Supplementary Material for: An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap

1 Proof of Lemma 2

Proof. We first verify the statement for the terminal state f. Observe that at the terminal state f, regardless of the action taken, the next state is always f and the reward is always 0 . Hence $Q_{h}^{*}(f, \cdot)=V_{h}^{*}(f)=0$ for all $h \in[H]$. Thus $Q_{h}^{*}(f, \cdot)=\left\langle\phi(f, \cdot), v\left(a^{*}\right)\right\rangle=0$.
We now verify realizability for other states via induction on $h=H, H-1, \cdots, 1$. The induction hypothesis is $\forall a_{1} \in[m], a_{2} \neq a_{1}$,

$$
\begin{equation*}
Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right)=\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{2}\right), v\left(a^{*}\right)\right\rangle, \tag{1}
\end{equation*}
$$

and that $\forall a_{1} \neq a^{*}$,

$$
\begin{equation*}
V_{h}^{*}\left(\overline{a_{1}}\right)=Q_{h}^{*}\left(\overline{a_{1}}, a^{*}\right)=\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma . \tag{2}
\end{equation*}
$$

When $h=H$, (1) holds by the definition of rewards. Next, note that $\forall h$, 2) follows from (1). This is because for $a_{2} \neq a^{*}, a_{1}$,

$$
Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right)=\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{2}\right), v\left(a^{*}\right)\right\rangle \leq 3 \gamma^{2}
$$

while

$$
Q_{h}^{*}\left(\overline{a_{1}}, a^{*}\right)=\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma \geq \gamma>3 \gamma^{2}
$$

In other words, (1) implies that a^{*} is always the optimal action. Thus, it remains to show that (1) holds for h assuming 2 , holds for $h+1$. By Bellman's optimality equation,

$$
\begin{aligned}
Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right) & =R_{h}\left(\overline{a_{1}}, a_{2}\right)+\mathbb{E}_{s_{h+1}}\left[V_{h+1}^{*}\left(s_{h+1}\right) \mid \overline{a_{1}}, a_{2}\right] \\
& =-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right]+\operatorname{Pr}\left[s_{h+1}=\overline{a_{2}}\right] \cdot V_{h+1}^{*}\left(a_{2}\right)+\operatorname{Pr}\left[s_{h+1}=f\right] \cdot V_{h+1}^{*}(f) \\
& =-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right]+\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right] \cdot\left(\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma\right) \\
& =\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle .
\end{aligned}
$$

This is exactly $\sqrt{17}$ for h. Hence both (1) and (2) hold for all $h \in[H]$.

2 Proof of Lemma 5

Proof. We state a proof of this lemma for completeness. By Lemma 4, $\forall s$,

$$
\max _{a \in \mathcal{A}} \phi(s, a)^{\top} \Sigma_{s}^{-1} \phi(s, a) \leq d
$$

It follows that $\forall a \in \mathcal{A}$,

$$
\phi(s, a) \phi(s, a)^{\top} \preccurlyeq d \Sigma_{s} .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}_{s \sim \nu}\left[\max _{a \in \mathcal{A}} \phi(s, a)^{\top} \Sigma^{-1} \phi(s, a)\right] & =\mathbb{E}_{s \sim \nu} \max _{a \in \mathcal{A}} \operatorname{Tr}\left(\phi(s, a) \phi(s, a)^{\top} \Sigma^{-1}\right) \\
& \leq \mathbb{E}_{s \sim \nu} \operatorname{Tr}\left(d \Sigma_{s} \Sigma^{-1}\right)=d^{2}
\end{aligned}
$$

3 Addressing Footnote 3

Let us redefine $\mathcal{M}_{a^{*}}$ as follows. The state space is again $\{\overline{1}, \cdots, \bar{m}, f\}$. The action space is $[m]$ for every state. We will also use the same set of $m d$-dimensional vectors $\left\{v_{1}, \cdots, v_{m}\right\}$. In this construction, we will reset $\gamma:=\frac{1}{6}$.

Features. The feature map now maps state-action pairs to $d+1$ dimensional vectors, and is defined as follows.

$$
\begin{aligned}
\phi\left(\overline{a_{1}}, a_{2}\right) & :=\left(0,\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot v\left(a_{2}\right)\right), & \left(\forall a_{1}, a_{2} \in[m], a_{1} \neq a_{2}\right) \\
\phi\left(\overline{a_{1}}, a_{1}\right) & :=\left(\frac{3}{4} \gamma, 0\right), & \left(\forall a_{1} \in[m]\right) \\
\phi(f, 1) & =(0, \mathbf{0}), & (\forall a \neq 1) \\
\phi(f, a) & :=(-1, \mathbf{0}) . &
\end{aligned}
$$

Note that the feature map is again independent of a^{*}. Define $\theta^{*}:=\left(1, v\left(a^{*}\right)\right)$.
Rewards. For $1 \leq h<H$, the rewards are defined as

$$
\begin{array}{rlrl}
R_{h}\left(\overline{a_{1}}, a^{*}\right) & :=\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma, & \left(a_{1} \neq a^{*}\right) \\
R_{h}\left(\overline{a_{1}}, a_{2}\right) & :=-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right], & \left(a_{2} \neq a^{*}, a_{2} \neq a_{1}\right) \\
R_{h}\left(\overline{a_{1}}, a_{1}\right) & :=\frac{3}{4} \gamma, & \left(\forall a_{1}\right) \\
R_{h}(f, 1) & :=0 \\
R_{h}(f, a) & :=-1 . & (a \neq 1)
\end{array}
$$

For $h=H, r_{H}(s, a):=\left\langle\phi(s, a), v\left(a^{*}\right)\right\rangle$ for every state-action pair.
Transitions. The initial state distribution is set as a uniform distribution over $\{\overline{1}, \cdots, \bar{m}\}$. The transition probabilities are set as follows.

$$
\begin{aligned}
\operatorname{Pr}\left[f \mid \overline{a_{1}}, a^{*}\right] & =1 \\
\operatorname{Pr}\left[f \mid \overline{a_{1}}, a_{1}\right] & =1 \\
\operatorname{Pr}\left[\cdot \mid \overline{a_{1}}, a_{2}\right] & =\left\{\begin{array}{l}
\overline{a_{2}}:\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma \\
f: 1-\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle-2 \gamma
\end{array}, \quad\left(a_{2} \neq a^{*}, a_{2} \neq a_{1}\right)\right. \\
\operatorname{Pr}[f \mid f, \cdot] & =1
\end{aligned}
$$

We now check realizability in the new MDP. Note that now we want to show $Q_{h}^{*}(s, a)=\phi(s, a)^{\top} \theta^{*}$, where $\theta^{*}=\left(1, v\left(a^{*}\right)\right)$. We claim that $\forall h \in[H]$,

$$
\begin{align*}
V_{h}^{*}\left(\overline{a_{1}}\right) & =\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma, & & \left(a_{1} \neq a^{*}\right) \\
Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right) & =\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{2}\right), v\left(a^{*}\right)\right\rangle, & & \left(a_{2} \neq a_{1}\right) \\
Q_{h}^{*}\left(\overline{a_{1}}, a_{1}\right) & =\frac{3}{4} \gamma . & & \left(\forall a_{1}\right) \tag{1}
\end{align*}
$$

To see this, first notice that the expression of Q_{h}^{*} implies that the optimal action is a^{*} for any nonterminal state. Suppose $a_{1} \neq a^{*}$, then for $a_{2} \neq a_{1}, a^{*}, Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right) \leq 3 \gamma^{2}<\gamma \leq Q_{h}^{*}\left(\overline{a_{1}}, a^{*}\right)$. Moreover,

$$
Q_{h}^{*}\left(\overline{a_{1}}, a_{1}\right)=\frac{3}{4} \gamma<\gamma \leq Q_{h}^{*}\left(\overline{a_{1}}, a^{*}\right)
$$

