
A Proof of Prop. 1

The proposition makes use of the following observation: For the discriminator defined in (1), the
norm of gradient for wt is upper bounded by

‖∇wtDθ(x)‖F ≤ ‖x‖ ·
L∏
i=1

‖ai‖Lip ·
L∏
i=1

‖wi‖sp

/
‖wt‖sp for ∀t ∈ [1, L] (4)

To prove this, for simplicity of notation, let oia = ai◦lwi◦. . .◦a1◦lw1
, and oil = lwi◦ai−1◦. . .◦a1◦lw1

.

It is straightforward to show that the norm of each internal output of discriminator is bounded by

∥∥ota(x)
∥∥ ≤ ‖x‖ · t∏

i=1

‖ai‖Lip ·
t∏
i=1

‖wi‖sp (5)

and ∥∥otl(x)
∥∥ ≤ ‖x‖ · t−1∏

i=1

‖ai‖Lip ·
t∏
i=1

‖wi‖sp . (6)

This holds because ∥∥ota(x)
∥∥ =

∥∥ai (otl(x)
)∥∥ ≤ ‖ai‖Lip ·

∥∥otl(x)
∥∥

and ∥∥otl(x)
∥∥ =

∥∥lwi (ot−1
a (x)

)∥∥ ≤ ‖wt‖sp ·
∥∥ot−1
a (x)

∥∥ ,
from which we can show the desired inequalities by induction.

Next, we observe that the norm of each internal gradient is bounded by

∥∥∇ota(x)Dθ (x)
∥∥ ≤ L∏

i=t+1

‖ai‖Lip ·
L∏

i=t+1

‖wi‖sp (7)

and ∥∥∥∇otl(x)Dθ (x)
∥∥∥ ≤ L∏

i=t

‖ai‖Lip ·
L∏

i=t+1

‖wi‖sp . (8)

This holds because∥∥∇ota(x)Dθ (x)
∥∥ =

∥∥∥wTt+1∇ot+1
l (x)Dθ(x)

∥∥∥ ≤ ‖wt+1‖sp

∥∥∥∇at+1
l (x)Dθ(x)

∥∥∥
and ∥∥∥∇otl(x)Dθ (x)

∥∥∥ =
∥∥∥〈∇ota(x)Dθ (x) ,

[
a′t(x)|x=otl(x)

]
〉
∥∥∥ ≤ ‖at‖Lip

∥∥∇ota(x)Dθ (x)
∥∥ ,

from which we can show inequalities Eqs. (7) and (8) by induction.

Now we have that

‖∇wtDθ(x)‖F =
∥∥∥∇otl(x)Dθ (x) ·

(
ot−1
a (x)

)T
∥∥∥

F

=
∥∥∥∇otl(x)Dθ (x)

∥∥∥ · ∥∥ot−1
a (x)

∥∥
≤

L∏
i=t

‖ai‖Lip ·
L∏

i=t+1

‖wi‖sp · ‖x‖ ·
t−1∏
i=1

‖ai‖Lip ·
t−1∏
i=1

‖wi‖sp

= ‖x‖ ·
L∏
i=1

‖ai‖Lip ·
L∏
i=1

‖wi‖sp

/
‖wt‖sp

where we use Eqs. (5) to (8) at the inequality. The upper bound of gradient’s Frobenius norm for
spectrally-normalized discriminators follows directly.
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B Proof of Prop. 2

Proof. As lw(x) is a linear transformation, we have lcw(x) = c · lw(x), and lw(cx) = c · lw(x).
Moreover, since ReLU and leaky ReLU is linear in R+ and R− region, we have ai(cx) = c · ai(x).
Therefore, we have

D′θ(x) =
(
aL ◦ lcL·wL ◦ aL−1 ◦ lcL−1·wL−1

◦ . . . ◦ a1 ◦ lc1·w1

)
(x)

=

L∏
i=1

ci ·
(
aL ◦ lwL ◦ aL−1 ◦ lwL−1

◦ . . . ◦ a1 ◦ lw1

)
(x)

= Dθ(x)

C Additional Analysis of Gradient

In § 3, we discuss the gradients with respect to w′i = wi
uTi wivi

, where ui, vi are the singular vectors
corresponding to the largest singular values. In this section we discuss the gradients with respect the
actual parameter wi. From Eq. (12) in [30] we know

∇wtDθ(x) =
1

‖wt‖sp

(
∇w′tDθ(x)−

((
∇otl(x)Dθ (x)

)T
otl (x)

)
· utvTt

)

From App. A, we know that
∥∥∇w′tDθ(x)

∥∥
F
,
∥∥∥∇otl(x)Dθ (x)

∥∥∥, and ‖otl (x)‖ have upper bounds.

Furthermore,
∥∥utvTt ∥∥F = 1. Therefore,

∥∥∥∥∇w′tDθ(x)−
((
∇otl(x)Dθ (x)

)T
otl (x)

)
· utvTt

∥∥∥∥
F

has an

upper bound. From Theorem 1.1 in [44] we know that if wt is initialized with i.i.d random variables
from uniform or Gaussian distribution, E

(
‖wt‖sp

)
is lower bounded away from zero at initialization.

So ‖∇wtDθ(x)‖F is upper bounded at initialization. Moreover, we observe empirically that ‖wt‖sp
is usually increasing during training. Therefore, ‖∇wtDθ(x)‖F is typically upper bounded during
training as well.

D Analysis of Hessian

The following proposition states that spectral normalization also gives an upper bound on
‖Hwi(Dθ)(x)‖sp for networks with ReLU or leaky ReLU internal activations.

Proposition 3 (Upper bound of Hessian’s spectral norm). Consider the discriminator defined in
Eq. (1). Let Hwi(Dθ)(x) denote the Hessian of Dθ at x with respect with the vector form of wi. If the
internal activations are ReLU or leaky ReLU, the spectral norm of Hwi(Dθ)(x) is upper bounded by

‖Hwi(Dθ)(x)‖sp ≤
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
· ‖x‖2 ·

L∏
i=1

‖wi‖2sp

/
‖wt‖2sp

The proof is in App. D.1. Following Prop. 3, we can easily show the upper bound of Hessian’s
spectral norm for spectral normalized discriminators.
Corollary 1 (Upper bound of Hessian’s spectral norm for spectral normalization). If the internal
activations are ReLU or leaky ReLU, and ‖wi‖sp ≤ 1 for all i ∈ [1, L], then

‖Hwi(Dθ)(x)‖sp ≤
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
· ‖x‖2 .

Moreover, if the activation for the last layer is sigmoid (e.g., for vanilla GAN [14]), we have

‖Hwi(Dθ)(x)‖sp ≤ 0.1 ‖x‖2 ;

if the activation function for the last layer is identity (e.g., for WGAN-GP [16]), we have

‖Hθ(Dθ)(x)‖sp = 0 .
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D.1 Proof of Prop. 3

Lemma 1. The spectral norm of each internal Hessian is bounded by

∥∥Hota(x)Dθ(x)
∥∥

sp
≤
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
·

L∏
i=t+1

‖wi‖2sp

and ∥∥∥Hotl(x)Dθ(x)
∥∥∥

sp
≤
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
·

L∏
i=t+1

‖wi‖2sp

Proof. We have ∥∥Hota(x)Dθ(x)
∥∥

sp
=
∥∥∥wTt+1 · ∇at+1

l (x)Dθ(x) · wt+1

∥∥∥
sp

≤
∥∥∥∇at+1

l (x)Dθ(x)
∥∥∥

sp
‖wt+1‖2sp .

