
A Proof of Theorem 4.1

Consider a BAI instance ν̃ with distributions and corresponding mean values {Pi : i ∈ [K]} and
{λi : i ∈ [K]}, respectively, for the arms of this BAI instance. Given the adversarial model, we have
the following two properties:

i. There exist some adversarial distributions {Qi : i ∈ [K]}, such that we have

Pi = (1− ε)Pi + εQi ∀ i ∈ [K] . (22)

ii. The suboptimality gap of each arm in the BAI instance is equal to the suboptimality gap
corresponding to the CBAI instance, i.e.,

λa? − λi = (µa? − Ua?)− (µi + Ui) , ∀ i ∈ [K] . (23)

Such a choice of suboptimality gap is obtained by choosing λa? = µa? − Ua? and λi =
µi + Ui for every i ∈ [K] \ a?.

We follow the same line of analysis as in [4, Theorem 18], which shows that any algorithm that is
δ-PAC for a PIBAI instance is also δ-PAC for the counterpart BAI instance. This holds because (i) the
samples for the BAI instance are drawn according to the same law as that of the PIBAI instance, and
(ii) the suboptimality gaps in the PIBAI instance are the same as those of the BAI instance. Thus, any
algorithm operating on the BAI instance requires at least as many samples before stopping as that
required by the PIBAI instance. Thus, it is sufficient to find a lower bound on the BAI instance. In
order to do so, we invoke [26, Lemma 2], which proves that

lim
δ→0

Eν̃ [τ ]

log(1/δ)
≥ T ?(λ) , (24)

where

[T ?(λ)]−1 , sup
w∈QK

inf
ζ∈Alt(λ)

∑
i∈[K]

waDKL(λi, ζi) , (25)

where QK denotes the K-dimensional probability simplex, and Alt(λ) denotes the set of bandit
instances for which a? is not the best arm, i.e., Alt(λ) , {ν ∈ SGK(σ) : a?(ν)∩ a?(λ) = ∅}, where
a?(ν) denotes the best arm of the bandit instance ν. Furthermore, restricting the class of bandits to
Gaussian bandits, it is shown in [26] that we can obtain the following lower bound on T ?(λ)

T ?(λ) ≥
∑
a∈[K]

( √
2σ

max{(λa? − λb?), (λa? − λa)}

)2

, (26)

which proves the desired result by noting that based on property (ii), for every i ∈ [K] we have

λa? − λi = ∆i . (27)

B Proof of Lemma 4.1

First, let us denote the set of uncontaminated rewards (drawn from the true measure F) obtained up to
time t by Gt. Accordingly, denote the set of contaminated rewards drawn from the adversarial models
up to time t by Ct. Thus, we have that

Rt = Gt ∪ Ct , (28)

where Rt is the set of all rewards obtained from the source. Furthermore, let us denote the set of
removed rewards for estimation byRt, and the set of remaining rewards for estimation by At. Now,
we construct an interval around the true mean µ, denoted by

E ,

[
µ− σ

√
2 log

2

α
, µ+ σ

√
2 log

2

α

]
. (29)
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For any random variable X generated according to the true distribution F, we have

P(X 6∈ E) = P
{
|X − µ| > σ

√
2 log

2

α

}
(30)

≤ α

2
, (31)

where the inequality follows from X being σ-sub-Gaussian. Furthermore, define the sequence of
rewards by {Xt : t ∈ N}, and corresponding to the reward at time t, i.e. Xt, define the random
variable Yi , 1{Xt 6∈E,Xt∼F}. Then, we have

P
{ t∑
s=1

Ys > αt

}
= P

{ t∑
s=1

Ys − tE[Ys] > αt− tE[Ys]

}
(32)

≤ P
{ t∑
s=1

Ys − tE[Ys] >
αt

2

}
(33)

≤ exp

(
− tα2

2

)
, (34)

where the first inequality follows from (31), and the second inequality is a result of applying the Ho-
effding’s inequality. Furthermore, note that from resilience ρ1 for σ-sub-Gaussian distributions [27],
we have that ∣∣∣∣E[X|Gt ∩ E]− µ

∣∣∣∣ ≤ ρ , where ρ = O

(
σα

√
log

1

α

)
. (35)