Thus, a^{*} is indeed the optimal action for $\overline{a_{1}}$ if $a_{1} \neq a^{*}$.
For $\overline{a^{*}}, a_{1} \neq a^{*}, Q_{h}^{*}\left(\overline{a^{*}}, a_{1}\right) \leq 3 \gamma^{2}<\frac{3}{4} \gamma=Q_{h}^{*}\left(\overline{a^{*}}, a^{*}\right)$. Therefore, a^{*} is the optimal action for all states (besides f).
As for f, it is easy to see that $Q_{h}^{*}(f, 1)=0$, and that $\forall a \neq 1, Q_{h}^{*}(f, a)=-1$.
What remains is show the statements for all h via induction. Suppose that

$$
Q_{h+1}^{*}\left(\overline{a_{1}}, a_{2}\right)=\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{2}\right), v\left(a^{*}\right)\right\rangle . \quad\left(a_{2} \neq a_{1}\right)
$$

Then indeed $V_{h+1}^{*}\left(\overline{a_{1}}\right)=Q_{h+1}^{*}\left(\overline{a_{1}}, a^{*}\right)=\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma$. It follows that $\forall a_{2} \neq a^{*}$

$$
\begin{aligned}
Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right) & =R_{h}\left(\overline{a_{1}}, a_{2}\right)+\mathbb{E}_{s_{h+1}}\left[V_{h+1}^{*}\left(s_{h+1}\right) \mid \overline{a_{1}}, a_{2}\right] \\
& =-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right]+\operatorname{Pr}\left[s_{h+1}=\overline{a_{2}}\right] \cdot V_{h+1}^{*}\left(a_{2}\right)+\operatorname{Pr}\left[s_{h+1}=f\right] \cdot V_{h+1}^{*}(f) \\
& =-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right]+\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right] \cdot\left(\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle+2 \gamma\right) \\
& =\left(\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right) \cdot\left\langle v\left(a_{1}\right), v\left(a^{*}\right)\right\rangle .
\end{aligned}
$$

Suboptimality Gap. In $\mathcal{M}_{a^{*}}, \forall a_{1} \neq a^{*}, \forall a_{2} \neq a^{*}, Q_{h}^{*}\left(\overline{a_{1}}, a_{2}\right) \leq \max \left\{3 \gamma^{2}, \frac{3}{4} \gamma\right\}$. Thus

$$
\Delta_{h}\left(\overline{a_{1}}, a_{2}\right) \geq \gamma-\max \left\{3 \gamma^{2}, \frac{3}{4} \gamma\right\}=\frac{1}{24}
$$

For $\overline{a^{*}}, V_{h}^{*}\left(\overline{a^{*}}\right)=1-\gamma$, while for $a_{1} \neq a^{*}$,

$$
Q_{h}^{*}\left(\overline{a^{*}}, a_{1}\right)=\left(\left\langle v\left(a^{*}\right), v\left(a_{1}\right)+2 \gamma\right) \cdot\left\langle v\left(a^{*}\right), v\left(a_{1}\right)\right\rangle \leq 3 \gamma^{2}\right.
$$

Thus $\Delta_{h}^{*}\left(\overline{a^{*}}, a_{1}\right) \geq \frac{3}{4} \gamma-3 \gamma^{2}=\frac{1}{24}$. As for the terminal state f, the suboptimality gap is obviously 1. Therefore $\Delta_{\min } \geq \frac{1}{24}$ in this new MDP.

Information theoretic arguments. The modifications here do not affect the proof of Theorem 1 Suppose action a_{2} is taken at state $\overline{a_{1}}$. If $a_{1} \neq a_{2}$, then the behavior (transitions and rewards) would be identical to the original MDP. If $a_{1}=a_{2} \neq a^{*}$, neither the transition and the rewards depend on a^{*}. Hence, we can still construct a reference MDP as in the proof of Theorem 1 , such that information on a^{*} can only be gained by: (1) either taking a^{*}; (2) or reaching $s_{H} \neq f$.

4 Proof of Theorem 1

Theorem 1. Consider an arbitrary online RL algorithm that takes the feature mapping $\phi: \mathcal{S} \times$ $\mathcal{A} \rightarrow \mathbb{R}^{d}$ as input. In the online RL setting, there exists an MDP with a feature mapping ϕ satisfying Assumption 1 and Assumption 2 with $\Delta_{\min }=\Omega(1)$, such that the algorithm requires $\min \left\{2^{\Omega(d)}, 2^{\Omega(H)}\right\}$ samples to find a policy π with

$$
\mathbb{E}_{s_{1} \sim \mu} V^{\pi}\left(s_{1}\right) \geq \mathbb{E}_{s_{1} \sim \mu} V^{*}\left(s_{1}\right)-0.05
$$

with probability 0.1.
Proof. We consider K episodes of interaction between the algorithm and the MDP \mathcal{M}_{a}. Since each trajectory is a sequence of H states, we define the total number of samples as $K H$. Denote the state, the action and the reward at episode k and timestep h by s_{h}^{k}, a_{h}^{k} and r_{h}^{k} respectively.
Consider the following reference MDP denoted by \mathcal{M}_{0}. The state space, action space, and features of this MDP are the same as those of the MDP family. The transitions are defined as follows:

$$
\begin{aligned}
\operatorname{Pr}\left[\cdot \mid \overline{a_{1}}, a_{2}\right] & =\left\{\begin{array}{l}
\overline{a_{2}}:\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma \\
f: 1-\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle-2 \gamma
\end{array} \quad, \quad\left(\forall a_{1}, a_{2} \text { s.t. } a_{1} \neq a_{2}\right)\right. \\
\operatorname{Pr}[f \mid f, \cdot] & =1
\end{aligned}
$$

The rewards are defined as follows:

$$
\begin{aligned}
R_{h}\left(\overline{a_{1}}, a_{2}\right) & :=-2 \gamma\left[\left\langle v\left(a_{1}\right), v\left(a_{2}\right)\right\rangle+2 \gamma\right], \quad\left(\forall a_{1}, a_{2} \text { s.t. } a_{1} \neq a_{2}\right) \\
R_{h}(f, \cdot) & :=0 .
\end{aligned}
$$

Intuitively, this MDP is very similar to the MDP family, except that the optimal action a^{*} is removed. More specifically, \mathcal{M}_{0} is identical to \mathcal{M}_{a} except when the action a is taken at a non-terminal state, or when an episode ends at a non-terminal state.
More specifically, we claim that for $t<H, \forall s_{t}, a_{t}$ such that $a_{t} \neq a$,

$$
\operatorname{Pr}_{\mathcal{M}_{a}}\left[s_{t+1} \mid s_{t}, a_{t}\right]=\operatorname{Pr}_{\mathcal{M}_{0}}\left[s_{t+1} \mid s_{t}, a_{t}\right],
$$

and that for $t<H, \forall s_{t}, a_{t}$ such that $a_{t} \neq a$,

$$
r_{t}^{\mathcal{M}_{a}}\left(s_{t}, a_{t}\right)=r_{t}^{\mathcal{M}_{0}}\left(s_{t}, a_{t}\right)
$$

Also, $r_{H}^{\mathcal{M}_{a}}\left(s_{t}, a_{t}\right)=r_{H}^{\mathcal{M}_{0}}\left(s_{t}, a_{t}\right)$ if $s_{t}=f$. It follows that

$$
\begin{aligned}
& \operatorname{Pr}_{\mathcal{M}_{a}}\left[s_{1}^{1}, a_{1}^{1}, r_{1}^{1}, \cdots s_{h}^{k}, a_{h}^{k}, r_{h}^{k} \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] \\
= & \operatorname{Pr}_{\mathcal{M}_{0}}\left[s_{1}^{1}, a_{1}^{1}, r_{1}^{1}, \cdots s_{h}^{k}, a_{h}^{k}, r_{h}^{k} \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] .
\end{aligned}
$$

Here A_{h}^{k} is a shorthand for $\left\{a_{1}^{1}, a_{2}^{1}, \cdots, a_{H}^{1}, \cdots, a_{h}^{k}\right\}$, i.e. all actions taken up to timestep h for episode k. By marginalizing the states and the actions, we get

$$
\operatorname{Pr}_{\mathcal{M}_{a}}\left[a_{h}^{k} \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]=\operatorname{Pr}_{\mathcal{M}_{0}}\left[a_{h}^{k} \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] .
$$

It then follows that

$$
\operatorname{Pr}_{\mathcal{M}_{a}}\left[a_{h}^{k}=a \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]=\operatorname{Pr}_{\mathcal{M}_{0}}\left[a_{h}^{k}=a \mid a \notin A_{h}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]
$$