We also have∥∥∥Hotl(x)Dθ(x)
∥∥∥

sp
=
∥∥∥diag

(
[a′t(x)]x=ota(x)

)
·Hot+1

a (x)Dθ(x) · diag
(
[a′t(x)]x=ota(x)

)∥∥∥
sp

≤
∥∥∥Hot+1

a (x)Dθ(x)
∥∥∥

sp

where we use the property that ReLU or leaky ReLU is piece-wise linear. The desired inequalities
then follow by induction.

Now let’s come back to the proof for Prop. 3.

Proof. We have

∂Dθ

∂ (wt)ij ∂ (wt)kl
=
(
Hotl

(Dθ)(x)
)
ik
·
(
ot−1
a (x)

)
j
·
(
ot−1
a (x)

)
l
.

Therefore,

‖Hwi(Dθ)(x)‖sp ≤
∥∥∥Hotl

(Dθ)(x)
∥∥∥

sp

∥∥ot−1
a (x)

∥∥2

∞ ≤
∥∥∥Hotl

(Dθ)(x)
∥∥∥

sp

∥∥ot−1
a (x)

∥∥2

Applying Eq. (5) and Lemma 1 we get

‖Hwi(Dθ)(x)‖sp ≤
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
·

L∏
i=t+1

‖wi‖2sp · ‖x‖
2 ·

t−1∏
i=1

‖wi‖2sp

=
∥∥∥HoLl (x)Dθ(x)

∥∥∥
sp
· ‖x‖2 ·

L∏
i=1

‖wi‖2sp

/
‖wt‖2sp

E Proof of Thm. 1

Proof. For any discriminator Dθ = aL ◦ lwL ◦ aL−1 ◦ lwL−1
◦ . . . ◦ a1 ◦ lw1

, consider θ′ ={
w′t , ctwt

}L
t=1

with the constraint
∏L
i=1 ci = 1 and ci ∈ R+. Let Q =

∥∥∇w′iDθ′(x)
∥∥

F
‖w′i‖sp.
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We have

‖∇θ′Dθ′(x)‖F =

√√√√ L∑
i=1

∥∥∇w′iDθ′(x)
∥∥2

F

=

√√√√ L∑
i=1

Q2

c2i ‖wi‖
2
sp

≥

√√√√L

(
L∏
i=1

Q2

c2i ‖wi‖
2
sp

)1/L

=
√
L ·Q1/L ·

(
L∏
i=1

‖wi‖sp

)−1/L

and the equality is achieved iff c2i ‖wi‖
2
sp = c2j ‖wj‖

2
sp , ∀i, j ∈ [1, L] according to AM-GM inequal-

ity. When c2i ‖wi‖
2
sp = c2j ‖wj‖

2
sp , ∀i, j ∈ [1, L], we have ct =

∏L
i=1 ‖wi‖

1/L
sp

/
‖wt‖sp.

F Proof of Thm. 2

Proof. Since aij are symmetric random variables, we know E
(

aij
‖A‖sp

)
= 0. Further, by symmetry,

we have that for any (i, j) 6= (h, `), E
(

a2ij
‖A‖2sp

)
= E

(
a2h`
‖A‖2sp

)
. Therefore, we have

Var

(
aij
‖A‖sp

)
= E

(
a2
ij

‖A‖2sp

)
=

1

mn
· E

(∑m
i=1

∑n
j=1 a

2
ij

‖A‖2sp

)
=

1

mn
· E

(
‖A‖2F
‖A‖2sp

)

Our approach will be to upper and lower bound the quantity 1
mn · E

(
‖A‖2F
‖A‖2sp

)
.

Upper bound Assume the singular values of A are σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n}. We have

1

mn
· E

(
‖A‖2F
‖A‖2sp

)
=

1

mn
· E

(∑min{m,n}
i=1 σ2

i

σ2
1

)
≤ min {m,n}

mn
=

1

max {m,n}
,

which gives the desired upper bound.

Lower bound Now for the lower bound, if aij are drawn from zero-mean Gaussian distribution
and max {m,n} ≥ 3, we have

1

mn
· E

(
‖A‖2F
‖A‖2sp

)
(9)

=
1

mn
· E

(
1

‖A‖2sp / ‖A‖
2
F

)

≥ 1

mn
· 1

E
(∥∥∥ A
‖A‖F

∥∥∥2

sp

)
=

1

mn
· 1

E
(
‖B‖2sp

) (10)

where B ∈ Rm×n is uniformly sampled from the sphere of m× n-dimension unit ball. We use the
following lemma to lower bound (10).
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Lemma 2 (Theorem 1.1 in [44]). Assume A ∈ Rm×n is uniformly sampled from the sphere of
m× n-dimension unit ball. When max {m,n} ≥ 3, we have

E
(
‖A‖2sp

)
≤ K2

(
E
(

max
1≤i≤m

‖ai•‖2
)

+ E
(

max
1≤j≤n

‖a•j‖2
))

,

where K is a constant which does not depend on m,n. Here ai• denotes the i-th row of A, and a•j
denotes the j-th column of A.1

We thus have that
1

mn
· 1

E
(
‖B‖2sp

) ≥ 1

mn
· 1

K2
(
E
(

max1≤i≤m ‖bi•‖2
)

+ E
(

max1≤j≤n ‖b•j‖2
)) .

Hence, we need to upper bound E
(

max1≤i≤m ‖bi•‖2
)

and E
(

max1≤j≤n ‖b•j‖2
)

. Let z ∈ Rm

be a vector uniformly sampled from the sphere of m-dimension unit ball. Observe that z d
=

[‖b1•‖ , ..., ‖bm•‖]. The following lemma upper bounds the square of the infinity norm of this
vector.

Lemma 3. Assume z = [z1, z2, ..., zn] is uniformly sampled from the sphere of n-dimension unit
ball, where n ≥ 2. Then we have

E
(

max
1≤i≤n

z2
i

)
≤ 4 log(n)

n− 1
.

(Proof in App. F.1)

Hence, when m,n ≥ 2, we have

E
(

max
1≤i≤m

‖bi•‖2
)
≤ 4 log (m)

m− 1

Similarly, we have

E
(

max
1≤j≤n

‖b•j‖2
)
≤ 4 log (n)

n− 1

Therefore,

Var

(
aij
‖A‖sp

)

≥ 1

mn
· 1

K2
(

4 log(m)
m−1 + 4 log(n)

n−1

)
≥ 1

8K2
· 1

n log (m) +m log (n)

≥ 1

16K2
· 1

max {m,n} log (min {m,n})
which gives the result.