Additionally, we know that due to the σ-sub-Gaussian assumption, for any set A of samples from
distribution F,

P

{∣∣∣∣ 1

|A|
∑
x∈A

x− µ
∣∣∣∣ > σ

√
2

|A|
log

1

δ

}
≤ δ . (36)

Thus, combining (35) and (36), we obtain

P

{∣∣∣∣ 1

|Gt ∩ E|
∑

x∈Gt∩E
x− µ

∣∣∣∣ > O
(
σα

√
log

1

α

)
+ σ

√
2

|Gt ∩ E|
log

1

δ

}
≤ δ . (37)

Furthermore, since |E ∩ Gt| ≤ t, from (37) we obtain

P

[∣∣∣∣ ∑
x∈Gt∩E

(x− µ)

∣∣∣∣ > t

{
O

(
σα

√
log

1

α

)
+ σ

√
2

t
log

1

δ

}]
≤ δ . (38)

Now, let us define the event

St ,
{ t∑
s=1

Ys > αt

}
. (39)

It can be readily verified that, conditioned on S̄t, defined as the complement of St, all the elements of
At fall in the interval E. This is because of the fact that under the event S̄t, the number of points
drawn from the true distribution F until time t that belong to the interval E is at least t(1 − α),
whereas for constructing At, we trim 2αt points from the sequence of samples obtained up to t.
Furthermore, for every t > T (α, δ), we have P(St) < δ, where we have defined

T (α, δ) ,
2

α2
log

1

δ
. (40)

1A distribution P over Rd is called (ρ, α)-resilient (with respect to some norm ‖·‖) if ‖EX∼P[X | E] −
EX∼P[X]‖ ≤ ρ for all events E with P(E) ≥ 1− α.
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Thus, for all t > T (α, δ), we have

P

{∣∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣∣ >
∣∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣∣+

∣∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣∣
}

= P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ > ∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣+

∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣
∣∣∣∣∣ St
}
× P(St)

+ P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ > ∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣+

∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣
∣∣∣∣∣ S̄t
}
× P(S̄t) (41)

< δ , (42)

where the last inequality is a consequence of the fact that P(St) < δ. Note that∣∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
x∈E∩Gt

(x− µ)

∣∣∣∣∣+

∣∣∣∣∣ ∑
x∈Rt∩E∩Gt

(x− µ)

∣∣∣∣∣ . (43)

Using (38), in conjunction with the first term on the right hand side of (43) we have

P

[∣∣∣∣∣ ∑
x∈E∩Gt

(x− µ)

∣∣∣∣∣ ≤ t
{
O

(
σα

√
log

1

α

)
+ σ

√
2

t
log

1

δ

}]
≥ 1− δ . (44)

Furthermore, we have∣∣∣∣∣ ∑
x∈Rt∩E∩Gt

(x− µ)

∣∣∣∣∣ ≤ σ|E ∩ Gt ∩Rt|
√

2 log
2

α
≤ tσα

√
2 log

2

α
, (45)

based on the definition of interval E, and∣∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣∣ ≤ 2|Ct|σ
√

log
2

α
≤ 2σεt

√
log

2

ε
. (46)

Now, let us define the event Lt as

Lt ,

{∣∣∣∣ ∑
x∈Gt∩E

(x− µ)

∣∣∣∣ ≤ t
[
O

(
σα

√
log

1

α

)
+ σ

√
2

t
log

1

δ

]}
. (47)

From (42), we have

P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ ≤ ∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣+

∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣
}
≥ 1− δ . (48)

Thus,

1− δ ≤ P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ ≤ ∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣+

∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣
∣∣∣∣∣Lt
}
× P(Lt)

+ P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ ≤ ∣∣∣∣ ∑
x∈At∩E∩Gt

(x− µ)

∣∣∣∣+

∣∣∣∣ ∑
x∈At∩E∩Ct

(x− µ)

∣∣∣∣
∣∣∣∣∣L̄t
}
× P(L̄t)

(49)