Next, we prove via induction that

$$
\begin{equation*}
\operatorname{Pr}_{\mathcal{M}_{a}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]=\operatorname{Pr}_{\mathcal{M}_{0}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] . \tag{3}
\end{equation*}
$$

Suppose that (3) holds up to $(k, h-1)$. Then

$$
\begin{aligned}
& \operatorname{Pr}_{\mathcal{M}_{a}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] \\
= & \operatorname{Pr}_{\mathcal{M}_{a}}\left[a \notin A_{h-1}^{k}\right] \operatorname{Pr}_{\mathcal{M}_{a}}\left[a_{h}^{k}=a \mid a \notin A_{h-1}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]+\operatorname{Pr}_{\mathcal{M}_{a}}\left[a \in A_{h-1}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] \\
= & \operatorname{Pr}_{\mathcal{M}_{0}}\left[a \notin A_{h-1}^{k}\right] \operatorname{Pr}_{\mathcal{M}_{0}}\left[a_{h}^{k}=a \mid a \notin A_{h-1}^{k}, \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]+\operatorname{Pr}_{\mathcal{M}_{0}}\left[a \in A_{h-1}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] \\
= & \operatorname{Pr}_{\mathcal{M}_{0}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] .
\end{aligned}
$$

That is, (3) holds for h, k as well. By induction, (3) holds for all h, k. Thus,

$$
\begin{aligned}
\operatorname{Pr}_{\mathcal{M}_{a}}\left[a \in A_{h}^{k}\right] & \leq \operatorname{Pr}_{\mathcal{M}_{a}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]+\operatorname{Pr}\left[\exists k^{\prime} \leq k, s_{H}^{k^{\prime}} \neq f\right] \\
& \leq \operatorname{Pr}_{\mathcal{M}_{0}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right]+k \cdot\left(\frac{3}{4}\right)^{H} .
\end{aligned}
$$

Since $\left|A_{h}^{k}\right| \leq k H, \sum_{a \in[m]} \operatorname{Pr}_{\mathcal{M}_{0}}\left[a \in A_{h}^{k} \mid \forall k^{\prime} \leq k, s_{H}^{k^{\prime}}=f\right] \leq k H$. It follows that there exists $a^{*} \in[m]$ such that

$$
\operatorname{Pr}_{\mathcal{M}_{0}}\left[a^{*} \in A_{H}^{K} \mid \forall k^{\prime} \leq K, s_{H}^{k^{\prime}}=f\right] \leq \frac{K H}{m}=K H \cdot e^{-\Theta(d)}
$$

As a result

$$
\operatorname{Pr}_{\mathcal{M}_{a^{*}}}\left[a^{*} \in A_{H}^{K}\right] \leq K H \cdot e^{-\Theta(d)}+K\left(\frac{3}{4}\right)^{H}
$$

In other words, unless $K H=2^{\Omega(\min \{d, H\})}$, the probability of taking the optimal action a^{*} in the interaction with $\mathcal{M}_{a^{*}}$ is $o(1)$.
From the suboptimality gap condition, it follows that if $\mathbb{E}_{s_{1} \sim \mu} V^{\pi}\left(s_{1}\right) \geq \mathbb{E}_{s_{1} \sim \mu} V^{*}\left(s_{1}\right)-0.05$, $\operatorname{Pr}\left[a_{1} \neq a^{*} \wedge s_{1} \neq \overline{a^{*}}\right] \cdot \Delta_{\text {min }} \leq 0.05$. Hence

$$
\operatorname{Pr}\left[a_{1}=a^{*}\right] \geq 1-\left(0.8+\frac{1}{m}\right)=0.2-\frac{1}{m} .
$$

Therefore, if the algorithm is able to output such a policy with probability 0.1 , it is able to take the action a^{*} in the next episode with $\Theta(1)$ probability by executing π. However, as proved above, this is impossible unless $K H=2^{\Omega(\min \{d, H\})}$.

5 Proof of Theorem 2

Recall the statements of Assumptions 3 and 4 .
Assumption 3 (Low variance condition). There exists a constant $1 \leq C_{\text {var }}<\infty$ such that for any $h \in[H]$ and any policy π,

$$
\mathbb{E}_{s \sim \mathcal{D}_{h}^{\pi}}\left[\left|V^{\pi}(s)-V^{*}(s)\right|^{2}\right] \leq C_{\mathrm{var}} \cdot\left(\mathbb{E}_{s \sim \mathcal{D}_{h}^{\pi}}\left[\left|V^{\pi}(s)-V^{*}(s)\right|\right]\right)^{2}
$$

Assumption 4. There exists a constant $1 \leq C_{\text {hyper }}<\infty$ such that for any $h \in[H]$ and any policy π, the distribution of $\phi(s, a)$ with $(s, a) \sim \mathcal{D}_{h}^{\pi}$ is ($\left.C_{\text {hyper }}, 4\right)$-hypercontractive. In other words, $\forall \pi$, $\forall h \in[H], \forall v \in \mathbb{R}^{d}$,

$$
\mathbb{E}_{(s, a) \sim \mathcal{D}_{h}^{\pi}}\left[\left(\phi(s, a)^{\top} v\right)^{4}\right] \leq C_{\text {hyper }} \cdot\left(\mathbb{E}_{(s, a) \sim \mathcal{D}_{h}^{\pi}}\left[\left(\phi(s, a)^{\top} v\right)^{2}\right]\right)^{2}
$$

Theorem 2. Assume that Assumption 1, 2, and one of Assumption 3 and 4 hold. Also assume that

$$
\begin{array}{rll}
& \epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / C_{\mathrm{var}}, 1 / d, 1 / H\right) & \text { (Under Assumption 3) } \\
\text { or } & \epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / C_{\mathrm{hyper}}, 1 / d, 1 / H\right) . & \text { (Under Assumption } 4 \text {) }
\end{array}
$$

Let μ be the initial state distribution. Then with probability $1-\epsilon$, running Algorithm 1 on input 0 returns a policy π which satisfies $\mathbb{E}_{s_{1} \sim \mu} V^{\pi}\left(s_{1}\right) \geq \mathbb{E}_{s_{1} \sim \mu} V^{*}\left(s_{1}\right)-\epsilon$ using poly $(1 / \epsilon)$ trajectories.

Proof under Assumption 3 Let us set $\beta=8$, $\lambda_{\text {ridge }}=\epsilon^{2}, \lambda_{r}=\epsilon^{6}, B=2 d \log \left(\frac{d}{\lambda_{r}}\right), \epsilon_{1}=\epsilon^{2}$, $\epsilon_{2}=\frac{\lambda_{r}}{2 B}, N=\frac{d \cdot \log \left(1 / \epsilon_{2}\right)}{\epsilon_{2}^{2}}$. Recall that $\epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / C_{\text {var }}, 1 / d, 1 / H\right)$. First, by Lemma 8 , the event Ω holds with probability $1-\epsilon$; we will condition on this event in the following proof. By lemma 10 , when the algorithm terminates, $\left|\Pi_{h}\right| \leq B$ for all $h \in[H]$. Note that the this implies that Algorithm 1 is called or restarted at most $H \cdot(1+B)$ times. In each call or restart of Algorithm 1, at most $N B+N$ trajectories are sampled. Therefore, when the algorithm terminates, at most

$$
H(1+B) \cdot(N B+N) \leq \operatorname{poly}(1 / \epsilon)
$$

trajectories are sampled.
It remains to show that the greedy policy with respect to $\theta_{1}, \cdots, \theta_{H}$ is indeed ϵ-optimal with high probability. To that end, let us state the following claims about the algorithm.