1Note that the original theorem in [44] requires that the entries of A be i.i.d. symmetric random variables,
whereas in our case the entries are not i.i.d., as we require ‖A‖F = 1. However, the i.i.d. assumption
in their proof is only used to ensure that A, Sσ(1),ε(1) (A), and Sσ(2),ε(2) (A) have the same distribution,
where σ(t) for t = 0, 1 are vectors of independent random permutations; ε(t) for t = 0, 1 are matrices of
i.i.d. random variables with equal probability of being ±1; and Sσ(1),ε(1) (A) =

(
ε
(1)
ij · ai,σ(1)

i (j)

)
i,j

and

Sσ(2),ε(2) (A) =

(
ε
(2)
ij · aσ(2)

j (i),j

)
i,j

. Our matrix A satisfies this requirement, and therefore the same theorem

holds.
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F.1 Proof of Lemma 3

Proof.

E
(

max
1≤i≤n

z2
i

)
=

∫ 1

0

P
(

max
1≤i≤n

z2
i ≥ δ

)
dδ

≤
∫ 1

0

min
{

1, n · P
(
z2

1 ≥ δ
)}
dδ (11)

where (11) follows from the union bound. Next, we use the following lemma to upper bound
P
(
z2

1 ≥ δ
)
.

Lemma 4. Assume z = [z1, z2, ..., zn] is uniformly sampled from the sphere of n-dimension unit
ball, where n ≥ 2. Then for 1

n ≤ δ < 1 and ∀i ∈ [1, n], we have

P
(
z2
i ≥ δ

)
≤ e−

n−1
2 ·δ+1.

(Proof in App. F.2). This in turn gives∫ 1

0

min
{

1, n · P
(
z2

1 ≥ δ
)}
dδ ≤

∫ min{1, 2 log(n)+2
n−1 }

0

1 · dδ +

∫ 1

min{1, 2 log(n)+2
n−1 }

n · e−
n−1
2 ·δ+1 · dδ

(12)

≤
{

1 (n ≤ 6)
2 log(n)+2

n−1 − 2n
n−1e

−n−3
2 + 2

n−1 (n ≥ 7)

≤ 4 log(n)

n− 1

where Eq. (12) follows from Lemma 4.

F.2 Proof of Lemma 4

Proof. Due to the symmetry of zi, we only need to prove the inequality for i = 1 case. Let
x = [x1, ..., xn] ∼ N (0, In), where In is the identity matrix in n dimension. We know that

x2
1∑n

i=1 x
2
i

d
= z2

1 . Therefore, we have

P
(
z2

1 ≥ δ
)

= P

(
x2

1∑n
j=1 x

2
j

≥ δ

)
= P

(
x2

1

(
∑n
i=2 x

2
i ) /(n− 1)

≥ (n− 1) δ

1− δ

)
.

Note that x2
1 and

∑n
i=2 x

2
i are two independent chi-squared random variables, therefore, we know

that x2
1

(
∑n
i=2 x

2
i )/(n−1)

∼ F (1, n− 1), where F denotes the central F-distribution. Therefore,

P
(

x2
1

(
∑n
i=2 x

2
i ) /(n− 1)

≥ (n− 1) δ

1− δ

)
= 1− Iδ

(
1

2
,
n− 1

2

)
= I1−δ

(
n− 1

2
,

1

2

)
=
B1−δ

(
n−1

2 , 1
2

)
B
(
n−1

2 , 1
2

) , (13)

where Ix(a, b) is the regularized incomplete beta function, Bx(a, b) is the incomplete beta function,
and B(a, b) is beta function.
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For the ease of computation, we take the log of Eq. (13). The numerator gives

log

(
B1−δ

(
n− 1

2
,

1

2

))
= log

(
(1− δ)(n−1)/2

(n− 1)/2
2F1

(
n− 1

2
,

1

2
;
n+ 1

2
; 1− δ

))

=
n− 1

2
log (1− δ)− log(n− 1) + log

(
2F1

(
n− 1

2
,

1

2
;
n+ 1

2
; 1− δ

))
+ log(2) , (14)

where 2F1 (·) is the hypergeometric function. Let (q)i =

{
1 (i = 0)

q(q + 1) . . . (q + i− 1) (i > 0)
, we

have

2F1

(
n− 1

2
,

1

2
;
n+ 1

2
; 1− δ

)
=

∞∑
i=0

(
n−1

2

)
i

(
1
2

)
i
(1− δ)i(

n+1
2

)
i
· i!

≤
∞∑
i=0

(
1
2

)
i
(1− δ)i

·i!

= δ−
1
2 (15)

Substituting it into Eq. (14) gives

log

(
B1−δ

(
n− 1

2
,

1

2

))
≤ n− 1

2
log (1− δ)− log (n− 1)− 1

2
log (δ) + log(2) . (16)

The log of the denominator of (13) is

log

(
B

(
n− 1

2
,

1

2

))
= log

(
Γ
(
n−1

2

)
Γ
(

1
2

)
Γ
(
n
2

) )

≥ log

(
√
π ·
(
n+ 1

2

)− 1
2

)

= −1

2
log(n+ 1) +

1

2
log(2) +

1

2
log(π) . (17)

where Γ denotes the Gamma function and we use the Gautschi’s inequality: Γ(x+1)

Γ(x+ 1
2 )
< (x+ 1)

1
2 for

positive real number x.

Combining Eq. (13), Eq. (16), and Eq. (17) we get

log

(
P
(

x2
1

(
∑n
i=2 x

2
i ) /(n− 1)

≥ (n− 1) δ

1− δ

))
≤ n− 1

2
log (1− δ)− log (n− 1) +

1

2
log(n+ 1)− 1

2
log (δ) +

1

2
log(2/π)

≤ n− 1

2
log (1− δ)− 1

2
log(n− 1)− 1

2
log(δ) +

1

2
log(6/π)

≤ n− 1

2
log (1− δ)− 1

2
log

(
n− 1

n

)
+

1

2
log(6/π)

≤ n− 1

2
log (1− δ) +

1

2
log

12

π

≤ −n− 1

2
· δ + 1
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Therefore, we have

P
(
z2

1 ≥ δ
)
≤ e−

n−1
2 ·δ+1

G Proof of Thm. 3

Proof. Let sw = cincoutkwkh. Since wij are symmetric random variables, we know E
(
wij
σw

)
= 0.

Therefore, we have

Var
(
wij
σw

)
= E

(
w2
ij

σ2
w

)
=

1

sw
· E

(∑m
i=1

∑n
j=1 w

2
ij

σ2
w

)
=

1

sw
· E

(
‖w‖2F
σ2
w

)

Note that

1

sw
· E

(
‖w‖2F
σ2
w

)
∈
[

2

sw
· E

 ‖w‖2F∥∥wcout×(cinkwkh)
∥∥2

sp +
∥∥wcin×(coutkwkh)

∥∥2

sp

 ,

4

sw
· E

 ‖w‖2F∥∥wcout×(cinkwkh)
∥∥2

sp +
∥∥wcin×(coutkwkh)

∥∥2

sp

] .

