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Abstract

We study the problem of uniformity testing for statistical data that consists of
rankings over m items, where the alternative class is restricted to Mallows models.
Testing ranking data is challenging because of the size of the large domain that
is factorial in m, therefore the tester needs to take advantage of some structure of
the alternative class. We show that uniform distribution can be distinguished from
Mallows model with O(m−1/2) samples based on simple pairwise statistics, which
allows us to test uniformity using only two samples, if m is large enough. We also
consider uniformity testing with central and local differential privacy (DP) con-
straints. We present a central DP algorithm that requires O(max{1/ε0, 1/

√
m}),

where ε0 is the privacy budget parameter. Interestingly, our uniformity testing
algorithm is straightforward to apply to the local DP scenario, since it works with
binary statistics that is extracted from the ranking data. We carry out large-scale ex-
periments, including m = 10, 000, to show that our uniformity testing algorithms
scale gracefully with m.

1 Introduction

Testing whether the data conforms with a model is a fundamental problem in data analysis with
large number of applications in machine learning and data science. A special case of testing is the
uniformity testing, i.e. to distinguish between the case that an unknown distribution accessible via
samples is uniform versus ε-far from uniform. Uniformity testing of discrete distribution has a long
history with several applications, and it is well-understood [3, 7, 11, 12, 29, 31] as well as under
differential privacy constraints [1, 2, 4].

In this paper, we assume that the statistical data consists of rankings over m items. The testing
problem that we study is to decide whether the data is generated from the uniform distribution over
rankings, i.e. the probability of observing any ranking is 1/m!, or from a distribution that is ε-far
from the uniform one in terms of total variation distance. In general, this testing problem cannot
be tackled based on polynomial sample complexity, because the domain size for ranking data is m!.
Therefore, we restrict the alternative hypothesis class to the Mallows model, introduced by [25],
a.k.a. the exponential family on rankings. The Mallows model is widely used in ranking statistics
and machine learning. The model has two parameters, the central ranking π0 ∈ Sm and the spread
parameter φ ∈ [0, 1]. Based on these, the probability of observing a ranking π ∈ Sm is proportional
to φd(π,π0), where d is a ranking distance, such as the number of discordant pairs, a.k.a. Kendall’s
tau distance. There are many applications of the Mallows model in Machine Learning, to name a few,
label ranking [24], online learning [9], recommendation systems [30, 23] and clustering [27].
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Testing is a central problem in analysing output of ranking systems where the goal is to decide
whether the output ranking data deviates from some expected behaviour, or is biased towards some
group of object to be ranked or it is indeed fair ([28, 25, 32] and see Chapter 3-4 of [26]). Significant
attention has been attracted to machine learning systems and their ability to discriminate against
minorities, historically disadvantaged populations, and other protected groups when allocating
resources (e.g., loans) or opportunities (e.g., jobs). For example, the Fair Lending Act – a commonly
used fairness requirement introduced in the USA – is explicitly created to impose such unbiasedness on
financial companies. This policy even has to be respected in audience targeting in online advertising.
Uniformity and parameter testing can be applied to practical settings where we want to collect/provide
evidence that our ranking system has no bias towards some group of users.

In this work, we propose two tests to tackle uniformity testing with the Mallows model as alternative
class of ranking distributions: one of these tests works with just two samples when the number of
items m is large enough, and a more general one, with sample complexity O(1/

√
m), works for

arbitrary m.

There are several applications where the data to be analyzed contains sensitive information. However,
the data owner is willing to release some results of analysis based on the data, without revealing
information of the individuals. It may thus be of importance to guarantee that working with sensitive
data needed to test a statistical hypothesis protects sensitive information about the individual records
in the dataset. Differential privacy (DP) is one of the most commonly used privacy preserving
framework [15, 17] which has been adopted by several companies including Google [18], and
Apple [13]. Differential privacy requires that the output of an algorithm has to be statistically close
on two similar datasets D and D′ that differ in the value of one element which a ranking in our
case. We consider the two most common version of DP: central and local DP. In the central model, a
trusted curator stores the database, and she runs the algorithm which has DP guaranty to analyze the
sensitive data and then the output of the analysis, i.e. accept or reject in case of hypothesis testing, is
released to the public [16]. Several alternatives to the central model have been proposed that relax
the requirement that the users trust the curator to store their private data, for example local DP (LDP).
In the local model, each user adds noise to her own data and responds to the analyst directly [19].
Interestingly, our uniformity testing algorithms can be easily applied in the LDP setting. We can
summarize our main results as follows:

• We devise a uniformity test which works based on two samples when m is large enough
(Subsection 4.1)

• We introduce a uniformity test that works for arbitrary m and has sample complexity
O(m−1/2) (Subsection 4.2)

• In the central DP setting, one can apply a simple reduction approach which consists of
drawing d1/ε0e batches of data, and run a non-DP algorithm on one of the batch selected
uniformly at random. This approach works well whenm is large enough, since the uniformity
testing can be solved based on two samples. However, we devise a uniformity test for the
central DP setting which has better sample complexity than the reduction approach with
data batches for small and medium m. This result is presented in Section 5.

• We devise a LDP algorithm as an easy extension of our non-private algorithm, in Section 6.
• We demonstrate the versatility of our algorithm running with large m, including m = 10000

on synthetic data, and we show that for large m very small deviation form the uniform can
be detected with high confidence based on two samples in Section 7.

2 Related Work

Testing uniformity is one of the most fundamental problem in computer science. Goldreich and
Ron [22] considered first uniformity testing problem as a property testing, however with L2 distance.
Paninski [29] came up with a coincidence-based approach that used total variation distance with a
sample complexity O(

√
d/ε2), where d is the domain size, and it was shown to be optimal by with a

restriction that ε ∈ Ω(d−1/4). The test statistic used by this optimal test is based on number of bins
into which just one sample has fallen. In principle, this test can be applied to ranking data, since
the test statistic is easy to compute. Nevertheless, the lower bound of this test, which is Ω(

√
d/ε2),

suggests that it is not the proper choice of method even for ranking data with small m, since d = m!.
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The result of Paninski [29] was strengthen further by several authors including [12, 11, 3] so as
the lower bound does work for general ε and matching algorithms are also provided. The plug-in
based tests, for example [11], do estimate the distribution empirically and then it makes a decision by
thresholding the total variation distance between the uniform distribution and the empirical estimate.
Surprisingly, this test is optimal for all ε, δ > 0. Batu and Canonne [7] considered generalized
uniformity testing for an arbitrary distribution with unknown domain size and provided a tester with
sample complexity O(d2/3/ε6). Moreover, Valiant and Valiant [31] showed how to achieve instance
optimality, when we test arbitrary discrete distributions for uniformity. However, to adapt any of
these tests to our setup is out of question since the size of our domain is m!, which is huge, and the
test statistic, which is the total variation distance, is already challenging to compute for ranking data.
Therefore, we need to come up with a uniformity test that takes advantage of the structure of the
alternative hypothesis.

Testing with differential privacy has a solid literature as well. Jayadev Acharya and his colleagues
studied uniformity testing with privacy constraint in depth. In [4], the central DP model is analysed
and shown that it can be tackled with Θ

( √
d

ε2ε0
+
√
d

ε
√
ε0

+ d1/3

ε4/3ε02/3 + 1
εε0

)
samples where ε0 is the

privacy budget parameter. Local private uniformity test is analyzed in [1] and had found that it can
be tackled with Θ(k/(ε · ε0)2 samples. In a recent work [2], uniformity testing in local differential
private setting was analysed with a special attention to the impact of the public randomness.