≤ P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ ≤ tC1σα

√
log

1

α
+ tσ

√
2

t
log

1

δ
+ 2σεt

√
log

2

ε

+ tσα

√
2 log

2

α

}
+ δ , (50)
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where (50) is a result of (44), (45), and (46). Further, let us set α = ε/2. Thus, using this in
conjunction with (50), there exists a constant C1 ∈ R+, such that for all t > T (α, δ), we have

P

{∣∣∣∣ ∑
x∈At

(x− µ)

∣∣∣∣ ≤ tC1
ε

2
σ

√
log

2

ε
+ 2σεt

√
log

2

ε
+ tσ

ε

2

√
2 log

4

ε
+ σt

√
2

t
log

1

δ

}
≥ 1− 2δ . (51)

Furthermore, dividing the term inside (51) throughout by t(1− ε), we obtain that

1− 2δ ≤ P

{∣∣∣µ̂t − µ∣∣∣ ≤ C1σε

2(1− ε)

√
log

2

ε
+

εσ

2(1− ε)

√
2 log

4

ε
+

2σε

1− ε

√
log

2

ε

+
σ

1− ε

√
2

t
log

1

δ

}
(52)

≤ P

{∣∣∣µ̂t − µ∣∣∣ ≤ C1σε

√
log

2

ε
+ εσ

√
2 log

4

ε
+ 4σε

√
log

2

ε
+

σ

1− ε

√
2

t
log

1

δ

}
(53)

≤ P

{∣∣∣µ̂t − µ∣∣∣ ≤ O(ε√log
1

ε

)
+

σ

1− ε

√
2

t
log

1

δ

}
, (54)

where (53) is a result of our assumption that ε < 1/2. Finally, replacing δ with δ/2 in (54), we obtain
the desired result.

C Proof of Theorem 4.2

Let us begin by defining the event

E ,
{
∀t > T (α, δ), ∀i ∈ [K] \ a? :

∣∣∣µ̂i(t)− µi∣∣∣ ≤ Ui + βi(t, δ) and∣∣∣µ̂a?(t)− µa?
∣∣∣ ≤ Ua? + βa?(t, δ)

}
, (55)

where we have defined

βi(t, δ) ,
σ

1− ε

√
2

Ni(t)
log

(K − 1)Ctβ

δ
. (56)

Now, noting that we have defined the maximum overlap in confidence intervals between the best arm
a? and the most ambiguous arm jt as Bt in (7), for all τ > T (α, δ), we have that

P
{
µâτ + Uâτ < µa? − Ua?

}
≤ P

{
(µa? − Ua?)− (µâτ + Uâτ ) > Bτ

}
(57)

≤ P
{

(µa? − Ua?)− (µâτ + Uâτ ) > µ̂a?τ (τ) + βa?(τ, δ)−
(
µ̂âτ (τ)− βâτ (τ, δ)

)}
(58)

= P
{

(µa? − µ̂a?τ (τ))− (µâτ − µ̂âτ (τ)) > βa?(τ, δ) + βâτ (τ, δ) + Uâτ + Ua? | E
}
P(E)

+ P
{

(µa? − µ̂a?τ (τ))− (µâτ − µ̂âτ (τ)) > βa?(τ, δ) + βâτ (τ, δ) + Uâτ + Ua? | Ē
}
P(Ē)

(59)

≤ P(Ē) , (60)
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where the first inequality is a result of the stopping criterion and the second inequality follows from
the definition of the overlap Bt in (7). Hence, we have

P(Ē) = P
{
∃t > T (α, δ), ∃a ∈ [K] \ a?,

∣∣∣µ̂a(t)− µa
∣∣∣ > Ua + βa(t, δ) or∣∣∣µ̂a?(t)− µa?
∣∣∣ > Ua? + βa?(t, δ)

}
(61)

≤
∑

a∈[K]\a?

∞∑
t=1

P
{∣∣∣µ̂a(t)− µa

∣∣∣ > Ua + βa(t, δ)

}
+ P

{∣∣∣µ̂a?(t)− µa?
∣∣∣ > Ua? + βa?(t, δ)

}
(62)

≤
∑

a∈[K]\a?