Assume the singular values of wcout×(cinkwkh) are σ1 ≥ σ2 ≥ . . . ≥ σcout , and the singular values
of wcin×(coutkwkh) are σ′1 ≥ σ′2 ≥ . . . ≥ σ′cin . We have

4

sw
· E

 ‖w‖2F∥∥wcout×(cinkwkh)
∥∥2

sp +
∥∥wcin×(coutkwkh)

∥∥2

sp


=

4

sw
· E

(
1

2
·
∑cout
i=1 σ

2
i

σ2
1

+
1

2
·
∑cin
i=1 σ

′2
i

σ′21

)
≤ 2 (cout + cin)

sw
=

2

cinkwkh + coutkwkh
,

which gives the desired upper bound.

As for the lower bound, observe that

2

sw
· E

 ‖w‖2F∥∥wcout×(cinkwkh)
∥∥2

sp +
∥∥wcin×(coutkwkh)

∥∥2

sp



=
2

sw
· E

 1∥∥∥wcout×(cinkwkh)

‖w‖F

∥∥∥2

sp
+
∥∥∥wcin×(coutkwkh)

‖w‖F

∥∥∥2

sp


≥ 2

sw
· 1

E
(∥∥∥wcout×(cinkwkh)

‖w‖F

∥∥∥2

sp

)
+ E

(∥∥∥wcin×(coutkwkh)

‖w‖F

∥∥∥2

sp

)

Then we can follow the same approach in App. F for bounding E
(∥∥∥wcout×(cinkwkh)

‖w‖F

∥∥∥2

sp

)
and

E
(∥∥∥wcin×(coutkwkh)

‖w‖F

∥∥∥2

sp

)
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H Datasets and Metrics

H.1 Datasets

MNIST [26] We use the training set for our experiments, which contains 60000 images of hand-
written digits of shape 28× 28× 1. The pixels values are normalized to [0, 1] before feeding to the
discriminators.

CIFAR10 [24] We use the training set for our experiments, which contains 50000 images of shape
32× 32× 3. The pixels values are normalized to [−1, 1] before feeding to the discriminators.

STL10 [10] We use the unlabeled set for our experiments, which contains 100000 images of shape
96× 96× 3. Following [30], we resize the images to 48× 48× 3 for training. The pixels values are
normalized to [−1, 1] before feeding to the discriminators.

CelebA [29] This dataset contains 202599 images. For each image, we crop the center 128× 128,
and resize it to 64× 64× 3 for training. The pixels values are normalized to [−1, 1] before feeding
to the discriminators.

ImageNet (ILSVRC2012) [39] The dataset contains 1281167 images. Following [30], for each
images, we crop the central square of the images according to min(width, height), and then reshape
it to 128 × 128 × 3 for training. The pixels values are normalized to [−1, 1] before feeding to the
discriminators.

H.2 Metrics

Inception score [40] Following [30], we use 50000 generated images and split them into 10 sets
for computing the score.

FID [18] Following [30], we use 5000 real images and 10000 generated images for computing the
score.

I Gradient Explosion and Vanishing in GANs

I.1 Results

To illustrate that gradient explosion and vanishing are closely related to the instability in GANs,
we trained a WGAN [16] on the CIFAR10 dataset with different hyper-parameters leading to
stable training, exploding gradients, and vanishing gradients over 40,000 training iterations (more
experimental details in App. I.2). Fig. 10 shows the resulting inception scores for each of these
runs, and Fig. 11 shows the corresponding magnitudes of the gradients over the course of training.
Note that the stable run has improved sample quality and stable gradients throughout training. This
phenomenon has also been observed in prior literature [2, 8]. We will demonstrate that by controlling
these gradients, SN (and SNw in particular) is able to achieve more stable training and better sample
quality.
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Figure 10: Inception score over the course of
training. The “gradient vanishing" inception
score plateaus as training is stalled.
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z ∈ R128 ∼ N (0, I)
Fully connected (Mg ×Mg × 512). BN. ReLU.

Deconvolution (c = 256, k = 4, s = 2). BN. ReLU.
Deconvolution (c = 128, k = 4, s = 2). BN. ReLU.
Deconvolution (c = 64, k = 4, s = 2). BN. ReLU.

Deconvolution (c = 3, k = 3, s = 1). Tanh.
Table 2: Generator network architectures for CIFAR10, STL10, and CelebA experiments (from
[30]). For CIFAR10, Mg = 4. For STL10, Mg = 6. For CelebA, Mg = 8. BN stands for batch
normalization. c stands for number of channels. k stands for kernel size. s stands for stride.

x ∈ RM×M×3

Convolution (c = 64, k = 3, s = 1). Leaky ReLU (0.1).
Convolution (c = 64, k = 4, s = 2). Leaky ReLU (0.1).

Convolution (c = 128, k = 3, s = 1). Leaky ReLU (0.1).
Convolution (c = 128, k = 4, s = 2). Leaky ReLU (0.1).
Convolution (c = 256, k = 3, s = 1). Leaky ReLU (0.1).
Convolution (c = 256, k = 4, s = 2). Leaky ReLU (0.1).
Convolution (c = 512, k = 3, s = 1). Leaky ReLU (0.1).

Fully connected (1).
Table 3: Discriminator network architectures for CIFAR10, STL10, and CelebA experiments (from
[30]). For CIFAR10, M = 32. For STL10, M = 48. For CelebA, M = 64. c stands for number of
channels. k stands for kernel size. s stands for stride.

I.2 Experimental Details

The network architectures are shown in Tables 2 and 3. The dataset is CIFAR10. All experiments are
run for 400k iterations. Batch size is 64. The optimizer is Adam. Let λ be the WGAN’s gradient
penalty weight [16]. For the stable run, αg = 0.0001, αd = 0.0002, β1 = 0.5, β2 = 0.999, λ =
10, ndis = 1. For the gradient explosion run, αg = 0.001, αd = 0.001, β1 = 0.5, β2 = 0.999, λ =
10, ndis = 1. For the gradient vanishing run, αg = 0.001, αd = 0.001, β1 = 0.5, β2 = 0.999, λ =
50, ndis = 1, and the activation functions in the discriminator are changed from leaky ReLU to
ReLU.

J Experimental Details and Additional Results on Gradient Norms

J.1 Experimental Details

For the MNIST experiment, the network architectures are shown in Tables 4 and 5. All experiments
are run for 100 epochs. Batch size is 64. The optimizer is Adam. αg = 0.001, αd = 0.001, β1 =
0.5, β2 = 0.999, ndis = 1.

For the CIFAR10 experiment, , the network architectures are shown in Tables 2 and 3. All exper-
iments are run for 400k iterations. Batch size is 64. The optimizer is Adam. αg = 0.0001, αd =
0.0001, β1 = 0.5, β2 = 0.999, ndis = 1.

Let λ be the WGAN’s gradient penalty weight [16]. For the runs without SN, λ = 10. For the runs
with SN, we use the strict SN implementation [12] in order to verifying the theoretical results (the
popular SN implementation [30] only gives a loose bound on the actual spectral norm of layers, see
§ 4). Since it already ensures that the Lipschitz constant of the discriminator is no more than 1, we
discard the gradient penalty loss from training.