3 The Mallows Model, Testing and Differential Privacy

The Mallows Model. The Mallows model or, more specifically, Mallows φ-distribution is a
parametrized, distance-based probability distribution that belongs to the family of exponential
distributions R = {Mφ,π | φ ∈ [0, 1], π ∈ Sm} with probability mass function pφ,π0

(π) =

φd(π,π0)/Z(φ, π0), where φ and π0 are the parameters of the model: π0 ∈ Sm is the location parame-
ter also called center ranking and φ ∈ [0, 1] the spread parameter. Moreover, d(·, ·) is a distance metric
on permutations, which for our paper will be the Kendall tau distance, that is, the number of discordant
item pairs dK(π, π′) =

∑
1≤i<j≤m I {(π(i)− π(j))(π′(i)− π′(j)) < 0}. The normalization factor

in the definition of the model is equal to Z(φ, π0) =
∑
π∈Sm pφ,π0

(π). When the distance metric d
is the Kendall tau distance we have the identity Z(φ, π0) = Z(φ) =

∏m−1
i=1

∑i
j=0 φ

j .

Testing and Uniformity Testing. We assume a parametric family of ranking distribution R =
{Mθ | θ ∈ Ω} where Ω denotes the set of parameters. The observation consists of n rankings
Dn = {π1, . . . , πn} from a ranking distributionM. The null hypothesis is H0 : M ∈ R0 where
R0 ⊂ R. As an alternative hypothesis, we consider H1 :M ∈ R1(⊂ R) such that R0 ∩ R1 = ∅.
Then the test is a function f : Snm 7→ {0, 1}, where 0 corresponds to acceptance, and 1 to rejection.
The input of the tester (or the testing algorithm) is a tolerance parameter ε > 0 and a significance
parameter δ ∈ (0, 1). We assume that the tester has sample access of the unknown distribution
M∈ R. By definition, an (ε, δ)-tester outputs a sample size n and a test function f : Snm 7→ {0, 1}
such that, generating Dn fromM, we have the following guaranties for f :

1. if the null hypothesis H0 is true, then it outputs reject (f(Dn) = 1) with probability at most
δ, i.e. E [f(Dn)] ≤ δ .

2. ifM∈ R1 such that dTV(M,R0) > ε, then it outputs reject (f(Dn) = 1) with probability
at least 1− δ, where dTV(M,Ri) = infM′∈Ri dTV(M,M′) .

The testing problem at hand is called uniformity testing, when the null hypothesis is simple and
consists of only the uniform distribution over the domain Sm. More concretely, in this study, we
assume that the null hypothesis is the uniform model, which is itself a Mallows model with φ = 1,
thus H0 : M ∈ R0 = {M1,π0

}, with central ranking an arbitrary π0 ∈ Sm. The alternative
hypothesis class contains those Mallows models that are ε-far from the uniform distribution, i.e.
H1 :M∈ R1 = {Mφ,π : dTV (M1,π0

,Mφ,π) > ε}, where π ∈ Sm is some given central ranking
and φ ∈ [0, 1).

Differential Privacy. We also consider uniformity testing under a privacy constraint. We work with
two different privacy notions: central and local differential privacy. In case of central differential
privacy (CDP), the data is gathered at a so-called curator, who is trusted. The curator runs the tester,
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which is required to output a response that is not too sensitive to small changes in the input. Small
changes can be defined in many different ways for ranking data. We assume that the granularity of
the data is whole rankings. With this in hand, we define the notion of CDP as follows.
Definition 1 (Central DP Property.). A randomized algorithm A with domain Snm is (ε0, δ0)-
differential private if for all S ⊂ Range(A) and for all pairs of inputs D = {π1, . . . , πn} and
D′ that differs from D in a single ranking, it holds that

P(A(D) ∈ S) ≤ eε0P(A(D′) ∈ S) + δ0

If δ = 0, the guarantee is called pure differential privacy.

We will also work with a more appealing privacy notion which is often called locally differential
privacy (LDP). LDP is a stronger privacy guaranty than CDP in a sense that the data is required to be
privatized before the tester can observe it. More detailed, the data is assumed to be distributed among
peers and the peers add noise to the data which noise can be modelled as a conditional distribution,
a.k.a. mechanism, W (z|π) for some output space z ∈ Z . The tester only observers the privatized
data (z1, . . . , zk), so in this case it has no access to the original data as it is to be the case in CDP.
The notion of LDP therefore can be formalized as a condition on W (.|.)
Definition 2 (Locally differentially private.). A mechanism W : Sm × Z → (0, 1] is ε0-locally
differentially private if W satisfies

max
z∈Z

max
π,π′∈Sm

log
W (z|π)

W (z|π′)
≤ ε0

We assume that each peer has the same mechanism, however there are several setup which assumes
that the mechanism can be different for different peers. If public randomness is used by the tester,
then the LDP guaranty is extended so as the worst-case log likelihood is computed over the domain
of the public random process.
Definition 3 (Locally differentially private with public randomness). A set of mechanisms Wu :
Sm × Z → (0, 1] indexed by U which is the domain of the public random process, is ε0-locally
differentially private if it holds that

max
u∈U

max
z∈Z

max
π,π′∈Sm

log
Wu(z|π)

Wu(z|π′)
≤ ε0 .

4 Non-Private Uniformity Testing

4.1 Testing Uniformity of Mallows Models with Two Samples

First, we present a simple algorithm that draws two samples π1 and π2 and applies only if φε is
bounded away from 1 by Ω(1/m). The algorithm computes the Kendall tau distance of π1 and
π2. Under the null hypothesis, dK(π1, π2) ≥ m(m − 1)/4 − O(

√
m3 ln(1/δ)), with probability

at least 1− δ, because the distribution is uniform. Under the alternative hypothesis, dK(π1, π2) ≤
2φεm/(1 − φε) + O(

√
m3 ln(1/δ)), with probability at least 1 − δ, because the distribution is

concentrated around some central ranking. This algorithm is referred to as 2SAMP and is defined
in Algorithm 1. We show that if φε ≤ 1 − Ω(1/m), we can distinguish between the two cases by
sufficiently large confidence.
Theorem 4. For all δ > 0, if φε ≤ 1 − 8

m+7−
√

12 ln(2/δ)m
, then Algorithm 2SAMP, defined in

Algorithm 1, uses 2 samples and is an (ε, δ)-uniformity test of Mallows models.

The proof is deferred to Appendix A. An alternative way of interpreting the guarantee presented
above is that for all m and φε, with m > 9

1−φε − 7, Algorithm 2SAMP is a (ε, δ)-test for uniformity
with significance δ and power under an alternative model with spread parameter φ at least 1 −
2e−(m+7− 9

1−φε )
2/(12m). We should also emphasize that we cannot test uniformity with less than

2 samples, even for very large values of ε, since it is impossible to tell whether a single sample is
uniformly distributed or not.

The computational complexity of Algorithm 1 is determined by the time required to compute φε.
Unfortunately, there is no closed form of φε as a function of m and ε. However, φε can be computed
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Algorithm 1 2SAMP: Uniformity Test with Two Samples
1: Input: significance δ > 0, tolerance ε > 0
2: Fix any π0 ∈ Sm and let φε = supφ∈[0,1]{dTV (M1,π0 ,Mφ,π0) > ε}
3: if φε > 1− 8

m+7−
√

12 ln(2/δ)m
then

4: Output ⊥ . φε too close to 1

5: Take 2 samples which are denoted by π1, π2 ∈ Sm
6: If dK(π1, π2) > m(m−1)

4 −
√

m3 ln(1/δ)
12 Then Accept Else Reject

efficiently, using dynamic programming and binary search. We first observe that the total variation
distance of a Mallows model to the uniform distribution can be computed in Θ(m2) time, using∑m(m−1)/2
i=0

∣∣∣ 1
m! −

φi

Z(φ)

∣∣∣ Mah(i,m), where Mah(i,m) denotes the i-th Mahonian number1 of order
m (i.e., the number of permutations with m items at Kendal tau distance i to the identity permutation).
The Mahonian numbers of order m can be computed in Θ(m2) time, using dynamic programming,
while Z(φ) has a closed form [21]. Furthermore, the total variation distance of a Mallows model to
the uniform distribution decreases as φ increases from 0 to 1. Hence, φε can be computed efficiently
using binary search and the total variation distance computation above.