∞∑
t=1

δ

(K − 1)Ctβ
(63)

where (63) is a result of Lemma 4.1. If we choose C such that

C ≥
∞∑
t=1

1

tβ
, (64)

then we obtain that

P(Ē) ≤ δ . (65)

Note that a choice of C always exists for any β > 1, since we have that
∞∑
t=1

1

tβ
≤ 1 +

∫ ∞
1

1

tβ
dt = 1 + (β − 1)−1 . (66)

Furthermore, note that by the design of our stopping rule, τ is always greater than T (α, δ). Thus,
choosing C = (1 + (β − 1)−1) ensures that (65) holds. This completes the proof.

D Proof of Theorem 4.3

Define T as the first time such that ât = a? for every t ≥ T . We have

P(T > t) =

∞∑
s=t

P(âs 6= a?, âu = a?, ∀u > s) (67)

≤
∞∑
s=t

P(âs 6= a?) (68)

=

∞∑
s=t

P(µ̂âs(s) > µ̂a?(s)) (69)

≤
∞∑
s=t

∑
i∈[K]\a?

P(µ̂i(s) > µ̂a?(s)) . (70)

Furthermore, by the concentration of the α-trimmed mean estimator in Lemma 4.1, for every i ∈ [K]
and for all t > T (α, δ), we have

P

{
|µ̂i(t)− µi| > Ui + ∆i/2

}
≤ exp

{
− ∆2

i (1− ε)2Ni(t)
8σ2

}
, (71)

where we have defined

∆i , (µa? − Ua?)− (µi + Ui) . (72)

Let us define the event

H(t) ,

{
∀i ∈ [K] : |µ̂i(t)− µi| > Ui +

∆i

2

}
. (73)
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Thus, for all t > T (α, δ), we have

P(µ̂i(t) > µ̂a?(t)) = P{µ̂i(t) > µ̂a?(t), H(t)}
+ P{µ̂i(t) > µ̂a?(t), H̄(t)} (74)

≤
∑
i∈[K]

exp

{
− ∆2

i (1− ε)2Ni(t)
8σ2

}
, (75)

where the inequality is a result of (71) followed by a union bound. Furthermore, by the sampling
strategy of our algorithm, we have Ni(t) >

√
t for every i ∈ [K]. Thus, combining (70) and (75), for

all t > T (α, δ), we have

P(T > t) ≤
∞∑
s=t

∑
i∈[K]\a?

∑
i∈[K]

exp

{
− ∆2

i (1− ε)2

8σ2

√
t

}
(76)

≤ K2

∞∫
t−1

exp
(
−M

√
s
)

ds (77)

=
2K2

M2

(
M
√
t− 1 + 1

)
exp

(
−M

√
t− 1

)
, (78)

where we have set

M ,
∆2
b?(1− ε)2

8σ2
. (79)

Now, under the event that {T ≤ t} and the event E defined in (55), for all t > T (α, δ) with probability
at least 1− δ, we have

Bt = µ̂jt(t) + βjt(t, δ)− (µ̂ât(t)− βât(t, δ)) (80)
≤ (µjt + Ujt)− (µât − Uât) + 2(βjt(t, δ) + βât(t, δ)) (81)
= −∆jt − ((µât − Uât)− (µa? − Ua?)) + 2(βjt(t, δ) + βât(t, δ)) (82)
≤ −max(∆At ,∆b?) + 4βAt(t, δ) , (83)

where the first inequality is obtained due to the event E and the last inequality is a result of the fact
that T ≤ t combined with the arm selection strategy. Furthermore, note that our sampling strategy
and stopping rule ensure that Ni(t) > T (α, δ) for every i ∈ [K]. Let ti ∈ N denote the last time that
arm i ∈ [K] is pulled before stopping. Then, as a consequence of the stopping criterion, (83), and
along with the choice of the confidence intervals

βi(t) ,
σ

(1− ε)

√
2

Ni(t)
log

(K − 1)Ctβ

δ
, (84)

we obtain

P

{
Ni(ti) ≤ log

(K − 1)Ctβi
δ

· 32σ2

(1− ε)2 max{∆b? ,∆i}2

}
> 1− δ , (85)

which yields

P

{
Ni(τ) ≤ log

(K − 1)Cτβ

δ
· 32σ2

(1− ε)2 max{∆b? ,∆i}2
+ 1

}
> 1− δ . (86)