For all the results, the gradient norm only considers the weights and excludes the biases (if exist), so
as to be consistent with the theoretical analysis.
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z ∈ R100 ∼ Uniform(−1, 1)
Fully connected (7× 7× 128). Leaky ReLU (0.2). BN.

Deconvolution (c = 64, k = 5, s = 2). Leaky ReLU (0.2). BN.
Deconvolution (c = 1, k = 5, s = 2). Sigmoid.

Table 4: Generator network architectures for MNIST experiments. BN stands for batch normalization.
c stands for number of channels. k stands for kernel size. s stands for stride.

x ∈ R28×28×1

Convolution (c = 64, k = 5, s = 2, no bias). Leaky ReLU (0.2).
Convolution (c = 128, k = 5, s = 2, no bias). Leaky ReLU (0.2).
Convolution (c = 256, k = 5, s = 2, no bias). Leaky ReLU (0.2).

Fully connected (1, no bias).
Table 5: Discriminator network architectures for MNIST experiments. c stands for number of
channels. k stands for kernel size. s stands for stride.

J.2 Additional Results

Figs. 12 and 13 show the gradient norms of each discriminator layer in MNIST and CIFAR10. Despite
the difference on the network architecture and dataset, we see the similar phenomenon: when training
without SN, some layers have extremely large gradient norms, which causes the overall gradient
norm to be large; when training with SN, the gradient norms are much smaller and are similar across
different layers.

K Experimental Details and Additional Results for Confirming Eq. (2)

K.1 Experimental Details

For the MNIST experiment, the network architectures are shown in Tables 4 and 5. All experiments
are run for 100 epochs. Batch size is 64. The optimizer is Adam. αg = 0.001, αd = 0.001, β1 =
0.5, β2 = 0.999, ndis = 1. We use WGAN loss with the strict SN implementation [12]. Since it
already ensures that the Lipschitz constant of the discriminator is no more than 1, we discard the
gradient penalty loss from training. The random scaling are selected in a way the geometric mean of
spectral norms of all layers equals 1.

For the CIFAR10 and STL10 experiments , the network architectures are shown in Tables 2 and 3. All
experiments are run for 400k iterations. Batch size is 64. The optimizer is Adam. αg = 0.0001, αd =
0.0001, β1 = 0.5, β2 = 0.999, ndis = 1. We use hinge loss [30] with the strict SN implementation
[12]. The random scaling are selected in a way the geometric mean of spectral norms of all layers
equals 1.75, which avoids the gradient vanishing problem as seen in § 4.
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Figure 12: Gradient norms of each discrimi-
nator layer in MNIST at epoch 50.
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Figure 13: Gradient norms of each discrimi-
nator layer in CIFAR10 at iteration 10000.
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Figure 14: Ratio of gradient norm v.s. inverse
ratio of spectral norm in CIFAR10.
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Figure 15: Ratio of gradient norm v.s. inverse
ratio of spectral norm in STL10.

K.2 Additional Results

Figs. 14 and 15 show the ratios of the gradient norms at each layer and the inverse ratios of the
spectral norms in CIFAR10 and STL10. Generally, we see that the most of the points are near the
diagonal line, which means that the assumption in Eq. (2) is reasonably true in practice. However,
we note that the last layer (layer 8) somehow has slightly smaller gradient, as the points of “layer 8
/ layer 1” are slightly lower than the diagonal line. This could result from the fact that layer 8 is a
fully connected layer whereas all other layers are convolutional layers. We defer the more detailed
analysis of this phenomenon to future work.

L Experimental Details and Additional Results on Vanishing Gradient

L.1 Experimental Details

The network architectures are shown in Tables 2 and 3. The dataset is CIFAR10. All experiments are
run for 400k iterations. Batch size is 64. The optimizer is Adam. αg = 0.0001, αd = 0.0001, β1 =
0.5, β2 = 0.999, ndis = 1. We use hinge loss [30].

L.2 Parameter Variance With and Without SN

Figs. 16 and 17 show the parameter variance of each layer without and with SN. Note that Fig. 17 is
just collecting the empirical lines in Fig. 7 for the ease of comparison here. Figs. 18 and 19 show the
gradient norm and inception score.

We can see that when training with SN, the parameter variance is stable throughout training (Fig. 17),
and the magnitude of gradient is also stable (Fig. 18) . However, when training without SN, the
parameter variance tends to increase throughout training (Fig. 16), which causes a quick decrease in
the magnitude of gradient in the begining of training (Fig. 18) because of the saturation of hinge loss
(§ 4). Because SN promotes the stability of the variance and gradient throughout training, we see that
SN improves the sample quality significantly (Fig. 19).

L.3 Comparing Two Variants Spectral Norms

Figs. 20 and 21 show the ratio between two versions of spectral norm [30, 12] throughout the training
of the popular SN [30] and the strict SN [12]. ‖Conv‖sp denotes the spectral norm of the expanded
matrix ‖w̃‖sp used in [12]. ‖w‖sp denotes the spectral norm of reshaped matrix ‖ŵ‖sp used in [30].
The theoretical lower and upper bound are calculated according to Corollary 1 in [47]. We can see
that no matter in which architecture, ‖w̃‖sp is usually strictly larger than ‖ŵ‖sp. Note that the reason
why in some cases the ratio exceeds the upper bound in Fig. 20 is because the spectral norms are
calculated using power iteration [30, 12] which has approximation error.
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Figure 16: Parameter variance without SN in
CIFAR10.
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Figure 17: Parameter variance with SN in CI-
FAR10.
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Figure 18: Gradient norm with and without SN
in CIFAR10.
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Figure 19: Inception score with and without SN
in CIFAR10.

L.4 Parameter Variance of Scaled SN

Figure Fig. 22 shows the parameter variance of scaled SN for both SN versions [30, 12]. We can see
that when scale=1.75, the product of parameter variances for SNConv [12] is similar to the one of SNw
[30]. Moreover, by comparing Fig. 22 and Fig. 6 we can see that when the products of variances
of two SN variants are similar, the sample quality is also similar. This confirms the intuition from
LeCun initialization [25] that the magnitude of variance plays an important role on the performance
of neural network, and it should not be too large nor too small.

M Experimental Details and Additional Results on Scaling (§ 5.2)

M.1 Experimental Details

The network architectures are shown in Tables 2 and 3. SN models are run for 400k iterations. LeCun
initialization models are run till the sample quality converges or starts dropping (usually within 400k
iterations). Batch size is 64. The optimizer is Adam. αg = 0.0001, αd = 0.0001, β1 = 0.5, β2 =
0.999, ndis = 1. We use hinge loss [30].

Since LeCun initialization is unstable when the scaling is not proper, in Fig. 8, we plot the best score
during training instead of the score at the end of training.