1. Each time Line 9 is reached in Algorithm 1, $\forall \pi \in \Pi_{h}$, define $\tilde{\pi}_{h}$ as in (6), $\forall h^{\prime}>h$,

$$
\begin{equation*}
\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{\pi}_{h}}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h^{\prime}}, a\right)^{\top}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right|^{2}\right] \leq \frac{\Delta_{\min }^{2} \epsilon}{4 H} \tag{4}
\end{equation*}
$$

2. Each time when θ_{h} is updated at Line $17, \forall \pi \in \Pi_{h}$, define the associated covariance matrix at step h as $\Sigma_{h}^{\pi}=\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\phi\left(s_{h}, a_{h}\right) \phi\left(s_{h}, a_{h}\right)^{\top}\right]$. Then $\left\|\theta_{h}-\theta_{h}^{*}\right\|_{\Sigma_{h}^{\pi}}^{2} \leq 6 B C_{\text {var }} \epsilon^{2}$. It follows that

$$
\begin{equation*}
\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq \frac{\Delta_{\min }^{2} \epsilon}{4 H} \tag{5}
\end{equation*}
$$

Note that by the first claim with $h=0$, it follows that for the greedy policy $\hat{\pi}$ ($\tilde{\pi}_{0}$ is always the greedy policy) w.r.t. $\left\{\theta_{h}\right\}_{h \in[H]}, \forall h \in[H]$,

$$
\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\hat{~}}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq \frac{\Delta_{\min }^{2} \epsilon}{4 H}
$$

Consequently by Markov's inequality,

$$
\operatorname{Pr}_{s_{h} \sim \mathcal{D}_{h}^{\hat{\pi}}}\left[\exists a \in \mathcal{A}:\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|>\frac{\Delta_{\min }}{2}\right] \leq \frac{\epsilon}{H} .
$$

By Assumption 2 and the fact that $\hat{\pi}$ takes the greedy action w.r.t. θ_{h}, this implies that

$$
\operatorname{Pr}_{s_{h} \sim \mathcal{D}_{h}^{\hat{\pi}}}\left[\hat{\pi}_{h}\left(s_{h}\right) \neq \pi_{h}^{*}\left(s_{h}\right)\right] \leq \frac{\epsilon}{H}
$$

Thus for a random trajectory induced by $\hat{\pi}$, with probability at least $1-\epsilon, \hat{\pi}_{h}\left(s_{h}\right)=\pi_{h}^{*}\left(s_{h}\right)$ for all $h=1, \cdots, H$, which proves the theorem.
It remains to prove the two claims.
Proof of (5). We first prove the second claim based on the assumption that the first claim holds when Line 9 is reached in the same execution of LearnLevel. By the first claim and the same arguments above, $\forall \pi \in \Pi_{h}$, construct $\tilde{\pi}_{h}$ as

$$
\tilde{\pi}_{h}\left(s_{h^{\prime}}\right)= \begin{cases}\pi\left(s_{h^{\prime}}\right) & \left(\text { if } h^{\prime}<h\right) \tag{6}\\ \operatorname{Sample}^{\prime} \text { from } \rho_{s_{h}}(\cdot) & \left(\text { if } h^{\prime}=h\right) \\ \arg \max _{a} \phi_{h^{\prime}}\left(s_{h^{\prime}}, a\right)^{\top} \theta_{h^{\prime}} & \left(\text { if } h^{\prime}>h\right)\end{cases}
$$

then $\operatorname{Pr}_{s_{h^{\prime} \sim \mathcal{D}^{\prime}}^{\tilde{\pi}_{h}^{\prime}}}\left[\tilde{\pi}_{h}\left(s_{h^{\prime}}\right) \neq \pi^{*}\left(s_{h^{\prime}}\right)\right] \leq \epsilon / H$. Thus,

$$
\mathbb{E}_{s_{h+1} \sim \mathcal{D}_{h+1}^{\tilde{\pi}_{h}}}\left[V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right)\right] \geq \mathbb{E}_{s_{h+1} \sim \mathcal{D}_{h+1}^{\tilde{\pi}_{h}}}\left[V_{h+1}^{*}\left(s_{h+1}\right)\right]-\epsilon .
$$

By Assumption 3, this suggests that

$$
\mathbb{E}_{s_{h+1} \sim \mathcal{D}_{h+1}^{\tilde{\pi}_{h}}}\left[\left(V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right)-V_{h+1}^{*}\left(s_{h+1}\right)\right)^{2}\right] \leq C_{\mathrm{var}} \epsilon^{2}
$$

When $\left(s_{h}, a_{h}, y\right)$ is sampled,

$$
\begin{aligned}
\mathbb{E}\left[y \mid s_{h}, a_{h}\right] & =\mathbb{E}\left[R\left(s_{h}, a_{h}\right)+V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right) \mid s_{h}, a_{h}\right] \\
& =Q^{*}\left(s_{h}, a_{h}\right)+\mathbb{E}\left[V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right)-V_{h+1}^{*}\left(s_{h+1}\right) \mid s_{h}, a_{h}\right],
\end{aligned}
$$

where the expectation is over trajectories induced by $\tilde{\pi}_{h}$. In other words, $y_{i}:=\sum_{h^{\prime}>h} r_{h}^{i}$ can be written as $\phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top} \theta_{h}^{*}+b_{i}+\xi_{i}$, where ξ_{i} is mean-zero independent noise with $\left|\xi_{i}\right| \leq 2$ almost surely and $b_{i}:=\sum_{h^{\prime}>h} r_{h^{\prime}}^{i}-V_{h+1}^{*}\left(s_{h+1}^{i}\right)$ satisfies $\mathbb{E}\left[b_{i}^{2}\right] \leq C_{\text {var }} \epsilon^{2}$. Note that θ_{h} is the ridge regression estimator for this linear model. By Lemma 7

$$
\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\Pi_{h}\right), s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\left|\phi\left(s_{h}, a_{h}\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq 4\left(C_{\text {var }} \epsilon^{2}+\epsilon_{1}+\lambda_{\text {ridge }}\right) \leq 6 C_{\text {var }} \epsilon^{2}
$$

It follows that $\forall \pi \in \Pi_{h}$,

$$
\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\left|\phi\left(s_{h}, a_{h}\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq\left|\Pi_{h}\right| \cdot 6 C_{\mathrm{var}} \epsilon^{2} \leq 6 B C_{\mathrm{var}} \epsilon^{2}
$$

Now, by Lemma 5,

$$
\begin{aligned}
& \mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \\
\leq & \mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h}, a\right)\right\|_{\left(\Sigma_{h}^{\pi}\right)^{-1}}^{2}\right] \cdot\left\|\phi_{h}-\phi_{h}^{*}\right\|_{\Sigma_{h}^{\pi}}^{2} \\
\leq & d^{2} \cdot 6 B C_{\mathrm{var}} \epsilon^{2} \leq \frac{\Delta_{\min }^{2} \epsilon}{4 H}
\end{aligned}
$$

This proves the second claim.

Proof of (4). Now, let us prove the first claim, assuming that the second claim holds for the last update of any θ_{h}. By observing Algorithm 1, if Line 9 is reached, during the last execution of the first for loop (i.e. Lines 1 to 8), the if clause at Line 5 must have returned False every time (otherwise the algorithm will restart). It follows that during the last execution of Lines 1 to 8, neither $\left\{\theta_{h}\right\}_{h \in[H]}$ nor $\left\{\Pi_{h}\right\}_{h \in[H]}$ is updated.

Consider the if clause when checking $\pi \in \Pi_{h}$ for layer h^{\prime}. Recall that

$$
\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}=\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}} \tilde{\pi}_{h}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right] .
$$

Also define $\Sigma_{h^{\prime}}^{*}:=\frac{\lambda_{r}}{\left|\Pi_{h^{\prime}}\right|} I+\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\Pi_{h^{\prime}}\right)} \Sigma_{h^{\prime}}^{\pi}$. Then by Lemma 9 ,

$$
\left\|\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}} \Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}}\right\|_{2} \leq 3 \beta\left|\Pi_{h^{\prime}}\right|
$$

It follows that

$$
\begin{aligned}
\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}}^{2} & =\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)^{\top} \Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right) \\
& =\left(\left(\Sigma_{h^{\prime}}^{*}\right)^{\frac{1}{2}}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right)^{\top}\left(\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}} \Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}}\right)\left(\left(\Sigma_{h^{\prime}}^{*}\right)^{\frac{1}{2}}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right) \\
& \leq\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{*}}^{2} \cdot\left\|\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}} \Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}}\right\|_{2} \\
& \leq 3 \beta B \cdot\left(\lambda_{r} \cdot\left(\frac{2}{\lambda_{\text {ridge }}}\right)^{2}+6 B C_{\mathrm{var}} \epsilon^{2}\right) \\
& \leq 24 B^{2} \cdot 10 C_{\mathrm{var}} \epsilon^{2} .
\end{aligned}
$$