Now, taking the limit of δ → 0, if Ni(τ) ≥ T ,

lim
δ→0

P

{
Ni(τ) ≤ log

(K − 1)Cτβ

δ
· 32σ2

(1− ε)2 max{∆b? ,∆i}2
+ 1

}
(87)

= P

{
lim
δ→0

Ni(τ) ≤ log
(K − 1)Cτβ

δ
· 32σ2

(1− ε)2 max{∆b? ,∆i}2
+ 1

}
(88)

= 1 , (89)
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where the transition from (87) to (88) is a result of the monotone convergence theorem. Next, note
that for any i ∈ [K], we have

Ni(τ) = Ni(τ)1{Ni(τ)<T} +Ni(τ)1{Ni(τ)≥T} . (90)

Thus, in the limit of δ → 0, from (90), we almost surely have

Ni(τ) ≤ T + log
(K − 1)Cτβ

δ
· 32σ2

(1− ε)2 max{∆b? ,∆i}2
+ 1 . (91)

Furthermore, from the fact that τ =
∑
i∈[K]Ni(τ), in the limit of δ → 0 we almost surely have

τ ≤ KT +
16H

(1− ε)2
log

(K − 1)Cτβ

δ
+K . (92)

Since f(x) = x− 1
C1

logC2x
α is a monotonically increasing function in x, there exists xmax such

that for all x ≥ xmax, we have f(x) ≥ 0. Next, we will find a choice x̄ such that f(x̄) ≥ 0. This
implies that x̄ ≥ xmax. To this end, we use [[26], Lemma 18], which states that
Lemma D.1 ([26], Lemma 18). For every α ∈ [1, e/2] and any two constants C1, C2 > 0 the
identity

x =
α

C1

[
log

(
C2e

Cα1

)
+ log log

(
C2

Cα1

)]
(93)

indicates that C1x ≥ log(C2x
α).

In the above lemma, by choosing C1 = (1−ε)2
16H and C2 = (K−1)C exp(K(T+1)(1−ε)2/16H)

δ , in the
limit of δ → 0, we almost surely have

τ ≤ 16βH

(1− ε)2

[
log

(K − 1)Ce(16H/(1− ε)2)β

δ
+ log log

(K − 1)C(16H/(1− ε)2)β

δ

+ (K + TK) + log(K + TK)

]
. (94)

Thus, taking expectation on both sides of the above inequality, we have

lim
δ→0

E[τ ]

log(1/δ)
≤ lim
δ→0

16βH log (K−1)Ce(16H/(1−ε)2)β
δ

(1− ε)2 log(1/δ)
+

16βH log log (K−1)C(16H/(1−ε)2)β
δ

(1− ε)2 log(1/δ)

+ lim
δ→0

K +KE[T ]

log(1/δ)
+

E[log(K + TK)]

log(1/δ)
. (95)

Next, by recalling the definition of M in (79), note that

E[T ] =

∞∑
t=1

P(T ≥ t) (96)

≤ 2K2

M2

{
1 + lim

x→∞

∫ x

0

(M
√
t+ 1) exp(−M

√
t) dt

}
(97)

≤ 2K2

M2

(
1 +

6

M2

)
(98)

< +∞ , (99)

where the first inequality follows from (76). Thus, combing (95) and (99), we obtain

lim
δ→0

E[τ ]

log(1/δ)
≤ 16βH

(1− ε)2
. (100)

Finally, using the fact that ε < 1/2, we obtain the desired result. Furthermore, it can be readily
verified that the first part of the maximum operation in Theorem 4.3 is a direct consequence of the
stopping rule by choosing α = ε/2 < 1/4. This completes the proof.
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E Proof of Theorem 4.4

Based on the estimator concentration in Lemma 4.1, for every t > T (α, δ) and for any arm i ∈ [K],
we have

P

{∣∣∣µ̂i(t)− µ∣∣∣ > Ui +
σ

(1− ε)

√
2

t
log

Kt2π2

12δ

}
≤ 6δ

Kt2π2
. (101)

Earlier, we had definedMt as the set of active arms, which were not yet been eliminated by the
SE-CBAI algorithms at time t (Algorithm 2, line 4). Based on that, let us define the event E such that