M.2 Additional Results

Although the good scaling modes for SN and LeCun initialization seem to be very different in Fig. 8,
there indeed exists a (perhaps coincidental) correspondence in terms of parameter variances. In
Fig. 23, we show the inception score v.s. parameter variances for SN and LeCun initialization. We
can see that the first good mode occurs when log of the product of parameter variances is around -70
to -60, and the second mode is around -50 to -40.
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Figure 20: The ratio of two spectral norms
throughout the training of the popular SN [30]
in CIFAR10.
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Figure 21: The ratio of two spectral norms
throughout the training of the strict SN [12]
in CIFAR10.
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Figure 22: The parameter variance of scaled SN in CIFAR10.

N Results with Different Hyper-parameters and SN Variants

In addition to SN [30], we compare against two variants of SN proposed in the appendix of [30],
which we denote “same γ” and “diff. γ” (details in App. O). These two variants are reported to be
worse than SN in [30] and are not used in practice, but we include them here for reference. We run
experiments on CIFAR10, STL10, CelebA, and ImageNet, with two widely-used metrics for sample
quality: inception score [40] and Frechet Inception Distance (FID) [18] (details in App. H).

We use the network architecture from SN [30]. We controlled five hyper-parameters (Table 7, App. P):
αg and αd, the generator/discriminator learning rates, β1, β2, Adam momentum parameters [23], and
ndis, the number of discriminator updates per generator update. Three hyper-parameter settings are
from [30], with equal discriminator and generator learning rates; the final two test unequal learning
rates for showing a more thorough comparison. More details are in Apps. P and Q.

As in [30], we report the metrics from the best hyper-parameter for each algorithm in Table 6. BSN
outperforms the standard SN in all sample quality metrics except FID score on STL10, where their
metrics are within standard error of each other. Regarding the SN variants with γ, in CIFAR10
and STL10, they have worse performance than SN and BSN, same as reported in [30]. In CelebA,
the SN variants have better performance for the best hyper-parameter setting. But in general, these
SN variants are very sensitive to hyper-parameters (Apps. P to R), therefore they are not adopted in
practice [30]. Nevertheless, BSN is still able to improve or have similar performance on those two
variants in most of the settings.

More importantly, the superiority of BSN is stable across hyper-parameters. Figs. 24 and 25 show
the inception scores of all the hyper-parameters we tested on CIFAR10 and STL10. BSN has the
best or competitive performance in most of the settings. The only exception is ndis = 5 setting
in STL10, where we observe that the performance from both SN and BSN have larger variance
across different random seeds, and the SN variants with γ perform better. On CelebA, BSN also
outperforms SN in FID across all hyper-parameters (App. R), and it outperforms all SN variants in
every hyper-parameter setting except one (Fig. 55).
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Figure 23: Inception score v.s. parameter variances of scaled SN and scaled LeCun initialization in
CIFAR10. Each point corresponds to one run, at the point when the score is the best during training.
The numbers near each point indicate the scaling.

CIFAR10 STL10 CelebA

Inception score ↑ FID ↓ Inception score ↑ FID ↓ FID ↓
Real data 11.26 9.70 26.70 10.17 4.44
SN (same γ) 6.46 ± 0.06 42.35 ± 0.74 8.86 ± 0.03 54.61 ± 0.51 7.74 ± 0.11
BSN (same γ) 6.69 ± 0.05 39.62 ± 0.40 8.76 ± 0.03 55.04 ± 0.48 7.83 ± 0.09
SN (diff. γ) 6.53 ± 0.01 41.88 ± 0.50 8.79 ± 0.03 56.76 ± 0.44 7.54 ± 0.08
BSN (diff. γ) 6.72 ± 0.05 38.15 ± 0.72 8.80 ± 0.03 53.99 ± 0.33 7.67 ± 0.04
SN 7.22 ± 0.09 31.43 ± 0.90 9.16 ± 0.03 42.89 ± 0.54 9.09 ± 0.32
BSN 7.58 ± 0.04 26.62 ± 0.21 9.25 ± 0.01 42.98 ± 0.54 8.54 ± 0.20

Table 6: Inception scores and FIDs on CIFAR10, STL10, and CelebA. Each experiment is conducted
with 5 random seeds, with mean and standard error reported. We follow the common practice of
excluding Inception Score in CelebA as the inception network is pretrained on ImageNet, which
is very different from CelebA. The bold font marks the best numbers between SN and BSN using
the same variant. The red color marks the best numbers among all runs. The“same γ" and “diff. γ"
variants are not used in practice and are reported to have bad performance in [30].

More results (generated images, training curves, FID plots) are in Apps. P to R.
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Figure 24: Inception score in CIFAR10. The results are averaged over 5 random seeds.

O Details on SN Variants

In Appendix E of [30], a variant of SN is introduced. Instead of strictly setting the spectral norm of
each layer, the idea of this approach is to release the constraint by multiplying each spectral normalized
weights with a trainable parameter γ. However, this would make the gradient of discriminator
arbitrarily large, which violates the original motivation of SN. Therefore, the approach incorporates
gradient penalty [16] for setting the Lipschitz constant of discriminator to 1. The gradient penalty
weights are set to 10 in all experiments.

However, from the description in [30], it is unclear if all layers have the same or separated γ.
Therefore, we try both versions in our experiments. “Same γ” denotes that version where all layers
share the same γ. “Diff. γ” denotes the version where each layer has a separate γ.
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Figure 25: Inception score in STL10. The results are averaged over 5 random seeds.

αg αd β1 β2 ndis

0.0001 0.0001 0.5 0.9 5
0.0001 0.0001 0.5 0.999 1
0.0002 0.0002 0.5 0.999 1
0.0001 0.0002 0.5 0.999 1
0.0002 0.0001 0.5 0.999 1

Table 7: Hyper-parameters tested in CIFAR10 and STL10 experiments. The first three settings are
from [30, 16, 49, 38]. αg and αd: learning rates for generator and discriminator. β1, β2: momentum
parameters in Adam. ndis: number of discriminator updates per generator update.

P Experimental Details and Additional Results on CIFAR10

P.1 Experimental Details

The network architectures are shown in Tables 2 and 3. All experiments are run for 400k iterations.
Batch size is 64. The optimizer is Adam. We use the five hyper-parameter settings listed in Table 7.
(In Table 1 we only show the results from the first hyper-parameter setting.) We use hinge loss with
the popular SN implementation [30].

For SSN in Table 1, we ran following scales: [0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,
2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10.0], and present the results from best
one for each metric. For BSSN in Table 1, we ran the following scales: [0.7, 0.8, 0.9, 1.0, 1.2, 1.4,
1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0], and present the results from the best one for
each metric.

P.2 FID Plot

Fig. 26 shows the FID score in CIFAR10 dataset. We can see that BSN has the best performance in
all 5 hyper-parameter settings.