4.2 General Uniformity Testing Algorithm

Algorithm 2SAMP works only when φε ≤ 1 − Ω(1/m), or equivalently, assuming a fixed φε,
when m is large enough. Hence, we present Algorithm 2, which tests uniformity for arbitrary φε
and m. The idea is to consider the relative positions of m/2 disjoint random pairs of items in

k = Θ

(
1
µ2

√
ln(1/δ)
m

)
samples, where µ =

1−φm/8ε

1+φ
m/8
ε

. Under the alternative hypothesis H1 with

any fixed central ranking π∗, for any pair of items i and j, with π∗(j) = π∗(i) ≥ m/8, µ is a
lower bound on the bias towards observing i before j in a random ranking from H1 (if m is large
enough, a random item pairing results in m1 ≈ m/8 such item pairs, with high probability). We
define the random variables X`

i(i+1) to be 1, if i precedes i + 1 in sample π`, and −1, otherwise.

Yi(i+1) =
(

1√
k

∑k
`=1X

`
i(i+1)

)2
accounts for the deviation of the pair i and i+ 1 from uniformity.

Under the null hypothesis, the expectation and the variance of Yi(i+1) are O(1). Under the alternative
hypothesis, E[Yi(i+1)] = Ω(kµ2) and V[Yi(i+1)] = O(kµ2). Moreover, the random variables
Y12, Y34, · · · , Y(m−1)m are mutually independent, because they concern the relative positions of
disjoint item pairs in the samples. Therefore, Y = Y12 + Y34 + · · · + Y(m−1)m should be O(m),
under the null hypothesis, and Ω(mkµ2), under the alternative hypothesis. The following is proven
in Appendix B and shows that we can distinguish between the two cases with adequate confidence.

Algorithm 2 Uniformity Test (UNIF)
1: Input: significance δ > 0, tolerance ε > 0
2: Let π0 ∈ Sm be chosen uniformly at random and renumber the items so that π0 = (1, . . . ,m)
3: Let φε = supφ∈[0,1]{dTV (M1,π0 ,Mφ,π0) > ε} . φε does not depend on π0

4: Let µ =
1−φm/8ε

1+φ
m/8
ε

and m1 = m/8−
√
m ln(2/δ)/16 .

5: Take k = 1 +
⌈

1
µ2

(
12m ln(2/δ)

m2
1

+ 10
√

m ln(2/δ)
m2

1

)⌉
samples Dk .

6: Let π1, . . . , πk ∈ Sm denote the samples
7: Let X`

i(i+1) = 1, if i �π` i+ 1, and −1 otherwise.

8: Let Yi(i+1) =
(

1√
k

∑k
`=1X

`
i(i+1)

)2
for all item pairs i(i+ 1)

9: Let Y = Y12 + Y34 + · · ·+ Y(m−1)m
10: If Y < m/2 + 2

√
m ln(1/δ) Then Accept Else Reject

1https://oeis.org/A008302
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Theorem 5. For all δ, ε > 0, Algorithm 2 with

k = Θ

(
1

µ2

√
ln(1/δ)

m

)

samples, where µ =
1−φm/8ε

1+φ
m/8
ε

, is an (ε, δ)-finite confidence uniformity test of Mallows models.

Regarding the dependence of µ on m and ε, we observe that if ε = Ω(1/
√
m), then φε ≥ 1− cε

m ≤
e−cε/m, for some constant c > 0. Then, µ ≥ 1−e−cε/8

1+e−cε/8
, which does not depend on m. Hence,

unless ε is extremely small, i.e., if ε = o(1/
√
m), µ is constant in m and the sample complexity of

Algorithm 2 is O(m−1/2).

Algorithm 2 exploits a tradeoff between the bias µ towards the right order of i and i + 1 and the
values of φε and m. If m is so small that m1 = m/8−

√
m ln(2/δ)/16 becomes much smaller than

m, the gain in the sample complexity due to raising φε to m/8 in 1/µ2 may be counterbalanced
by the increase in sample complexity due to m/m2

1. Then, we can apply the same analysis with
µ′ = 1−φε

1+φε
, essentially regarding all i(i+ 1) pairs as consisting of consecutive elements in π0. Then,

under the alternative hypothesis, E[Y ] = m(1 + (k − 1)µ′2)/2, which gives a sample complexity of

k = 1 +

⌈
(1 + φε)

2

(1− φε)2

(
48 ln(1/δ)

m
+ 16

√
ln(1/δ)

m

)⌉
for Algorithm 2. More generally, if m is relatively small (so small that m1 becomes negligible), a
more careful analysis of Algorithm 2 is possible. Then, in the proof of Theorem 5, we can optimize
the sample complexity by trading off the exponent of φε in µ against the size of m1. As a result, the
sample complexity of Algorithm 2 is upper bounded by a family of functions that have the same form
as (5) in the proof of Theorem 5, Appendix B, but use different values of m1 and µ, where we can
increase m1 from m/8 up to m, by subsequently decreasing the exponent of φε in µ from m/8 to 1.

5 Uniformity Test with Central Differential Privacy

The most natural approach to make a testing algorithm differentially private is to add Laplace noise to
the test statistic. The variance of the noise should be proportional to the sensitivity of the test statistic,
which ensures that small change in the input data does not change drastically the output of the tester.
This intuition is formalized in [17, Theorem 3.6]. Accordingly, one can add Laplace noise to the test
statistic Y which is computed in line 9 of Algorithm 2. What remains is to compute the sensitivity
of Y with respect to the input. Assume that we are given two datasets Dk and D′k that consist of k
rankings and differ from each other in one ranking. Then, the sensitivity of the test statistic computed
forDk andD′k is |Y (Dk)−Y (D′k)| ≤ 2m. This calculation is presented in Claim 10 in the Appendix.
Therefore, if we add a Laplace noise Z ∼ Lap (2m/ε0) to Y in line 9 of Algorithm 2, our algorithm
becomes (ε0, 0)-differentially private. However, note that V [Lap (2m/ε0)] = 8 (m/ε0)

2, which is
much larger than the variance V [Y ] ≤ m of the test statistic of Algorithm 2. Consequently, this
noise results in a large increase of sample complexity. For sake of completeness, this approach is
presented in Algorithm 4, in Appendix C. The only change with respect to (non-private) Algorithm 2
is that there is an extra Laplace noise added to the test statistic in line 7 and the rejection threshold
has updated accordingly.

The sample complexity of Algorithm 2 is O
(
1/µ2

√
ln(1/δ)/m

)
, whereas the privatized test requires

O
(
m
√

ln 1/δ/(µ2ε0)
)

. This means that the naive approach results in an increase in the sample

complexity by a factor of m3/2/ε0. Next, we try to bring this variance down with a truncation
technique applied to Laplace noise.

In Claim 10, it becomes apparent that the sensitivity of the test statistic Y is proportional to the value
of the following sum of independent Rademacher random variables

∣∣∣ 4k∑m/2
i=1

∑k
`=1X

`
(2i−1),2i

∣∣∣,
which can be up to 2m. To control the variance (and the sample complexity) of the privatized test
statistic, we deal with the case where the value of this sum is Ω(

√
m/k) separately. This is the
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intuition behind Algorithm 3, which is inspired by [10, Algorithm 1], and distinguishes between
different cases. In particular, if the value of the Laplace noise happens to be high, Algorithm 3
returns a random response, while if

∣∣∣ 4k∑m/2
i=1

∑k
`=1X

`
(2i−1),2i

∣∣∣ = Ω(
√
m/k), the algorithm rejects.