By Lemma 5,

$$
\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h}^{\tilde{\pi}_{h}}}\left[\sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h^{\prime}}, a\right)\right\|_{\left(\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\right)^{-1}}^{2}\right] \leq d^{2}
$$

As a result,

$$
\begin{aligned}
\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{\pi}_{h}}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h^{\prime}}, a\right)^{\top}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right|^{2}\right] & \leq \mathbb{E}_{s_{h^{\prime} \sim \mathcal{D}_{h}}^{\tilde{\pi}_{h}}}\left[\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\sum_{h^{\prime}}^{\tilde{\pi}_{h}}}^{2} \cdot \sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h^{\prime}}, a\right)\right\|_{\left(\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\right)-1}^{2}\right] \\
& \leq 240 B^{2} C_{\mathrm{var}} \epsilon^{2} \cdot d^{2} \leq \frac{\epsilon \Delta_{\min }^{2}}{4 H}
\end{aligned}
$$

This proves the first claim. The failure probability of the algorithm is controlled by Lemma 8 .
Proof under Assumption 4 The proof under Assumption 4 is quite similar, except that we will use Lemma 14 instead of Lemma 7 for the analysis of ridge regression. The different analysis of ridge regression results in a slightly different choice of algorithmic parameters.
Let us set $\beta=8, \epsilon_{0}=\epsilon^{2}, \lambda_{\text {ridge }}=\epsilon^{3}, \lambda_{r}=\epsilon^{9}, B=2 d \log \left(\frac{d}{\lambda_{r}}\right), \epsilon_{1}=\epsilon^{3}, \epsilon_{2}=\frac{\lambda_{r}}{2 B}, N=\frac{d}{\epsilon_{2}^{3}}$. Recall that $\epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / C_{\text {hyper }}, 1 / d, 1 / H\right)$. We will state similar claims about the algorithm.

1. Each time Line 9 is reached in Algorithm $1, \forall \pi \in \Pi_{h}$, define $\tilde{\pi}_{h}$ as in (6), $\forall h^{\prime}>h$,

$$
\begin{equation*}
\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\pi_{h}}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h^{\prime}}, a\right)^{\top}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right|^{2}\right] \leq \frac{\Delta_{\min }^{2} \epsilon_{0}}{4 H} \tag{7}
\end{equation*}
$$

2. Each time when θ_{h} is updated at Line $17, \forall \pi \in \Pi_{h}$, define the associated covariance matrix at step h as $\Sigma_{h}^{\pi}=\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\phi\left(s_{h}, a_{h}\right) \phi\left(s_{h}, a_{h}\right)^{\top}\right]$. Then $\left\|\theta_{h}-\theta_{h}^{*}\right\|_{\sum_{h}^{\pi}}^{2} \leq \frac{\Delta_{\min }^{2} \epsilon_{0}}{120 H B d^{2}}$. It follows that

$$
\begin{equation*}
\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq \frac{\Delta_{\min }^{2} \epsilon_{0}}{4 H} \tag{8}
\end{equation*}
$$

As in the proof under Assumption 3, these two claims are sufficient to guarantee that the greedy policy induced by $\left\{\theta_{h}\right\}_{h \in[H]}$ is ϵ-optimal. We now prove the two claims in similar fashion.

Proof of (8). We first prove the second claim based on the assumption that the first claim holds when Line 9 is reached in the same execution of LearnLevel. By the first claim, $\forall \pi \in \Pi_{h}$, construct $\tilde{\pi}_{h}$ as in (6), then

$$
\begin{equation*}
\operatorname{Pr}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{T}_{h}}}\left[\tilde{\pi}_{h}\left(s_{h^{\prime}}\right) \neq \pi^{*}\left(s_{h^{\prime}}\right)\right] \leq \epsilon_{0} / H \tag{9}
\end{equation*}
$$

When $\left(s_{h}, a_{h}, y\right)$ is sampled,

$$
\begin{aligned}
\mathbb{E}\left[y \mid s_{h}, a_{h}\right] & =\mathbb{E}\left[R\left(s_{h}, a_{h}\right)+V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right) \mid s_{h}, a_{h}\right] \\
& =Q^{*}\left(s_{h}, a_{h}\right)+\mathbb{E}\left[V_{h+1}^{\tilde{\pi}_{h}}\left(s_{h+1}\right)-V_{h+1}^{*}\left(s_{h+1}\right) \mid s_{h}, a_{h}\right]
\end{aligned}
$$

where the expectation is over trajectories induced by $\tilde{\pi}_{h}$. In other words, $y_{i}:=\sum_{h^{\prime} \geq h} r_{h}^{i}$ can be written as $\phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top} \theta_{h}^{*}+b_{i}+\xi_{i}$, where ξ_{i} is mean-zero independent noise with $\left|\xi_{i}\right| \leq 2$ almost surely, and b_{i} is defined as

$$
b_{i}:=-\sum_{h^{\prime}>h}\left(V^{*}\left(s_{h^{\prime}}^{i}\right)-Q^{*}\left(s_{h^{\prime}}^{i}, a_{h^{\prime}}^{i}\right)\right) .
$$

Here $\mathbb{E}\left[\xi_{i}\right]=0$ because
$\mathbb{E}\left[\xi_{i}\right]=\mathbb{E}\left[\sum_{h^{\prime} \geq h} r_{h^{\prime}}^{i}\right]-Q_{h}^{*}\left(s_{h}^{i}, a_{h}^{i}\right)-\mathbb{E}\left[b_{i}\right]=Q^{\tilde{\pi}_{h}}\left(s_{h}^{i}, a_{h}^{i}\right)-Q^{*}\left(s_{h}^{i}, a_{h}^{i}\right)+\left(Q^{*}\left(s_{h}^{i}, a_{h}^{i}\right)-Q^{\tilde{\pi}_{h}}\left(s_{h}^{i}, a_{h}^{i}\right)\right)=0$.
By $9, \operatorname{Pr}\left[b_{i} \neq 0\right] \leq \epsilon_{0}$. Thus by Lemma 14 ,

$$
\begin{aligned}
\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\Pi_{h}\right), s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\left|\phi\left(s_{h}, a_{h}\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] & \leq 8\left(\epsilon_{1}+\lambda_{\text {ridge }}\right)+288 \epsilon_{0}^{1.5} C_{\text {hyper }}^{2.5} d^{4.5}\left(\frac{2 B}{\epsilon}\right)^{0.5} \\
& \leq 16 \epsilon^{3}+288 \epsilon^{2.5} C_{\text {hyper }}^{2.5} d^{4.5}(2 B)^{0.5}
\end{aligned}
$$

It follows that $\forall \pi \in \Pi_{h}$,
$\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\left|\phi\left(s_{h}, a_{h}\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] \leq\left|\Pi_{h}\right| \cdot\left(16 \epsilon^{2}+288 \epsilon^{2.5} C_{\mathrm{hyper}}^{2.5} d^{4.5}(2 B)^{0.5}\right) \leq \frac{\Delta_{\min }^{2} \epsilon_{0}}{120 H B d^{2}}$,
where we used the fact $\epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / C_{\text {hyper }}, 1 / d, 1 / H\right)$. Now, by Lemma 5 ,

$$
\begin{aligned}
\mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h}, a\right)^{\top}\left(\theta_{h}-\theta_{h}^{*}\right)\right|^{2}\right] & \leq \mathbb{E}_{s_{h} \sim \mathcal{D}_{h}^{\pi}}\left[\sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h}, a\right)\right\|_{\left(\Sigma_{h}^{\pi}\right)^{-1}}^{2}\right] \cdot\left\|\phi_{h}-\phi_{h}^{*}\right\|_{\Sigma_{h}^{\pi}}^{2} \\
& \leq d^{2} \cdot \frac{\Delta_{\min }^{2} \epsilon_{0}}{120 H B d^{2}} \leq \frac{\Delta_{\min }^{2} \epsilon_{0}}{4 H}
\end{aligned}
$$

This proves the second claim.
Proof of (7). Now, let us prove the first claim, assuming that the second claim holds for the last update of any θ_{h}. Consider Line 9 when checking for $\pi \in \Pi_{h}$ for layer h^{\prime}. Recall that

$$
\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}=\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h}^{\tilde{\pi}_{h}}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right] .
$$