P.3 Training Curves

From App. N we can see that SN (no γ) and BSN generally have the best performance. Therefore, in
this section, we focus on comparing these two algorithms with the training curves. Figs. 9 and 27
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Figure 26: FID in CIFAR10. The results are averaged over 5 random seeds.
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Figure 27: FID in CIFAR10. The results are averaged over 5 random seeds. The hyper-parameters
are: αg = 0.0001, αd = 0.0001, ndis = 1.
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Figure 28: Inception score in CIFAR10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0001, αd =
0.0002, ndis = 1.
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Figure 29: FID in CIFAR10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0001, αd = 0.0002,
ndis = 1.

to 35 show the inception score and FID of these two algorithms during training. Generally, we see
that BSN converges slower than SN at the beginning of training. However, as training proceeds, the
sample quality of SN often drops (e.g. Figs. 9 and 27 to 33), whereas the sample quality of BSN
always increases and then stabilizes at the high level. In most cases, BSN not only outperforms SN at
the end of training, but also outperforms the peak sample quality of SN during training (e.g. Figs. 9
and 27 to 33). From these results, we can conclude that BSN improves both the sample quality and
training stability over SN.

P.4 Generated Images

Figs. 36 to 39 show the generated images from the run with the best inception score for each algorithm.
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Figure 30: Inception score in CIFAR10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0002, αd =
0.0001, ndis = 1.
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Figure 31: FID in CIFAR10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0002, αd = 0.0001,
ndis = 1.
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Figure 32: Inception score in CIFAR10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0002, αd =
0.0002, ndis = 1.
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Figure 33: FID in CIFAR10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0002, αd = 0.0002,
ndis = 1.
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Figure 34: Inception score in CIFAR10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0001, αd =
0.0001, ndis = 5.
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Figure 35: FID in CIFAR10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0001, αd = 0.0001,
ndis = 5.
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Figure 36: Generated samples from the best run of SN (same γ) in CIFAR10. The hyper-parameters
are: αg = 0.0001, αd = 0.0001, ndis = 5. Inception score is 6.64. FID is 41.01.

Figure 37: Generated samples from the best run of SN (diff. γ) in CIFAR10. The hyper-parameters
are: αg = 0.0001, αd = 0.0001, ndis = 5. Inception score is 6.55. FID is 41.18.
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Figure 38: Generated samples from the best run of SN in CIFAR10. The hyper-parameters are:
αg = 0.0001, αd = 0.0002, ndis = 1. Inception score is 7.56. FID is 28.64.

Figure 39: Generated samples from the best run of BSN in CIFAR10. The hyper-parameters are:
αg = 0.0001, αd = 0.0002, ndis = 1. Inception score is 7.70. FID is 25.96.
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Figure 40: FID in STL10. The results are averaged over 5 random seeds.

Q Experimental Details and Additional Results on STL10

Q.1 Experimental Details

The network architectures are shown in Tables 2 and 3. Batch size is 64. The optimizer is Adam. We
use the five hyper-parameter settings listed in Table 7. (In Table 1 we only show the results from the
first hyper-parameter setting.) We use hinge loss with the popular SN implementation [30].

SN (no γ) and BSN under ndis = 1 settings are run for 800k iterations as we observe that they need
longer time to converge. All other experiments are run for 400k iterations.

For SSN and BSSN in Table 1, we ran following scales: [0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6], and present
the results from best one for each metric.

Q.2 FID Plot

Fig. 40 shows the FID score in STL10 dataset. We can see that BSN has the best or competitive
performance in most of the hyper-parameter settings. Again, the only exception is ndis = 5 setting.

Q.3 Training Curves

From App. N we can see that SN (no γ) and BSN generally have the best performance. Therefore, in
this section, we focus on comparing these two algorithms with the training curves. Figs. 41 to 50
show the inception score and FID of these two algorithms during training. Generally, we see that
BSN converges slower than SN at the beginning of training. However, as training proceeds, BSN
finally has better metrics in most cases. Note that unlike CIFAR10, SN seems to be more stable in
STL10 as its sample quality does not drop in most hyper-parameters. But the key conclusion is the
same: in most cases, BSN not only outperforms SN at the end of training, but also outperforms the
peak sample quality of SN during training (e.g. Figs. 41 to 48). The only exception is the ndis = 5
setting, where both SN and BSN has instability issue: the sample quality first improves and then
significantly drops. The problem with BSN seems to be severer. We discussed about this problem in
App. N.

Q.4 Generated Images

Figs. 51 to 54 show the generated images from the run with the best inception score for each algorithm.

35



0 200000 400000 600000 800000
Iterations

4

5

6

7

8

9

In
ce

pt
io

n 
sc

or
e

SN
BSN

Figure 41: Inception score in STL10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0001, αd =
0.0001, ndis = 1.
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Figure 42: FID in STL10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0001, αd = 0.0001,
ndis = 1.
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Figure 43: Inception score in STL10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0001, αd =
0.0002, ndis = 1.
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Figure 44: FID in STL10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0001, αd = 0.0002,
ndis = 1.
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Figure 45: Inception score in STL10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0002, αd =
0.0001, ndis = 1.
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Figure 46: FID in STL10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0002, αd = 0.0001,
ndis = 1.
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Figure 47: Inception score in STL10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0002, αd =
0.0002, ndis = 1.
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Figure 48: FID in STL10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0002, αd = 0.0002,
ndis = 1.
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Figure 49: Inception score in STL10. The
results are averaged over 5 random seeds. The
hyper-parameters are: αg = 0.0001, αd =
0.0001, ndis = 5.
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Figure 50: FID in STL10. The results are
averaged over 5 random seeds. The hyper-
parameters are: αg = 0.0001, αd = 0.0001,
ndis = 5.

Figure 51: Generated samples from the best run of SN (same γ) in STL10. The hyper-parameters are:
αg = 0.0001, αd = 0.0001, ndis = 5. Inception score is 8.96. FID is 53.94.
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Figure 52: Generated samples from the best run of SN (diff. γ) in STL10. The hyper-parameters are:
αg = 0.0001, αd = 0.0001, ndis = 5. Inception score is 8.88. FID is 56.14.

Figure 53: Generated samples from the best run of SN in STL10. The hyper-parameters are:
αg = 0.0001, αd = 0.0002, ndis = 1. Inception score is 9.26. FID is 44.38.
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Figure 54: Generated samples from the best run of BSN in STL10. The hyper-parameters are:
αg = 0.0001, αd = 0.0002, ndis = 1. Inception score is 9.46. FID is 42.78.
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Figure 55: FID in CelebA. The results are averaged over 5 random seeds.
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Figure 56: FID in CelebA. The results are averaged over 5 random seeds. The hyper-parameters are:
αg = 0.0001, αd = 0.0001, ndis = 1.

R Experimental Details and Additional Results on CelebA

R.1 Experimental Details

The network architectures are shown in Tables 2 and 3. All experiments are run for 400k iterations.
Batch size is 64. The optimizer is Adam. We use the five hyper-parameter settings listed in Table 7.
(In Table 1 we only show the results from the first hyper-parameter setting.) We use hinge loss with
the popular SN implementation [30].

For SSN and BSSN in Table 1, we ran following scales: [0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6], and present
the results from best one for each metric.

R.2 FID Plot

Fig. 55 shows the FID score in CelebA dataset. We can see that BSN outperforms the standard SN in
all 5 hyper-parameter settings.