Otherwise, the algorithms performs a randomized version of the uniformity test called UNIF, defined
in Algorithm 2. In this case, we show that the sensitivity of the test statistic (and thus, the sample
complexity) can be upper bounded reasonably well. We refer to the DP algorithm as TRUNC, which
is defined in Algorithm 3.

Algorithm 3 Central DP Uniformity Test (TRUN)
1: Input: significance δ > 0, tolerance ε > 0, DP parameter ε0
2: Sample Z ∼ Lap

(
4

kδε0

)
3: if |Z| > 4

kδε0
ln 1

δ then . True with probability at most δ
4: Output Accept or Reject with equal probability
5: Let π0 ∈ Sm be chosen uniformly at random and renumber the items so that π0 = (1, . . . ,m)
6: Let φε = supφ∈[0,1]{dTV (M1,π0

,Mφ,π0) > ε}
7: Let µ =

1−φm/8ε

1+φ
m/8
ε

and m1 = m/8−
√
m ln(2/δ)/16 .

8: Take k samples Dk = {π1, . . . , πk} , where k is as in Theorem 6.
9: Let X`

i(i+1) = 1, if i �π` i+ 1, and −1 otherwise.

10: if
∣∣∣ 2
mk

∑m/2
i=1

∑k
`=1X

`
(2i−1),2i + Z

∣∣∣ >√ 2 ln(2/δ)
mk + 4

δkε0
ln 1

δ then
11: Reject
12: else
13: Let Yi(i+1) =

(
1√
k

∑k
`=1X

`
i(i+1)

)2
for all item pairs i(i+ 1)

14: Let Y = Y12 + Y34 + · · ·+ Y(m−1)m

15: B ∼ Bernoulli (p) where p = min
{

1, 16(Y−m/2)mµ2(k−1)

}
16: If B=1 Then Accept Else Reject

Theorem 6. For all δ, ε, ε0 > 0, Algorithm 3 with µ =
1−φm/8ε

1+φ
m/8
ε

and

k = Θ

(
max

{
1

µ2

(
1

δ3/2
√
m

+
1

δ3m

)
,

ln1/3(1/δ)

µ4/3m1/3ε02/3δ2/3
,

√
ln(1/δ)

µε0δ

})
samples is an (ε0, 0)-differentially private (ε, δ) -uniformity test of Mallows models.

Theorem 6 has some interesting consequences. First, privacy comes for free in some parameter
regime since the first term of the sample complexity, which is dominant if φε is close to 1 andm is not
so large, does not depend on the privacy parameter ε0. Second, the sample complexity of TRUNC is
worse than the simple bucketing approach for other parameter regimes. The bucketing approach is a
folklore result to convert non-private algorithms to private ones. It consists of running a non-private
algorithm on d1/ε0e number of data batches in parallel, and return one of the outcomes selected
uniformly at random. This approach is (ε0, 0)-differentially private and has sample complexity
d1/ε0e times that of the non-private algorithm (see e.g., [10, Theorem 2] for the precise reduction
approach). Combining UNIF with the bucketing approach, we obtain a (ε0, 0)-differentially private
algorithm with sample complexityO

(
max{1/(µ2ε0)

√
ln(1/δ)/m, 2/ε0}

)
. The bucketing approach

is very efficient in our uniformity testing setup, because the sample complexity is of order m−1/2
for the non-private algorithm. So, the bucketing approach requires O(1/ε0) samples, if m is large
enough. On the other hand, TRUNC can be superior when φε is close to 1 and m is not so large, in
which case the first term of Theorem 6 becomes dominant, as our experimental evidence also justifies.

6 Uniformity Test with Local Differential Privacy (LDP)

Algorithm 2 can easily extended so as it satisfies the LDP constraint, since it extracts a binary
sequence from the rankings in Line 7 of Algorithm 2. Adding randomized response (RR) to this bit
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sequence componentwisely results in an simple LDP uniformity testing algorithm. Let us denote
the conditional probability of RR by W (.|.), for which W (−1| − 1) = W (+1| + 1) = eγ

eγ+1 and
W (−1|+ 1) = W (+1| − 1) = 1

eγ+1 . As a consequence, if all X`
i(i+1) are passed through a channel

W (.|.) with γ = 2ε0/m, then the LDP guarantee is satisfied. To see that, we consider two rankings
π and π′, for which fπ0(π) = (−1, . . . ,−1) and fπ0(π′) = (1, . . . , 1) for a fixed π0. Then

log
P((1, . . . , 1)|π)

P((1, . . . , 1)|π′)
=
m

2
log

eγ

eγ+1
1

eγ+1

=
mγ

2
= ε0

We present our LDP uniformity testing algorithm so as it requires public/shared randomness in the
form of a random ranking that is sent to each peer beforehand. The curator algorithm is defined in
Algorithm 5, and the peer algorithms in Algorithm 6, in Appendix F. The LDP algorithm is based on
Algorithm 2 and uses the same test statistic. If public randomness is available, we can implement
Algorithm 2 with random item pairing and µ0 =

1−φm/8ε

1+φ
m/8
ε

· e
γ−1
eγ+1 , which leads to an improved sample

complexity, if φε is close to 1 and m is relatively large. If only private randomness is available, we
implement Algorithm 2 with a fixed item pairing and µ′0 = 1−φε

1+φε
· e

γ−1
eγ+1 (see also the discussion after

Theorem 5 on how the choice of item pairing affects the value of µ and the sample complexity). The
analysis is essentially identical to the proof of Theorem 5, since the mean value and the variance of
the test statistic are m/2 and at most m, respectively, under H0, and are given by the same functions
of µ (or µ′0), under H1. The only essential difference is the decrease of µ (or µ′0) by a factor of e

γ−1
eγ+1 ,

to account for the randomized response. The discussion above is summarized by the following:
Theorem 7. For all δ, ε, ε0 > 0 and γ = 2ε0/m, Algorithm 5 and Algorithm 6 form an (ε, δ)-finite
confidence uniformity test and (ε0, 0)-locally differentially private for Mallows modesls with sample
complexity:

• k = Θ

(
1
µ2
0

√
ln(1/δ)
m

)
, where µ0 =

1−φm/8ε

1+φ
m/8
ε

· e
γ−1
eγ+1 , if m-bit public randomness is used and

a random ranking is sent by the curator algorithm to each peer.

• k = Θ

(
1
µ′0

2

√
ln(1/δ)
m

)
. where µ′0 = 1−φε

1+φε
· e

γ−1
eγ+1 , if only private randomness is used.

Since for γ = 2ε0/m, e
γ−1
eγ+1 ≈

2ε0
m , the dependence of the sample complexity of our LDP algorithm

on ε0 is Θ(1/ε0
2) and on m is Θ(m3/2).

7 Experiments

We shall present synthetic experiments to assess the performance of the proposed tests. We assess the
power of these tests which is the probability of the rejection for various spread parameter φ. Every
testing algorithm we presented has a tolerance parameter ε and significance δ. We used δ = 0.05
in every case. The tolerance parameter ε does have impact only on the sample size of the testing
algorithms. Instead of setting ε to a certain value, we plotted the power of the algorithms with
various sample size. In this way, we could compare the performance of the testing algorithms based
on the same number of samples as input. Each result we report here are computed based on 1000
repetitions. The central ranking of each model which the random samples are generated from, is
selected uniformly at random in each each run independently.