Similar to the proof under Assumption 3. we can bound $\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}}$ by

$$
\begin{aligned}
\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}}^{2} & \leq\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{*}}^{2} \cdot\left\|\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}} \Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\left(\Sigma_{h^{\prime}}^{*}\right)^{-\frac{1}{2}}\right\|_{2} \\
& \leq 3 \beta B \cdot\left(\lambda_{r} \cdot\left(\frac{2}{\lambda_{\text {ridge }}}\right)^{2}+\frac{\Delta_{\min }^{2} \epsilon_{0}}{120 H B d^{2}}\right) \\
& \leq 96 B \epsilon^{3}+\frac{\Delta_{\min } \epsilon_{0}}{5 H d^{2}} .
\end{aligned}
$$

By Lemma 5, $\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h}^{\tilde{\pi}_{h}}}\left[\sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h^{\prime}}, a\right)\right\|_{\left(\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}-1\right.}^{2}\right] \leq d^{2}$. Consequently

$$
\begin{aligned}
\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{\pi}_{h}}}\left[\sup _{a \in \mathcal{A}}\left|\phi\left(s_{h^{\prime}}, a\right)^{\top}\left(\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right)\right|^{2}\right] & \leq \mathbb{E}_{s_{h^{\prime} \sim \mathcal{D}_{h}}^{\tilde{\pi}_{h}}}\left[\left\|\theta_{h^{\prime}}-\theta_{h^{\prime}}^{*}\right\|_{\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}}^{2} \cdot \sup _{a \in \mathcal{A}}\left\|\phi\left(s_{h^{\prime}}, a\right)\right\|_{\left(\Sigma_{h^{\prime}}^{\tilde{\pi}_{h}}\right)^{-1}}^{2}\right] \\
& \leq 96 B \epsilon^{3} d^{2}+\frac{\Delta_{\min } \epsilon_{0}}{5 H} \leq \frac{\Delta_{\min } \epsilon_{0}}{4 H}
\end{aligned}
$$

In the last inequality we used $\epsilon_{0}=\epsilon^{2}$ and $\epsilon \leq \operatorname{poly}\left(\Delta_{\min }, 1 / d, 1 / H\right)$. This proves 77 . Finally the failure probability is controlled in Lemma 8 .
Lemma 6 (Covariance concentration Tropp 2015]). Suppose $M_{1}, \cdots, M_{N} \in \mathbb{R}^{d \times d}$ are i.i.d. random matrices drawn from a distribution \mathcal{D} over positive semi-definite matrices. If $\left\|M_{t}\right\|_{F} \leq 1$ almost surely and $N=\Omega\left(\frac{d \log (d / \delta)}{\epsilon^{2}}\right)$, then with probability $1-\delta$,

$$
\left\|\frac{1}{N} \sum_{i=1}^{N} M_{t}-\mathbb{E}_{M \sim \mathcal{D}}[M]\right\|_{2} \leq \epsilon
$$

Lemma 7 (Risk bound for ridge regression, Lemma A. 2 Du et al. 2019]). Suppose that (x_{1}, y_{1}), $\cdots,\left(x_{N}, y_{N}\right)$ are i.i.d. data drawn from \mathcal{D} with

$$
y_{i}=\theta^{\top} x_{i}+b_{i}+\xi_{i},
$$

where $\mathbb{E}_{\left(x_{i}, y_{i}\right) \sim \mathcal{D}}\left[b_{i}^{2}\right] \leq \eta,\left|\xi_{i}\right| \leq 2 n$ almost surely and $\mathbb{E}\left[\xi_{i}\right]=0$. Let the ridge regression estimator be

$$
\hat{\theta}=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\top}+N \lambda_{\text {ridge }} \cdot I\right)^{-1} \cdot \sum_{i=1}^{N} x_{i} y_{i}
$$

If $N=\Omega\left(\frac{d}{\epsilon_{N}^{2}} \log \left(\frac{d}{\delta}\right)\right)$, then with probability at least $1-\delta$,

$$
\mathbb{E}_{x \sim \mathcal{D}}\left[\left((\hat{\theta}-\theta)^{\top} x\right)^{2}\right] \leq 4\left(\eta+\epsilon_{N}+\lambda_{\text {ridge }}\right)
$$

Lemma 8 (Failure probability). Define the following events regarding the execution of Algorithm 1.

1. Ω_{1} : Each time Σ_{h} is updated,

$$
\begin{equation*}
\left\|\Sigma_{h}-\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\Pi_{h}\right), s_{h} \sim \mathcal{D}_{h}^{\pi}, a_{h} \sim \rho_{s_{h}}}\left[\phi\left(s_{h}, a_{h}\right) \phi\left(s_{h}, a_{h}\right)^{\top}\right]\right\|_{2} \leq \epsilon_{2} \tag{10}
\end{equation*}
$$

2. Ω_{2} : Each time θ_{h} is updated,

$$
\begin{equation*}
\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\Pi_{h}\right), s \sim \mathcal{D}_{h}^{\pi}, a \sim \rho_{s}}\left[\left(\left(\theta_{h}-\theta_{h}^{*}\right)^{\top} \phi(s, a)\right)^{2}\right] \leq 4\left(\eta+\epsilon_{1}+\lambda_{\text {ridge }}\right) \tag{11}
\end{equation*}
$$

where η is defined as in Lemma 7
3. Ω_{3} : Each time θ_{h} is updated,

$$
\begin{equation*}
\mathbb{E}_{\pi \sim \operatorname{Uni}\left(\Pi_{h}\right), s \sim \mathcal{D}_{h}^{\pi}, a \sim \rho_{s}}\left[\left(\left(\theta_{h}-\theta_{h}^{*}\right)^{\top} \phi(s, a)\right)^{2}\right] \leq 288 \eta^{1.5} C^{2.5} d^{4.5}\left(\frac{2 B}{\epsilon}\right)^{0.5} \tag{12}
\end{equation*}
$$

where η and C are defined as in Lemma 14
Then under Assumption $3 \operatorname{Pr}\left[\Omega_{1} \cap \Omega_{2}\right] \geq 1-\epsilon$. Alternatively, under Assumption $4 \operatorname{Pr}\left[\Omega_{1} \cap \Omega_{3}\right] \geq$ $1-\epsilon$.

Proof. Note that $N \geq \frac{d \log \left(1 / \epsilon_{2}\right)}{\epsilon_{2}^{2}}$ where $\epsilon_{2} \leq \frac{\epsilon^{6}}{d}$. Therefore, by Lemma 6 . each time Σ_{h} is updated, 10) holds with probability at least $1-\epsilon^{2}$.

As for 11 , note that $N \geq \frac{d \log \left(1 / \epsilon_{2}\right)}{\epsilon_{2}^{2}} \gg \frac{d}{\epsilon_{1}^{2}} \cdot \log \left(\frac{d}{\epsilon^{2}}\right)$. Thus by Lemma 7 , each time θ_{h} is updated, (11) holds with probability at least $1-\epsilon^{2}$.

Similarly, for 12 , under the choice of parameters under Assumption $4 . N \geq \frac{d}{\epsilon_{2}^{3}} \gg$ $\left(\frac{d}{\epsilon_{2}^{2}}+\frac{1}{\eta}\right) \ln \frac{2 d B}{\epsilon}+\frac{2 B}{\epsilon}$. Thus by Lemma 14 , the probability that 12 is violated each step is at most $\epsilon / 2 B$.
Note that when the algorithm terminates, the Σ_{h} and θ_{h} are updated at most $\left|\Pi_{h}\right|$ times. Also note that, if during the first B updates, neither (10) nor (11) are violated, by Lemma 10 it follows that $\left|\Pi_{h}\right| \leq B$ when the algorithm terminates. In other words,

$$
\operatorname{Pr}\left[\Omega_{1} \cup \Omega_{2}\right] \geq 1-B \cdot 2 \epsilon^{2} \geq 1-\epsilon
$$

Similarly, under Assumption 4

$$
\operatorname{Pr}\left[\Omega_{1} \cup \Omega_{3}\right] \geq 1-B \cdot \epsilon^{2}-B \cdot \frac{\epsilon}{2 B} \geq 1-\epsilon
$$