R.3 Training Curves

From App. N we can see that SN (no γ) and BSN generally have the best performance. Therefore, in
this section, we focus on comparing these two algorithms with the training curves. Figs. 56 to 60
show the FID of these two algorithms during training. Generally, we see that BSN converges slower
than SN at the beginning of training. However, as training proceeds, BSN finally has better metrics
in all cases. Note that unlike CIFAR10, SN seems to be more stable in CelebA as its sample quality
does not drop in most hyper-parameters. But the key conclusion is the same: in most cases, BSN
not only outperforms SN at the end of training, but also outperforms the peak sample quality of SN
during training (e.g. Figs. 56 to 59). The only exception is the ndis = 5 setting, where both SN and
BSN has instability issue: the sample quality first improves and then significantly drops. But even in
this case, BSN has better final performance than the standard SN.

R.4 Generated Images

Figs. 61 to 64 show the generated images from the run with the best FID for each algorithm.
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Figure 57: FID in CelebA. The results are averaged over 5 random seeds. The hyper-parameters are:
αg = 0.0001, αd = 0.0002, ndis = 1.
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Figure 58: FID in CelebA. The results are averaged over 5 random seeds. The hyper-parameters are:
αg = 0.0002, αd = 0.0001, ndis = 1.
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Figure 59: FID in CelebA. The results are averaged over 5 random seeds. The hyper-parameters are:
αg = 0.0002, αd = 0.0002, ndis = 1.
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Figure 60: FID in CelebA. The results are averaged over 5 random seeds. The hyper-parameters are:
αg = 0.0001, αd = 0.0001, ndis = 5.
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Figure 61: Generated samples from the best run of SN (same γ) in CelebA. The hyper-parameters
are: αg = 0.0001, αd = 0.0001, ndis = 5. FID is 7.40.

Figure 62: Generated samples from the best run of SN (diff. γ) in CelebA. The hyper-parameters are:
αg = 0.0001, αd = 0.0001, ndis = 5. FID is 7.29.
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Figure 63: Generated samples from the best run of SN in CelebA. The hyper-parameters are:
αg = 0.0002, αd = 0.0001, ndis = 1. FID is 8.34.

Figure 64: Generated samples from the best run of BSN in CelebA. The hyper-parameters are:
αg = 0.0002, αd = 0.0001, ndis = 1. FID is 8.06.

43



z ∈ R128 ∼ N (0, I)
Fully connected (4× 4× 1024).

ResNet-up (c = 1024).
ResNet-up (c = 512).
ResNet-up (c = 256).
ResNet-up (c = 128).
ResNet-up (c = 64).

BN. ReLU. Convolution (c = 3, k = 3, s = 1). Tanh
Table 8: Generator network architectures for ILSVRC2012 experiments (from [30]). BN stands for
batch normalization. c stands for number of channels. k stands for kernel size. s stands for stride.

Direct connection
BN. ReLU. Unpooling(2). Convolution (k = 3, s = 1).

BN. ReLU. Convolution (k = 3, s = 1).
Shortcut connection

Unpooling(2). Convolution (k = 1, s = 1).
Table 9: ResNet-up network architectures for ILSVRC2012 experiments (from [30]). BN stands for
batch normalization. k stands for kernel size. s stands for stride.

S Experimental Details and Additional Results on ILSVRC2012

S.1 Experimental Details

The network architectures are shown in Tables 8 to 13. All experiments are run for 500k iterations.
Discriminator batch size is 16. Generator batch size is 32. The optimizer is Adam. αg = 0.002, αd =
0.002, β1 = 0.0, β2 = 0.9, ndis = 5 We use hinge loss with the popular SN implementation [30].

S.2 Training Curves

Figs. 65 and 66 show the inception score and FID of SN and BSN during training.

For SN, we can see that the runs with scale=1.0/1.2/1.4 have similar performance throughout training.
When scale=1.6, the performance is much worse.

For BSN, the runs with scale=1.2/1.4 perform better than SN runs throughout the training. When
scale=1.6, BSN has similar performance as SN at the early stage of training, and is slightly better at
the end. When scale=1.0, the performance is very bad as there is gradient vanishing problem.

S.3 Generated Images

Figs. 67 to 74 show the generated images from the run with the best inception score for SN and BSN
with different scale parameters.

x ∈ R128×128×3

ResNet-first (c = 64).
ResNet-down (c = 128).
ResNet-down (c = 256).
ResNet-down (c = 512).

ResNet-down (c = 1024).
ResNet (c = 1024).

ReLU. Global pooling. Fully connected (1).
Table 10: Discriminator network architectures for ILSVRC2012 experiments (from [30]). BN stands
for batch normalization. c stands for number of channels. k stands for kernel size. s stands for stride.
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Direct connection
ReLU. Convolution (k = 3, s = 1).

ReLU. Convolution (k = 3, s = 1). Average pooling(2).
Shortcut connection

Convolution (k = 1, s = 1). Average pooling(2).
Table 11: ResNet-down network architectures for ILSVRC2012 experiments (from [30]). k stands
for kernel size. s stands for stride.

Direct connection
Convolution (k = 3, s = 1).

ReLU. Convolution (k = 3, s = 1). Average pooling(2).
Shortcut connection

Average pooling(2). Convolution (k = 1, s = 1).
Table 12: ResNet-first network architectures for ILSVRC2012 experiments (from [30]). k stands for
kernel size. s stands for stride.

Direct connection
ReLU. Convolution (k = 3, s = 1).
ReLU. Convolution (k = 3, s = 1).

Shortcut connection
Convolution (k = 1, s = 1).

Table 13: ResNet network architectures for ILSVRC2012 experiments (from [30]). k stands for
kernel size. s stands for stride.
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Figure 65: Inception score in ILSVRC2012. The results are averaged over 5 random seeds.
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Figure 66: FID in ILSVRC2012. The results are averaged over 5 random seeds.
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Figure 67: Generated samples from the best run of SN (scale=1.0) in ILSVRC2012. Inception score
is 13.50. FID is 72.18.

Figure 68: Generated samples from the best run of SN (scale=1.2) in ILSVRC2012. Inception score
is 13.04. FID is 72.51.
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Figure 69: Generated samples from the best run of SN (scale=1.4) in ILSVRC2012. Inception score
is 13.04. FID is 69.12.

Figure 70: Generated samples from the best run of SN (scale=1.6) in ILSVRC2012. Inception score
is 12.62. FID is 70.36.
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Figure 71: Generated samples from the best run of BSN (scale=1.0) in ILSVRC2012. Inception score
is 2.07. FID is 242.51.

Figure 72: Generated samples from the best run of BSN (scale=1.2) in ILSVRC2012. Inception score
is 13.55. FID is 71.30.
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Figure 73: Generated samples from the best run of BSN (scale=1.4) in ILSVRC2012. Inception score
is 13.63. FID is 70.88.

Figure 74: Generated samples from the best run of BSN (scale=1.6) in ILSVRC2012. Inception score
is 13.24. FID is 69.06.
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T Details on Computation Resources

All the experiments were run on a public cluster: Bridges-2 system at the Pittsburgh Supercomputing
Center (PSC) with NVIDIA Tesla V100 GPUs. All the experiments took around 30k GPU hours.
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