = 0.05 for the NEMON models. For
comparison, the well-posedness condition for MON is set to be µ2(A) ≤ ε. We do not modify the
condition ‖A‖∞ ≤ 0.95 as imposing the constraint ‖A‖∞ ≤ ε is overly restrictive and would result
in a significant drop in accuracy.

D.3 Robustness of implicit neural networks on the MNIST dataset

In this section, we compare the performance of the NEMON model with µ∞(A) ≤ 0.95 to the
implicit deep learning model with ‖A‖∞ ≤ 0.95 and to the monotone operator equilibrium network
(MON) with In − 1

2 (A + A>) � 0.05In with respect to the attacks described in the previous
subsection on the MNIST dataset.

For the continuous image inversion attack, Figure 2 shows the curves for accuracy versus `∞-
amplitude of the perturbation. We observe that, compared to the NEMON model, the implicit deep



0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

λ = 10−1

0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

λ = 10−2.5

0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

λ = 10−5

0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

λ = 0

0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

‖A‖∞ ≤ 0.95

0.0 0.2 0.4 0.6 0.8 1.0
`∞ perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Accuracy vs perturbation on MNIST handwritten digits

MON

Figure 7: Scatter plots of accuracy versus `∞ perturbation as generated by uniform additive `∞ noise over
1000 trials. Plots are shown for the NEMON model µ∞(A) ≤ 0.95 with λ ∈ {10−1, 10−2.5, 10−5, 0}, the
implicit deep learning model ‖A‖∞ ≤ 0.95, and the monotone operator equilibrium network (MON) with
In − 1

2
(A+A>) � 0.05In.

learning model and the monotone operator equilibrium network (MON) have larger drops in accuracy
for small perturbations. For the NEMON model, as λ increases, the accuracy at zero perturbation
decreases. However, as λ increases, the overall robustness of NEMON improves as its accuracy does
not decrease substantially even for large amplitudes of perturbation.

For uniform additive `∞-noise, scatter plots with accuracy versus `∞ amplitude of the perturbation
are shown in Figure 7. We see that the NEMON model with λ = 0, the implicit deep learning model,
and the MON model all perform comparably. The NEMON models with λ = 10−1 and λ = 10−2.5

both see improved robustness as their accuracy does not drop as noticeably with `∞ amplitude of
the perturbation. Surprisingly, the NEMON model with λ = 10−5 seems to be less robust than the
NEMON model with λ = 0.

For the FGSM, Figure 9 shows the curves for accuracy versus `∞ amplitude of the perturbation.
We see that the NEMON models with λ = 10−5 and λ = 10−4 are the least robust, followed by
the NEMON model with λ = 0 and the MON. Only for λ ∈ {10−2.5, 10−2, 10−1} do we see an
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Figure 8: Images of MNIST handwritten digits as perturbed by the FGSM. For i ∈ {1, . . . , 5}, row i corresponds
to an `∞ perturbation amplitude ε = 0.1× (i− 1). In other words, the top row has unperturbed images, the
second row has images that is perturbed by an `∞ amplitude ε = 0.1, etc.

improvement in robustness for the NEMON model at the price of a decrease in nominal accuracy.
Note that for the FGSM, each model experiences different perturbations.

For the PGDM, Figure 11 shows the curves for accuracy versus `∞ amplitude of the perturbation.
We see that the results are comparable with the perturbation generated by the FGSM, with the
exception that the implicit deep learning model now performs comparably with the monotone
operator equilibrium model. Note that for the PGDM, each model experiences different perturbations.

Finally, we compare the performance of the models with the modification that the output equation
is Y = CX + b1>m. Figure 12 shows the curves for accuracy versus `∞ amplitude of the FGSM
perturbation for the NEMON model with µ∞(A) ≤ 0.05, the implicit deep learning model with
‖A‖∞ ≤ 0.95, and the monotone operator equilibrium model with In − 1

2 (A+A>) � 0.05In. For
these modifications in the models, we see improvement in overall accuracy compared to original mod-
els of implicit networks (11) shown in Figure 9. Additionally, we observe comparable performance
in the NEMON model with λ = 0 and the implicit deep learning model, with the MON performing
slightly better than both. For the NEMON model with λ = 10−4, the accuracy at zero perturbation
is comparable to the NEMON model with λ = 0 and the overall robustness of the NEMON model
to the FGSM attack is significantly improved. However, as λ increases, we see that the nominal
accuracy and overall robustness of the NEMON models deteriorate.

D.4 Robustness of implicit neural networks on the CIFAR-10 dataset

In this section, we compare the performance of the NEMON model with µ∞(A) ≤ 0 to MON with
In − 1

2 (A+A>) � In with respect to the FGSM attack described in the previous subsection on the
CIFAR-10 dataset.

For the FGSM attack on the CIFAR-10 dataset, Figure 13 shows the accuracy versus the `∞ amplitude
of the perturbation for the regularized and un-regularized NEMON model and the MON model.
We observe that un-regularized NEMON model is more accurate than MON for all amplitudes
of perturbation. For example, at `∞-perturbation equal to 0.1, the accuracy of un-regularized
NEMON is 39% whereas the accuracy of MON at this attack amplitude is 35%. Moreover, the
regularized NEMON with the regularization parameter λ = 10−4 has a clean performance accuracy
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Figure 9: Plot of accuracy versus `∞ perturbation as generated by the FGSM for the NEMON model with
µ∞(A) ≤ 0.95, the implicit deep learning model with ‖A‖∞ ≤ 0.95, and MON with In − 1

2
(A + A>) �

0.05In.

of 66% which is lower than the clean accuracy of both MON and the un-regularized NEMON.
However, the regularized NEMON demonstrates a consistent improvement in accuracy for sizeable
`∞-perturbations. For example, at an `∞-perturbation equal to 0.15, the accuracy of the regularized
NEMON model is 29% whereas the accuracy of MON at this attack amplitude is 24%.
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Figure 10: Images of MNIST handwritten digits as perturbed by the PGDM. For i ∈ {1, . . . , 5}, row i
corresponds to an `∞ perturbation amplitude ε = 0.1× (i− 1). In other words, the top row has unperturbed
images, the second row has images that is perturbed by an `∞ amplitude ε = 0.1, etc.
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Figure 11: Plot of accuracy versus `∞ perturbation as generated by the PGDM for the NEMON model with
µ∞(A) ≤ 0.95, the implicit deep learning model with ‖A‖∞ ≤ 0.95, and MON with In − 1

2
(A + A>) �

0.05In.
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Figure 12: Plot of accuracy versus `∞ perturbation as generated by the FGSM for the NEMON model with
µ∞(A) ≤ 0.05, the implicit deep learning model with ‖A‖∞ ≤ 0.95, and MON with In − 1

2
(A + A>) �

0.05In. The output equation is Y = CX + b1>m.
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Figure 13: Plot of accuracy versus `∞ perturbation as generated by the FGSM for the NEMON model with
µ∞(A) ≤ 0 and MON with In − 1

2
(A+A>) � In.
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