7.1 Uniformity Testing Based on Two Samples

In the first set of experiments, we compare the uniformity testing algorithm based on two samples,
called 2SAMP which is defined in Algorithm 1 and the more general algorithm, called UNIF which
is defined in Algorithm 2 running with two rankings as input. We assess the power of these tests
which is the probability of the rejection for various spread parameter φ. The results are plotted in
Figure 1. The 2SAMP algorithm does work already for m = 100 and it consistently outperforms
UNIF based on two rankings. This can explained by the fact that 2SAMP computes pairwise statistic,
which is the Kendall distance, based on each pair of items, whereas UNIF takes into account only
the independent pairs. It is worth to emphasize that these tests can detect very small deviation from
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the uniform for large m. More concretely, it is detected with zero error, i.e. power is equal to 1, when
the spread parameter deviates from 1 with a margin of 2× 10−5 in case of m = 10000.
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Figure 1: Power function of 2SAMP introduced in Subsection 4.1 and UNIF introduced in Subsec-
tion 4.2 with various parameters of the alternative model. The spread parameter of the underlying
Mallows model is shown on the x-axis.

7.2 General Uniformity Testing with Arbitrary m

Testing uniformity was one of the motivation of Mallows when he came up with his model (see
Section 11 in [25]). Mallows assumed that the central ranking is known and proposed a asymptotic
test based on the normal approximation of the sufficient statistic of his model. Even if there is no
guaranty of how good this normal approximation is, it seems reasonable when the central ranking
is fixed, since the distribution of the sufficient statistics is symmetric due to the fact that Mahonian
numbers are symmetric, i.e. Nk = Nm(m−1)/2−k where Nk is the kth Mahonian number of order m.
One can compute the mean and variance of sufficient statistic based on [20] as

Eπ∼M1,π0
[Tπ0

(π)] =

M∑
i=0

iNi
m! =

m(m− 1)

4

and

Vπ∼M1,π0
[Tπ0(π)] =

m(2m+ 5)(m− 1)

72
.

This approximate solution is easy to use, since uniformity testing boils down to testing equality of
expectation of normal distributions with known variance. Here we consider a more general testing
problem where we do not assume that the central ranking is known and fixed. We refer to this
approach as Mallows approximate test (MA). In this test, the normal approximation seems not so
accurate as Figure 2 shows. The power of the test converges to 1 very slowly as φ is getting far from
zero. Algorithm UNIF achieves a power that is close to one much faster.
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Figure 2: Power function of MA and UNIF algorithms with various number of items m ∈
{10, 100, 1000, 10000} and various sample size n ∈ {10000, 100, 2, 2}, respectively.

7.3 Uniformity Testing with Privacy

In this set of experiments, we compare the performance of the presented DP algorithms including
the following three of them: (1) bucketed UNIF which consists of running the UNIF algorithm on
d1/ε0e batches of data indpendently and take the output of one of the runs uniformly at random. We
refer to this approach as BUNIF. (2) We run the DP algorithm with truncated Laplace noise that
is defined in Algorithm 3 which we refer to as TRUNC. (3) We run also the locally differentially
private algorithm which is defined in Subsection 6. We set ε0 = 0.33 thus the BUNIF power curve
corresponds to the UNIF power curve with 1/3 of the sample complexity.

The power curves of the algorithms are shown in Figure 3. Note that the TRUNC does outperforms
BUNIF when φ is close to 1, since in that case µ is very close to 1 and the first term is the dominating
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Figure 3: Power function of BUNIF, TRUNC and LDP algorithms with various number of items
m ∈ {10, 100, 500, 1000} and various sample size. We set the sample size for central DP algorithms,
i.e. BUNIF and TRUNC, to n ∈ {10000, 1000, 1000, 100}, respectively. In case of LDP, the
sample size was set to n = {100k, 200k, 300k, 300k}. The privacy budget ε0 was set to 1/3.

one in Theorem 6. Nevertheless, the power of BUNIF algorithm converges faster to 1 when the
underlying model getting farther from the uniformity. In general, the DP algorithms requires much
more samples than the non-private algorithms. This difference is much more pronounced in case
of LDP. However, local differential privacy is well known to provide some of the strongest privacy
guarantees as it is impossible for an adversary to know the true ranking from the output of the channel.

8 Conclusion and Future Work

We introduced uniformity testing algorithm with a sample complexity upper bound of orderO(1/
√
m)

for ranking data when the alternative model class is constituted by the single parameter Mallows
model. The proposed methods can work based on 2 samples, when m is large enough. We also
devised testing algorithms in the central and local differential privacy framework. We demonstrated
the versatility of these testers on synthetic data. We found that they are scalable, since they could
handle large m including m = 10000, and are able to detect non-uniformity with very small error, i.e.
1− φ ≈ 10−5 difference could be detected with zero error based on two samples when m = 10000.

One open question is to provide lower bounds on the sample complexity of uniformity testing of
Mallows models. It turned out that this is a very challenging problem in the non-private case since,
for example, using information theoretic lower bounding technique based on LeCam’s theorem, one
needs to upper bound KL divergence KL(Mφε,π0

,M1,π0
) = ln2 φε∇2 lnZ(ξ) where ξ ∈ [lnφε, 0].

For doing so, one needs to have an upper bound for the difference of φε from 1 in terms of ε
and m. Note that φε depends on the total variation distance, thus it seems unavoidable to get a
bound for Z(φε) as well, which is a very hard nut to crack. So we leave this lower bound as future
work. Nevertheless, note that with m = 2, the single parameter Mallows class includes the class
of Bernoulli distributions, thus the lower bounds that are devised for private uniformity testing of
Bernoulli distributions also apply to private uniformity testing of Mallows models. More concretely,
[5] showed that testing Bernoulli with parameter in a central DP setting cannot be done using o(1/ε0)
which implies that our central DP algorithm has optimal dependency on the privacy budget parameter.
On the other hand, [6] showed that in the LDP setting, a lower bound on the sample complexity of
testing is Ω(1/ε0

2). Theorem 7 matches this lower bound when m = 2, since then eγ − 1 ≈ ε0 and
the sample complexity bound is O(1/ε0

2) in this case. Lastly, a natural extension of our work is to
consider more fine grained atom in the privacy setting, namely one might want to protect each pair of
the data instead of whole rankings.

Acknowledgments and Disclosure of Funding

Dimitris Fotakis is supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and
the procurement of high-cost research equipment grant”, project BALSAM, HFRI-FM17-1424.

References
[1] Jayadev Acharya, Clement Canonne, Cody Freitag, and Himanshu Tyagi. Test without trust:

Optimal locally private distribution testing. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of the Twenty-Second International Conference on Artificial Intelligence

10



and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 2067–2076.
PMLR, 16–18 Apr 2019.

[2] Jayadev Acharya, Clément L. Canonne, Yanjun Han, Ziteng Sun, and Himanshu Tyagi. Domain
compression and its application to randomness-optimal distributed goodness-of-fit. In Confer-
ence on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], pages
3–40, 2020.

[3] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Suresh. A competitive test for
uniformity of monotone distributions. In Carlos M. Carvalho and Pradeep Ravikumar, editors,
Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics,
volume 31 of Proceedings of Machine Learning Research, pages 57–65, Scottsdale, Arizona,
USA, 29 Apr–01 May 2013. PMLR.

[4] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private testing of identity and
closeness of discrete distributions. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 6879–6891, 2018.

[5] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private testing of identity and
closeness of discrete distributions. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 6879–6891, Red Hook, NY, USA, 2018.
Curran Associates Inc.

[6] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Hadamard response: Estimating distributions
privately, efficiently, and with little communication. In Kamalika Chaudhuri and Masashi
Sugiyama, editors, Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages
1120–1129. PMLR, 16–18 Apr 2019.

[7] Tugkan Batu and Clément L. Canonne. Generalized uniformity testing. In Proc. of the 58th
IEEE Symposium on Foundations of Computer Science (FOCS 2017), pages 880–889. IEEE
Computer Society, 2017.