F ,
{∣∣µ̂i(t)− µi∣∣ ≤ Ui + γt, ∀t ≥ 1, ∀i ∈Mt

}
. (102)

We obtain

P(F̄) ≤
∑
i∈[K]

∞∑
t=1

P
{∣∣µ̂i(t)− µi∣∣ ≤ Ui + γt

}
(103)

≤
∑
i∈[K]

∞∑
t=1

6δ

Kt2π2
(104)

≤ δ , (105)

where the second inequality is a consequence of (101) and the last inequality holds due to the Basel
identity. Event F implies that with probability at least 1− δ, for all t and for every j ∈Mt, we have

µ̂a?(t) ≥ µa? − Ua? − γt (106)
= ∆j + (µj + Uj)− γt (107)
≥ µj + Uj − γt (108)
≥ µ̂j(t)− 2γt . (109)

This proves that the best arm a? is contained in Mt with probability at least 1 − δ for every
t > T (α, δ). Finally, by the choice of our stopping rule τ , we have τ > T (α, δ). This completes the
proof.

F Proof of Theorem 4.5

First, note that due to the successive elimination strategy, we have

τ ≤ 2
∑

i∈[K]\a?
Ni(τ) . (110)

Furthermore, by the choice of the active setMt defined in Algorithm 2 line 4, any arm i ∈ [K] \ a?
is eliminated no later than the time t such that

µ̂i(t) < µ̂a?(t)− 2γt . (111)

Combining (110) with the event F defined in (102), with probability at least 1− δ for all t > T (α, δ),
we have

µ̂i(t) < µa? − Ua? − 3γt , ∀ i ∈ [K] \ a? . (112)

This indicates that for t > T (α, δ) with probability at least 1− δ, we have

µi + Ui + γt < µa? − Ua? − 3γt , ∀ i ∈ [K] \ a? , (113)

which, in turn, indicates that

P
(

∆i > 4γt

)
≥ 1− δ , ∀ i ∈ [K] \ a? . (114)

The above inequality holds with equality by setting γt as

γt ,
σ

(1− ε)

√
2

t
log

Kt2π2

12δ
. (115)
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Hence, for some universal constant L > 0, we have

Ni(τ) ≤ Lσ2

∆2
i (1− ε)2

log
K

δ∆i
, ∀ i ∈ [K] \ a? . (116)

Finally, combining (110) and (116), in conjunction with the fact that from the sampling rule we know
Ni(τ) > T (α, δ), we find that with probability at least 1− δ, we have

τ ≤ max

{
32K log

1

δ
, O

( ∑
i∈[K]\a?

1

∆2
i

log
K

δ∆i

)}
, (117)

where we have used ε < 1/2. This completes the proof.

G Experimental Details

Experiments with real data. In this section, we provide the details of the experiments with real data.
Specifically, we use two real-world datasets, one of which considers the application of content recom-
mendation, and the other considers the applications of drug discovery. For content recommendation,
we use the New Yorker Caption Contest dataset, and for drug discovery, we use the PKIS2 datset.
Each experiment is averaged over 1000 Monte Carlo trials. For each experiment, the adversarial
distribution is assumed to have a uniform distribution with a randomly generated mean such that the
index of the best arm does not change as a result of corruption.

New Yorker Caption Contest: This repository contains data gathered from the cartoon caption contest,
in which users are asked to write captions for a given cartoon. The dataset is constructed using several
cartoons (along with the captions) and the user ratings corresponding to each of them, where the users
were asked to rate each caption as “funny” (3), “somewhat funny” (2) and “unfunny” (1). We choose
contest 651 for our simulation, while several other contests are available in the repository, which can
be found here. For simplicity, we select K = 4 captions from the contest with the aim of finding
the caption which is the most highly rated. For this, we compute the empirical mean score for each
caption, and then rewards are generated according to a Gaussian distribution with the corresponding
empirical means.