Lemma 9 (Distribution shift error checking). Assume that $\epsilon_{2}<\min \left\{\frac{1}{2} \beta \lambda_{r}, \frac{\lambda_{r}}{2 B}\right\}$. Consider the if clause when checking for $\pi_{h} \in \Pi_{h}$, i.e. when computing $\left\|\Sigma_{h^{\prime}}^{-\frac{1}{2}} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-\frac{1}{2}}\right\|_{2}$. Define

$$
M_{1}:=\frac{\lambda_{r}}{\left|\Pi_{h^{\prime}}\right|} I+\mathbb{E}_{\pi \sim U n i f\left(\Pi_{h^{\prime}}\right), s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\pi}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right]
$$

and

$$
M_{2}:=\mathbb{E}_{s_{h^{\prime} \sim \mathcal{D}_{h^{\prime}}}^{\tilde{\pi}_{h}}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right] .
$$

Then under the event Ω defined in Lemma 8 when $\left\|\Sigma_{h^{\prime}}^{-\frac{1}{2}} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-\frac{1}{2}}\right\|_{2} \leq \beta\left|\Pi_{h^{\prime}}\right|$,

$$
\left\|M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right\|_{2} \leq 3 \beta\left|\Pi_{h^{\prime}}\right|
$$

When $\left.\left\|\Sigma_{h^{\prime}}^{-\frac{1}{2}} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-\frac{1}{2}}\right\|_{2} \geq \beta \right\rvert\, \Pi_{h^{\prime}}$,

$$
\left\|M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right\|_{2} \geq \frac{1}{4} \beta\left|\Pi_{h^{\prime}}\right|
$$

Proof. By Lemma6,

$$
\left\|M_{1}-\Sigma_{h^{\prime}}\right\|_{2} \leq \epsilon_{2} \leq \frac{\lambda_{r}}{2 B} \leq \frac{1}{2} \lambda_{\min }\left(\Sigma_{h^{\prime}}\right)
$$

Thus $\frac{1}{2} \Sigma_{h^{\prime}} \preccurlyeq M_{1} \preccurlyeq 2 \Sigma_{h^{\prime}}$. Also by Lemma 6 . $\left\|M_{2}-\hat{\Sigma}_{h^{\prime}}\right\|_{2} \leq \epsilon_{2}$. Therefore, if $\left\|\Sigma_{h^{\prime}}^{-\frac{1}{2}} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-\frac{1}{2}}\right\|_{2} \geq$ $\beta\left|\Pi_{h^{\prime}}\right|$,

$$
\begin{aligned}
\left\|M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right\|_{2} & \geq \frac{1}{2}\left\|\Sigma_{h^{\prime}}^{-1 / 2} M_{2} \Sigma_{h^{\prime}}^{-1 / 2}\right\|_{2} \geq \frac{1}{2}\left\|\Sigma_{h^{\prime}}^{-1 / 2} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-1 / 2}\right\|_{2}-\frac{1}{2} \epsilon_{2}\left\|\Sigma_{h^{\prime}}^{-1}\right\|_{2} \\
& \left.\geq \frac{1}{2} \beta\left|\Pi_{h^{\prime}}\right|-\frac{1}{2} \epsilon_{2} \cdot \frac{\left|\Pi_{h^{\prime}}\right|}{\lambda_{r}} \geq \frac{1}{4} \beta \right\rvert\, \Pi_{h^{\prime}}
\end{aligned}
$$

Similarly, when $\left\|\Sigma_{h^{\prime}}^{-\frac{1}{2}} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-\frac{1}{2}}\right\|_{2} \leq \beta\left|\Pi_{h^{\prime}}\right|$,

$$
\begin{aligned}
\left\|M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right\|_{2} & \leq 2\left\|\Sigma_{h^{\prime}}^{-1 / 2} M_{2} \Sigma_{h^{\prime}}^{-1 / 2}\right\|_{2} \leq 2\left\|\Sigma_{h^{\prime}}^{-1 / 2} \hat{\Sigma}_{h^{\prime}} \Sigma_{h^{\prime}}^{-1 / 2}\right\|_{2}+2 \epsilon_{2}\left\|\Sigma_{h^{\prime}}^{-1}\right\|_{2} \\
& \leq 2 \beta\left|\Pi_{h^{\prime}}\right|+2 \epsilon_{2} \cdot \frac{\left|\Pi_{h^{\prime}}\right|}{\lambda_{r}} \leq 3 \beta\left|\Pi_{h^{\prime}}\right|
\end{aligned}
$$

Lemma 10 (Lemma A. 6 in Du et al. (2019). Under the event Ω_{1} defined in Lemma $8\left|\Pi_{h}\right| \leq B$ for all $h \in[H]$.

Proof. We provide a proof for completeness. Fix a level $h^{\prime} \in[H]$. Define

$$
A:=\lambda_{r} I+\sum_{\pi \in \Pi_{h^{\prime}}} \mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{\pi}_{h}}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right] .
$$

By the update rule at Line $6,\left|\Pi_{h^{\prime}}\right|$ is expanded if and only if the if clause at Line 5 returns False when checking for some $\tilde{\pi}_{h}$. By Lemma 9 , define

$$
M:=\mathbb{E}_{s_{h^{\prime}} \sim \mathcal{D}_{h^{\prime}}^{\tilde{\pi}^{\prime}}, a_{h^{\prime}} \sim \rho_{s_{h^{\prime}}}}\left[\phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \phi\left(s_{h^{\prime}}, a_{h^{\prime}}\right)^{\top}\right]
$$

then

$$
\left\|A^{-1 / 2} M A^{-1 / 2}\right\|_{2} \geq \frac{1}{4} \beta=2
$$

Note that after $\Pi_{h^{\prime}}$ is updated to $\Pi_{h^{\prime}} \cup\left\{\tilde{\pi}_{h}\right\}, A$ would be updated to $A+M$. Observe that

$$
\operatorname{det}(A+M)=\operatorname{det}(A) \cdot \operatorname{det}\left(I+A^{-1 / 2} M A^{-1 / 2}\right) \geq 3 \operatorname{det}(A)
$$

Therefore during the execution of the algorithm,

$$
\operatorname{det}(A) \geq 3^{\left|\Pi_{h^{\prime}}\right|} \cdot \lambda_{r}^{d}
$$

On the other hand, since $\left\|\phi(s, a) \phi(s, a)^{\top}\right\|_{2} \leq 1$,

$$
\operatorname{det}(A) \leq\left(\lambda_{r}+\left|\Pi_{h^{\prime}}\right|\right)^{d}
$$

The lemma follows by solving $3^{\left|\Pi_{h^{\prime}}\right|} \cdot \lambda_{r}^{d} \leq\left(\lambda_{r}+\left|\Pi_{h^{\prime}}\right|\right)^{d}$.

6 Analysis of Ridge Regression under Hypercontractivity

Recall that a distribution \mathcal{D} is $(C, 4)$-hypercontractive if $\forall v$,

$$
\mathbb{E}_{x \sim \mathcal{D}}\left[\left(x^{\top} v\right)^{4}\right] \leq C \cdot\left(\mathbb{E}_{x \sim \mathcal{D}}\left[\left(x^{\top} v\right)^{2}\right]\right)^{2}
$$

In this section we prove an strengthened version of Lemma 7 for hypercontractive distributions (Lemma 14), which may be of independent interest.
Lemma 11. Let x be a d-dimensional r.v. If the distribution of x is $(C, 4)$-hypercontractive and isotropic (i.e. $\mathbb{E}\left[x x^{\top}\right]=I$), then

$$
\operatorname{Pr}\left[\|x\|_{2}>t\right] \leq \frac{C d^{2}}{t^{4}}
$$

Proof. Consider a Gaussian random vector $v \sim N(0, I)$. Then

$$
\mathbb{E}_{v}\left[\left(x^{\top} v\right)^{4}\right]=\|x\|^{4} \cdot \mathbb{E}_{\xi \sim N(0,1)} \xi^{4}=3\|x\|^{4}
$$

Therefore

$$
\begin{aligned}
\mathbb{E}_{x}\left[\|x\|^{4}\right] & =\frac{1}{3} \mathbb{E}_{x, v}\left[\left(x^{\top} v\right)^{4}\right] \leq \frac{C}{3} \mathbb{E}_{v}\left(\mathbb{E}_{x}\left(x^{\top} v\right)^{2}\right)^{2} \\
& \leq \frac{C}{3} \mathbb{E}_{v}\|v\|^{4}=\frac{C \cdot\left(d^{2}+2 d\right)}{3} \leq d^{2} C
\end{aligned}
$$