[8] Róbert Busa-Fekete, Dimitris Fotakis, Balázs Szörényi, and Manolis Zampetakis. Optimal
learning of mallows block model. CoRR, 2019.

[9] Róbert Busa-Fekete, Eyke Hüllermeier, and Balázs Szörényi. Preference-based rank elicitation
using statistical models: The case of Mallows. In ICML, volume 32 of JMLR Workshop and
Conference Proceedings, pages 1071–1079. JMLR.org, 2014.

[10] Bryan Cai, Constantinos Daskalakis, and Gautam Kamath. Priv’it: Private and sample efficient
identity testing. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 635–644, 2017.

[11] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Sample-optimal identity
testing with high probability. Electron. Colloquium Comput. Complex., 24:133, 2017.

[12] Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Testing identity of structured
distributions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1841–1854, 2015.

[13] Apple Inc. Differential Privacy Team. Learning with privacy at scale. 2017.

[14] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, USA, 1st edition, 2009.

[15] Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications of Models
of Computation, 5th International Conference, TAMC 2008, Xi’an, China, April 25-29, 2008.
Proceedings, volume 4978 of Lecture Notes in Computer Science, pages 1–19. Springer, 2008.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

11



[17] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3–4):211–407, August 2014.

[18] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, page 1054–1067, 2014.

[19] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches
in privacy preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 211–222, 2003.

[20] M. A. Fligner and J. S. Verducci. Distance based ranking models. Journal of the Royal Statistical
Society. Series B (Methodological), 48(3):359–369, 1986.

[21] Michael A Fligner and Joseph S Verducci. Distance based ranking models. Journal of the Royal
Statistical Society. Series B (Methodological), pages 359–369, 1986.

[22] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electron.
Colloquium Comput. Complex., 7(20), 2000.

[23] Guy Lebanon and Yi Mao. Non-parametric modeling of partially ranked data. In Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pages 857–864, 2007.

[24] Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with pairwise-
preference data. J. Mach. Learn. Res., 15(1):3783–3829, 2014.

[25] C. Mallows. Non-null ranking models. Biometrika, 44(1):114–130, 1957.

[26] John I. Marden. Analyzing and Modeling Rank Data. Chapman & Hall, 1995.

[27] Marina Meila and Le Bao. An exponential model for infinite rankings. Journal of Machine
Learning Research, 11:3481–3518, 2010.

[28] Sumit Mukherjee. Estimation in exponential families on permutations. The Annals of Statistics,
44(2):853–875, 2016.

[29] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Trans. Inf. Theory, 54(10):4750–4755, 2008.

[30] Mingxuan Sun, Guy Lebanon, and Paul Kidwell. Estimating probabilities in recommendation
systems. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 734–742, 2011.

[31] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity
testing. SIAM J. Comput., 46(1):429–455, 2017.

[32] L. H. Philip Yu, Jiaqi Gu, and Hang Xu. Analysis of ranking data. Wiley Interdisciplinary
Reviews: Computational Statistics, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] I hope

there is no negative societal impacts of my work
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

12



2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] They are presented in

the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We reported the number of repetition. Since all number
we reported are average of binary values, they standard error is implied by the number
of reparations.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A] We used data centers to
compute the experiments. I believe that it is not so relevant to this work how long the
computation did take.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] We used synthetic data.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



Supplementary material for “Private and Non-private
Uniformity Testing for Ranking Data”

A Proof of Theorem 8

Theorem 8. For all δ > 0, if φε ≤ 1 − 8

m+7−
√

12 ln(2/δ)m
, then Algorithm 2SAMP, defined in

Algorithm 1, uses 2 samples and is an (ε, δ)-uniformity test of Mallows models.

Proof. of Theorem 8 For each item j, we define Vj(σ, π) as the number of discordant item pairs in
rankings σ and π involving item j, i.e. Vj(σ, π) =

∑
1≤i<j I{(σi − σj)(πi − πj) < 0}. We observe

that dK(σ, π) =
∑m
j=1 Vj(σ, π). We also observe that if σ ∼ Mφ,π0

, then the random variables
Vj(σ, π0) are independent and follow a truncated geometric distribution2 T G(φ, j − 1) (see e.g., [8,
Section 5]). Under the null hypothesis, the Kendall tau distance dK(π1, π2) is the sum of m − 1
independent uniform random variables T G(1, 1), . . . , T G(1,m− 1). Therefore,

E[dK(π1, π2)] =

m−1∑
j=1

j/2 = m(m− 1)/4

Applying the Hoeffding bound and using that
∑m−1
j=1 j2 = m(m − 1)(2m − 1)/6 ≤ m3/6, we

obtain that

P

[
dK(π1, π2) ≤ m(m− 1)

4
−
√
m3 ln(1/δ)

12

]
≤ δ .

Therefore, the probability that Algorithm 1 rejects under the null hypothesis is at most δ.

Since the total variation distance ofMφ,π0
toM1,π0

is decreasing with φ, we can assume that the
spread parameter of the alternative hypothesis is φε. Under the alternative hypothesis, the Kendall tau
distance dK(σ, π0) of any σ ∼Mφε,π0

to the central ranking π0 is the sum of m− 1 independent
truncated geometric random variables T G(φε, 1), . . . , T G(φε,m− 1). Therefore,

Eσ∼Mφε,π0
[dK(σ, π0)] =

mφε
1− φε

−
m−1∑
k=1

(k + 1)φk+1
ε

1− φk+1
ε

.

As before, a standard application of the Hoeffding bound implies that for any σ ∼Mφε,π0 ,

P

[
dK(σ, π) ≥ E[dK(σ, π0)] +

√
m3 ln(2/δ)

12

]
≤ δ/2 .

By the triangle inequality, we obtain that with probability at least 1−δ, dK(π1, π2) < 2E[dK(σ, π0)]+

2
√

m3 ln(2/δ)
12 . Therefore, under the alternative hypothesis, for all φε that satisfy

8

(
mφε

1− φε
−
m−1∑
k=1

(k + 1)φk+1
ε

1− φk+1
ε

)
+
√

12m3 ln(2/δ) ≤ m(m− 1) , (1)

with probability at least 1 − δ, dK(π1, π2) < m(m−1)
4 −

√
m3 ln(1/δ)

12 and Algorithm 1 rejects. To
simplify (1), we note that φε ≤ 1− 8

m+7−
√

12 ln(2/δ)m
implies (1).

2A truncated geometric distribution T G(φ, `) with parameters ` ≥ 1 and φ ∈ [0, 1] has probability mass
φi(1− φ)/(1− φ`+1) on each i ∈ [`], and 0 everywhere else. E.g., T G(φ, 1) is a Bernoulli distribution with
success probability φ/(1 + φ), T G(φ,∞) is a geometric distribution, and T G(1, `) is a uniform distribution in
{0, . . . , `}. It is not hard to verify that EX∼T G(φ,`)[X] = φ

1−φ − (`+ 1) φ`+1

1−φ`+1 (see e.g., [8, Lemma 21]).
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B Proof of Theorem 5

Proof. of Theorem 5 For simplicity, we assume that m is even. We observe that for each item pair i
and i+ 1,

kE[Yi(i+1)] = V

[
k∑
`=1

X`
i(i+1)

]
+ E

[
k∑
`=1

X`
i(i+1)

]2
(2)

and

k2 V[Yi(i+1)] = E

( k∑
`=1

X`
i(i+1)

)4
− k2 E[Yi(i+1)]

2 (3)

We also observe that
{
X`
i(i+1)

}
`∈[k]

are mutually independent. The same holds for

Y12, Y34, . . . , Y(m−1)m, because for any fixed central ranking π∗ and any sample π`, X`
i(i+1) is

determined by the independent random variables Vi(π`, π∗) and Vi+1(π`, π
∗), see in Lemma 2 of [8].