Protein Kinase Inhibitors for Cancer Drug Discovery: For this experiment, we use the PKIS2
dataset, which is available in [28], and it is an extended version of the PKIS1 dataset published by
Glaxo-SmithKline in 2013. The dataset contains a collection of protein kinase and a list of small
molecule compounds (kinase inhibitors), and it enumerates how strongly each inhibitor reacts with
each kinase. This is an important problem in cancer drug discovery, where researchers are interested
in finding targeted kinase inhibitors for treating cancer cells. The dataset can be downloaded from
this link. For our experiment, we select one specific kinase ACVRL1, which is present in the dataset.
PKIS2 tests 641 inhibitors against different kinase, out of which a total of 189 are tested against
ACVRL1. For simplicity, we selectK = 4 of these 189 inhibitors. The dataset provides a “percentage
inhibition" for each compound, which is averaged over several trials. For each of these entries, we
normalize it to be between 0 and 1, and then find out the percentage control by subtracting each of the
normalized entries from 1. The percentage control forms an interesting measure for understanding
how effective the compound is against the targeted kinase. Furthermore, following the setup in [29],
we take the logarithm of each percentage control, which has been seen to have a Gaussian distribution
whose variance is bounded by 1. Finally, our goal is to find the compound that exhibits the highest
percentage control against ACVRL1.

Experiments with synthetic data. Next, we present two more experiments with synthetic data,
which illustrate the looseness of the theoretical confidence interval for the proposed gap-based
algorithm (Algorithm 1). The adversarial model is the same as that of the real-world experiments.
Specifically, for the first experiment (Figure 4a ), we use the confidence interval prescribed by theory
(16), which is observed to be loose empirically. For this experiment, we use the same set-up of
a 4-armed Gaussian bandit, with the mean vector µ = [2.5, 2.3, 2, 0.6], where the probability
of attack is set to ε = 0.1. Clearly, as discussed, in this setting, the median-based successive
elimination procedure prescribed in [4] outperforms all other methods due to the better uncertainty
Ui = O

(
ε

1−ε

)
. However, we observe that our proposed successive elimination algorithm based on

the α-trimmed mean estimator very closely follows the performance of the median-based algorithm.
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Furthermore, in the case of exponentially distributed bandit instances, the median-based procedure no
longer works, since the exponential distribution is not unimodal. The second experiment (Figure 4b
) is based on this set-up, where we use an 8-armed exponential bandit instance whose mean vector
is given by µ = [2.5, 2.3, 2, 1.4, 1, 0.6, 0.2, 0.05]. In Figure 4b, the “sample mean-based
strategy” refers to the successive elimination algorithm, where the estimator is replaced by the
sample mean. All the other parameters remain the same as in the previous experiment, and we
have averaged both the experiments over 1000 Monte Carlo trials. In this case, we observe that
the theoretical confidence interval for the gap-based procedure described in (16) is loose, and the
proposed successive-elimination based algorithm outperforms the gap-based procedures in identifying
the best arm.
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Figure 4: More experiments with synthetic data

Comparison with the sample median estimator. To clarify our rationale of choosing the trimmed
mean estimator over the sample median, we perform further experiments. Specifically, we have the
following setup. We consider a simple bandit instance with K = 2 arms, where the arms generate
rewards drawn from a log-normal distribution (which is a heavy-tailed distribution). The parameters
used for the two arms are µ = [1, 1.05] and σ = [1, 1.2]. The goal of the learner is to identify the
arm with the highest mean, where the mean of any arm i ∈ [K] is given by θi = exp

(
µ+ σ2

2

)
. The

superior performance of the trimmed mean estimator can be found in Figure 5a.
Comparison with the sample mean estimator. We also perform more experiments to show the
robustness of the trimmed mean estimator over the sample-mean used in algorithms for the corruption-
free setting. For this purpose, we use a corruption level of ε = 0.1 to compare the performance of the
algorithms 1 and 2 against the attack-free counterparts. For this experiment, we have used a Gaussian
bandit with K = 8 arms, where the mean vector is given by µ = [2.5, 2.3, 2, 1.4, 1, 0.6, 0.2, 0.05].
The corresponding results for algorithms 1 and 2 can be found in Figures 5b and 5c, which clearly
show the robustness of the trimmed mean estimator compared to the sample-mean.
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Figure 5: Experiments for showing the efficacy of the trimmed mean estimator
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