The claim then follows from Markov's inequality.
Lemma 12. If the x_{1}, \cdots, x_{n} are i.i.d. samples from a $(C, 4)$-hypercontractive distribution. Let $\sigma(\cdot)$ denote the decreasing order of $\left\|x_{i}\right\|_{2}$. Then with probability $1-\delta$,

$$
\sum_{k=1}^{m}\left\|x_{\sigma(k)}\right\|_{2}=3 \delta^{-1 / 4} n^{1 / 4} m^{3 / 4} C^{1 / 4} d^{1 / 2}
$$

Proof. Fix $k \in[m]$. Set $t=\alpha\left(\frac{C d^{2} n}{k}\right)^{1 / 4}$. By Lemma 11 ,

$$
\begin{aligned}
\operatorname{Pr}\left[\left\|x_{\sigma(k)}\right\|_{2}>t\right] & \leq\binom{ n}{k} \operatorname{Pr}[\|x\|>t]^{k} \leq\binom{ n}{k} \cdot\left(\frac{C d^{2}}{t^{4}}\right)^{k} \\
& \leq \frac{n^{k}}{k!} \cdot \frac{k^{k}}{\alpha^{4 k} n^{k}} \leq\left(\frac{e}{\alpha^{4}}\right)^{k}
\end{aligned}
$$

Choosing $\alpha=\left(\frac{2 e}{\delta}\right)^{1 / 4}$ gives $\operatorname{Pr}\left[\left\|x_{\sigma(k)}\right\|_{2}>t\right] \leq(\delta / 2)^{k}$. By a union bound, with probability $1-\delta$,

$$
\sum_{i=1}^{m}\left\|x_{\sigma(i)}\right\|_{2} \leq \sum_{k=1}^{m}(2 e / \delta)^{1 / 4}\left(\frac{C d^{2} n}{k}\right)^{1 / 4} \leq 3 \delta^{-1 / 4} n^{1 / 4} m^{3 / 4} C^{1 / 4} d^{1 / 2}
$$

Lemma 13 (Lemma 3.4 Bakshi and Prasad [2020]). If \mathcal{D} is $(C, 4)$-hypercontractive and x_{1}, \cdots, x_{n} are i.i.d. samples drawn from \mathcal{D}. Let $\Sigma:=\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]$. With probability $1-\delta$,

$$
\left(1-\frac{C d^{2}}{\sqrt{n \delta}}\right) \Sigma \preccurlyeq \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \preccurlyeq\left(1+\frac{C d^{2}}{\sqrt{n \delta}}\right) \Sigma .
$$

Lemma 14 (Risk bound for ridge regression with hypercontractivity). Suppose that $\left(x_{1}, y_{1}\right), \cdots$, $\left(x_{N}, y_{N}\right)$ are i.i.d. data drawn from \mathcal{D} with

$$
y_{i}=\theta^{\top} x_{i}+b_{i}+\xi_{i}
$$

where $\operatorname{Pr}\left[b_{i} \neq 0\right] \leq \eta,\|b\|_{\infty} \leq 1,\left|\xi_{i}\right| \leq 1$, and $\mathbb{E}\left[\xi_{i}\right]=0$. Assume that distribution of x is (C, 4)-hypercontractive (see Assumption 4). Let the ridge regression estimator be

$$
\hat{\theta}=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\top}+N \lambda_{\text {ridge }} \cdot I\right)^{-1} \cdot \sum_{i=1}^{N} x_{i} y_{i}
$$

If $N=\Omega\left(\left(\frac{d}{\epsilon_{N}^{2}}+\frac{1}{\eta}\right) \log \left(\frac{d}{\delta}\right)+\frac{1}{\delta}\right)$, then with probability at least $1-\delta$,

$$
\mathbb{E}_{x \sim \mathcal{D}}\left[\left((\hat{\theta}-\theta)^{\top} x\right)^{2}\right] \leq 8\left(\epsilon_{N}+\lambda_{\text {ridge }}\right)+288 \eta^{1.5} C^{2.5} d^{4.5} \delta^{-0.5}
$$

Proof. Define $\hat{\Sigma}:=\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\top}$ and $\Sigma:=\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]$. Then

$$
\begin{aligned}
\hat{\theta} & =\frac{1}{N}\left(\lambda_{\text {ridge }} I+\hat{\Sigma}\right)^{-1} \sum_{i=1}^{N}\left(x_{i} x_{i}^{\top} \theta+x_{i} \cdot \xi_{i}+x_{i} \cdot b_{i}\right) \\
& =\underbrace{\frac{1}{N}\left(\lambda_{\text {ridge }} I+\hat{\Sigma}\right)^{-1} \sum_{i=1}^{N} b_{i} x_{i}}_{(a)}+\underbrace{\frac{1}{N}\left(\lambda_{\text {ridge }} I+\hat{\Sigma}\right)^{-1} \sum_{i=1}^{N}\left(x_{i} x_{i}^{\top} \theta+x_{i} \cdot \xi_{i}\right)}_{(b)} .
\end{aligned}
$$

By Lemma $7\|\theta-(b)\|_{\Sigma}^{2} \leq 4\left(\epsilon_{N}+\lambda_{\text {ridge }}\right)$. It remains to bound the $\|\cdot\|_{\Sigma}$ norm of (a).
First, by Hoeffding's inequality, with probability $1-\delta,\|b\|_{0}=\sum_{i=1}^{n} I\left[b_{i} \neq 0\right] \leq 2 \eta N$. Define $z_{i}:=\Sigma^{-1 / 2} x_{i}$ to be the normalized input. It can be seen that $\mathbb{E}\left[z_{i} z_{i}^{\top}\right]=I$ and that the distribution of z_{i} is also hypercontractive. By Lemma 12 , with probability $1-2 \delta$,

$$
\sum_{i=1}^{n}\left\|z_{i}\right\|_{2} \cdot I\left[b_{i} \neq 0\right] \leq 3 \delta^{-1 / 4} N^{1 / 4}(2 \eta N)^{3 / 4}\left(C d^{2}\right)^{1 / 4}
$$

It follows that with probability $1-2 \delta$,

$$
\begin{aligned}
\|(a)\|_{\Sigma}=\frac{1}{N}\left\|\hat{\Sigma}^{-1} \sum_{i=1}^{N} x_{i} b_{i}\right\|_{\Sigma} & \leq \frac{1}{N} \sum_{i=1}^{N}\left\|\Sigma^{1 / 2} \hat{\Sigma}^{-1} x_{i} b_{i}\right\|_{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left\|\Sigma^{1 / 2} \hat{\Sigma}^{-1} \Sigma^{1 / 2} z_{i} b_{i}\right\|_{2} \\
& \leq \frac{1}{N}\left\|\Sigma^{1 / 2} \hat{\Sigma}^{-1} \Sigma^{1 / 2}\right\|_{2} \cdot \sum_{i=1}^{N}\left\|z_{i}\right\|_{2} \cdot H \cdot I\left[b_{i} \neq 0\right] \\
& \leq 3 H\left(1+\frac{C d^{2}}{\sqrt{N \delta}}\right) \cdot \delta^{-1 / 4} N^{-3 / 4}(2 \eta N)^{3 / 4}\left(C d^{2}\right)^{1 / 4} \\
& \leq 12 H \eta^{0.75} \cdot C^{\frac{5}{4}} d^{\frac{9}{4}} \delta^{-\frac{1}{4}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\|\hat{\theta}-\theta\|_{\Sigma}^{2} & \leq 2\|\hat{\theta}-(b)\|_{\Sigma}^{2}+2\|(a)\|_{\Sigma}^{2} \\
& \leq 8\left(\epsilon_{N}+\lambda_{\text {ridge }}\right)+288 \eta^{1.5} C^{2.5} d^{4.5} \delta^{-0.5} .
\end{aligned}
$$

References

Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in polynomial time. arXiv preprint arXiv:2007.01394, 2020.

Simon S Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient q-learning with function approximation via distribution shift error checking oracle. In Advances in Neural Information Processing Systems, pages 8060-8070, 2019.

Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1-2):1-230, 2015.