Under the null hypothesis, E[X`
i(i+1)] = 0 and V[X`

i(i+1)] = 1. In addition, under null hypothesis it
is easy to see that

E

( k∑
`=1

X`
i(i+1)

)4
 =

1

2k

k∑
`=0

(
k

`

)
(2l − k)4 = k(3k − 2)

By (2) and (3), E[Yi(i+1)] = 1 and V[Yi(i+1)] = 2 − 2
k ≤ 2, which implies that E[Y ] = m/2 and

V[Y ] ≤ m. A standard Chernoff bound implies that under the null hypothesis (see for example
Section 1.7 in [14]), the probability that Algorithm 2 rejects is

P[Y ≥ m/2 + 2
√
m ln(1/δ)] ≤ δ

We proceed to analyze the case where the samples are drawn from the alternative hypothesis. Let
π∗ be the (unknown fixed) central ranking of the alternative hypothesis. We next show that since π0
is a random ranking, a constant fraction of item pairs i(i+ 1), for which the estimators Yi(i+1) are
computed, are at distance at least m/8 in π∗ with probability at least 1− δ/2. One way to generate
π0 is by repeatedly selecting a uniform random item from π∗, without replacement, and put it at the
next available position of π0. Then, we observe that the following holds for the first m/2 items of
π0 : for any fixed item π0(i), with odd i, the probability that π0(i + 1) is at distance at least m/8
in π∗ to π0(i) is at least 1/2, due to the fact that π0(i+ 1) is chosen uniformly at random from the
remaining items of π∗, which are no less than m/2. Hence, the expected number of consecutive
item pairs i(i+ 1) in π0 that are at distance at least m/8 in π∗, is at least m/8. A standard Chernoff
bound shows that with probability at least 1 − δ/2, at least m/8 −

√
m ln(2/δ)/16 pairs i(i + 1)

have items that are at distance at least m/8.

As in the proof of Theorem 5, we assume that the spread parameter of the alternative hypothesis is φε.
It is not hard to verify that for any q ≥ 1, (i) 1/(1+φqε) is the probability that for any item pair i and j,
with π∗(j)− π∗(i) = q in the central ranking π∗, i precedes j in a sample π` fromMφε,π∗ ; and (ii)
1/(1 + φqε) is a lower bound on the probability that for any item pair i and j, with π∗(j)− π∗(i) ≥ q
in π∗, i precedes j in π`. Hence, throughout the proof, for simplicity and without loss of generality,
we always consider two extreme cases for item pairs i(i + 1) for which the estimators Yi(i+1) are
computed. Specifically, we assume that there are m1 = max{m/8 −

√
m ln(2/δ)/16, 0} pairs

i(i+ 1) that appear at distance m/8 in π∗. For them, we use µ =
1−φm/8ε

1+φ
m/8
ε

as a lower bound on the
bias towards observing i preceding i + 1 in a sample π` fromMφε,π∗ . For convenience, we refer
to these pairs as good and to the remaining pairs as bad. For the remaining m2 = m/2−m1 bad
pairs i(i+ 1), we assume that i and i+ 1 appear at consecutive positions in π∗ and use µ2 = 1−φε

1+φε
as a lower bound on the bias towards observing i preceding i + 1 in a sample π` from Mφε,π∗ .
Doing so and conditioning on the event of the previous paragraph, which happens with probability
at least 1− δ/2, we essentially assume the distribution of Y that corresponds to the worst case for
Algorithm 2.
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Then, under the alternative hypothesis, E[X`
i(i+1)]

2 = µ2 and V[X`
i(i+1)] = 1 − µ2, for all m1

good pairs, and E[X`
i(i+1)]

2 = µ2
2 and V[X`

i(i+1)] = 1 − µ2
2, for all m2 bad pairs. By (2) and

(3), E[Yi(i+1)] = 1 − µ2 + kµ2 and V[Yi(i+1)] ≤ 6kµ2 + 18, for all m1 good pairs, E[Yi(i+1)] =

1−µ2
2+kµ2

2 and V[Yi(i+1)] ≤ 6kµ2
2+18, for allm2 bad pairs. Therefore, E[Y ] ≥ m/2+m1(k−1)µ2

and V[Y ] ≤ 3mkµ2 + 9m, because µ2 ≤ µ. Then, a standard Chernoff bound implies that under the
alternative hypothesis,

P[Y ≤ E[Y ]− 2
√

ln(2/δ)V[Y ]] ≤ δ/2
Therefore, under the alternative hypothesis, for all k that satisfy

E[Y ]− 2
√

ln(2/δ)V[Y ] ≥ m/2 + 2
√
m ln(1/δ) , (4)

with probability at least 1 − δ/2, Y > m/2 + 2
√
m ln(1/δ) and Algorithm 2 rejects. Under the

worst case assumption that if the number of good pairs is less than m1, Algorithm 2 accepts, we get
that for all k that satisfy (4), Algorithm 2 rejects with probability at least 1− δ.

Using the lower bound on E[Y ] and the upper bound on V[Y ] above, one can verify that

k ≥ 1 +
12m ln(2/δ)

m2
1µ

2
+

10

µ2

√
m ln(2/δ)

m2
1

(5)

implies (4). To get the asymptotic bound of the theorem, we use that for most reasonable values of m

and δ, m1 = Θ(m), and m1 ≥ ln(2/δ), which implies that
√

ln(2/δ)
m1

≥ ln(2/δ)
m1

.

C Naive Central DP Approach

Algorithm 4 Central Uniformity CDP test with Laplace noise (LAP)
1: Input: significance δ > 0, tolerance ε > 0, DP parameter ε0
2: Fix any π0 ∈ Sm
3: Let φε = supφ∈[0,1]{dTV (M1,π0

,Mφ,π0
) > ε}

4: Take k = (1+φε)
2

(1−φε)2

(
48 ln(1/δ)

m + 16
√

ln(1/δ)
m

)
samples Dk .

5: Let π1, . . . , πk ∈ Sm denote the samples
6: X`

i(i+1) = 1, if i �π` i+ 1, and −1 otherwise.

7: Let Y ′i(i+1) =
(

1√
k

(∑k
`=1X

`
i(i+1)

))2
8: Let Y ′ = Y ′12 + Y ′34 + · · ·+ Y ′(m−1)m + Lap

(
2m
ε0

)
9: if Y ′ < m/2 + 2

√
m(1 + (8m/ε0)2) ln(1/δ) then

10: Output 0 . ACCEPT
11: else
12: Output 1 . REJECT

Theorem 9. For all δ, ε > 0, Algorithm 4 with

k = Θ

(
(1 + φε)

2

(1− φε)2

(
48

m
ln

1

δ
+

6m

ε0

√
ln

1

δ

))
sample is an (ε, δ) finite confidence test and (ε0, 0) differential private forH0 :M∈ R0 = {M1,π0

}
vs. H1 :M∈ R1 = {Mφ,π : dTV (M1,π0

,Mφ,π) > ε}.

Proof. We start with computing the sensitivity of the test statistic for two neighbouring data D and
D′ which differs in one single ranking from each other.

Claim 10. For two neighboring datasets D and D′ which differs in one single ranking from each
other, it holds that

|Y (D)− Y (D′)| ≤ 2m(k − 1)

k
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Proof. Proof of Claim 10 Simple calculation yields that

|Y (D)− Y (D′)| =

∣∣∣∣∣∣
m/2∑
i=1

( 1√
k

k∑
`=1

X`
(2i−1),2i

)2

−

(
1√
k

k∑
`=1

X ′`(2i−1),2i

)2
∣∣∣∣∣∣

≤ 4

k

∣∣∣∣∣∣
m/2∑
i=1

(
k∑
`=1

X`
(2i−1),2i − 1

)∣∣∣∣∣∣
≤ 2m(k − 1)

k
≤ 2m

The privacy guaranty does hold because of Theorem 3.6 of [17]. Therefore we focus on correctness.
We need to compute the increase in variance that is resulted in by the Laplace noise where Z ∼
Lap

(
2m
ε0

)
• Under null, we have E[Y ′] = E[Y + Z] = m/2 and

V[Y ′] = V[Y ] + V[Z] ≤ m ·
(

1 +
8m

ε02

)
.

A standard Chernoff bound implies that under the null hypothesis (see for example Section
1.7 in [14]), the probability that Algorithm 2 rejects is

P

[
Y ′ ≥ m/2 + 2

√
m ·

(
1 +

8m

ε02

)
ln(1/δ)

]
≤ δ

Thus the algorithm accepts under null hypothesis with probability at least 1− δ.

• Under alternative, we have E[Y ′] = E[Y + Z] = m(1 − µ2 + kµ2)/2 as in the proof of
Theorem 5 and that

V[Y ′] = V[Y ] + V[Z] ≤ 3mkµ2 + 9m+ 8

(
m

ε0

)2

To reject the alternative with probability at least 1−δ, k should be chosen so as the following
must hold:

m/2 + 2

√√√√√m ·
(

1 +
8m

ε02

)
ln(1/δ)︸ ︷︷ ︸

=B

≤

≤ E[Y ′]− 2
√

ln(1/δ)V[Y ′]

=
m(1− µ2 + kµ2)

2
− 2

√
ln

1

δ
(3mkµ2 + 8m) + 8

(
m

ε0

)2

ln
1

δ

and equivalently it must hold that

0 ≤ mµ2(k − 1)

2
− 2

√
3mkµ2 ln

1

δ
+ 8B − 2

√
B . (6)

By setting,

k =
1

µ2

(
48

m
ln

1

δ
+

6m

ε0

√
ln

1

δ

)
it yields that (6) does indeed hold.
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D Proof of Theorem 6

Proof. of Theorem 6. First, we adapt [10, Claim 1], which applies to Laplace random variables, in
order to control the variance stemming from Laplace noise. Hence, we get that:

Claim 11. Let Z ∼ Lap
(

4
kδε0

)
. Then, for all δ > 0, it holds that

P
(
|Z| ≤ 2

kδε0
ln

1

δ

)
= 1− δ .

Regarding line 10 of Algorithm 3, we need to show that under the null hypothesis, the condition in
line 10 is not satisfied with high probability. The following follows from the Hoeffding bound, applied
to mk/2 random variables X`

(2i−1),2i of the double sum in line 10, and the fact that X`
(2i−1),2i are

Rademacher random variables under the null hypothesis.

Claim 12. Let us suppose H0. Then for all δ > 0, it holds that

P

∣∣∣∣∣∣ 2

mk

m/2∑
i=1

k∑
`=1

X`
(2i−1),2i

∣∣∣∣∣∣ ≤
√

2 ln(2/δ)

mk

 ≥ 1− δ .

Using Claim 12 and the fact that |Z| ≤ 4
δ2kε0

ln 1
δ2

, due to the assertion in line 3, we obtain that under
the null hypothesis, the condition in line 10 succeeds with probability at most δ1.

In the remaining analysis, we assume that m ≥ 12 ln(2/δ3), so that m1 ≥ m/16 under the null
hypothesis, with probability at least 1 − δ3 (i.e., a constant fraction of item pairs i(i + 1) appear
at a distance at least m/8 in the central ranking π∗ of the null hypothesis, under H1, with high

probability), and use µ =
1−φm/8ε

1+φ
m/8
ε

. However, we should highlight that essentially the same analysis
can be applied to any m, with appropriately chosen values of µ and m1. More specifically, as
explained after the proof of Theorem 5, if m is not large enough, we can tradeoff the exponent of φε
in µ against the size of m1, so that m1 = Θ(m), under the null hypothesis, with probability at least
1− δ3. Moreover, if m is small, we can use µ′ = 1−φε

1+φε
, in which case we focus on the worst case

where all m/2 item pairs i(i+ 1) appear at consecutive positions in the central ranking π∗ of the null
hypothesis, with certainty.

The next claim is useful to distinguish between H0 and H1 in line 16 of Algorithm 3.

Claim 13. Let us denote Y ′ = 16(Y−m/2)
mµ2(k−1) . Then, if m ≥ 12 ln(2/δ3), we have that

• Under H0, E[Y ′] = 0 and V[Y ′] ≤ 256
mµ4(k−1)2 .

• UnderH1, E[Y ′] ≥ 1, with probability at least 1−δ3, and V[Y ′] ≤ 1536
mµ2(k−1) + 2304

mµ4(k−1)2 .

Proof. of Claim 13. In the proof of Theorem 5, we show that under the null hypothesis, E[Y ] = m/2,
which implies that E[Y ′] = 0, and V[Y ] ≤ m, which implies that V[Y ′] ≤ 256

mµ4(k−1)2 .

Moreover, in the proof of Theorem 5, we show that under the alternative hypothesis, the number of
item pairs i(i + 1) appearing at a distance at least m/8 in the central ranking π∗ of H1 is at least
m1 = max{m/8−

√
m ln(2/δ3)/16, 0}, with probability at least 1− δ3. Then, m ≥ 12 ln(2/δ3)

implies that m1 ≥ m/16, with probability at least 1− δ3. Under the assumption that m1 ≥ m/16,
E[Y ] ≥ m/2 +m1(k − 1)µ2, shown in the proof of Theorem 5, implies that E[Y ′] ≥ 1.
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As for the variance, under the alternative hypothesis, in the proof of Theorem 5, we show that
V[Y ] ≤ 3mkµ2 + 9m, which implies that:

V[Y ′] ≤ 256 (3mkµ2 + 9m)

m2µ4(k − 1)2

=
768k

mµ2(k − 1)2
+

2304

mµ4(k − 1)2

≤ 1536

mµ2(k − 1)
+

2304

mµ4(k − 1)2

assuming that k ≥ 2.

Applying the one-side Chebyshev’s inequality along with Claim 13, we obtain that under H0, for any
t > 0,

P (Y ′ ≥ t) ≤ 256

t2mµ4(k − 1)2
, (7)

while under H1, for any t > 0,

P (Y ′ ≤ 1− t) ≤ 1536

t2mµ2(k − 1)
+

2304

t2mµ4(k − 1)2
(8)

First, we analyze correctness. Under the null hypothesis H0, Algorithm 3 accepts in line 3 with
probability δ2/2. Then, the algorithm gets to line 10, with probability 1− δ2, where H0 is rejected
with probability at most δ1 based on Claim 12. Finally, the Algorithm gets to line 16 with probability
at least (1− δ2)(1− δ1) where, based on (7), for any fixed t > 0, H0 gets accepted with probability
at least

(1− t)
(

1− 256

t2mµ4(k − 1)2

)
.

Thus the probability of acceptance is lower bounded by
δ2
2

+ (1− δ2)(1− δ1)(1− t)
(

1− 256

t2mµ4(k − 1)2

)
.

Setting δ1 = δ2 = t = δ/6, we get that for any k ≥ 1 + d 45
δ3/2µ2

√
m
e, under H0, Algorithm 3 accepts

the null hypothesis with probability at least 1− δ.

Under H1, Algorithm 3 rejects the null hypothesis in line 3 with probability δ2/2. We assume that
under the alternative hypothesis, the probability of rejection in line 10 is 0. Then, based on (8), for
any fixed t > 0, we conclude that under the alternative hypothesis, the probability of rejection is at
least:

δ2
2

+ (1− δ3)(1− δ2)(1− t)
(

1− 1536

t2mµ2(k − 1)
− 2304

t2mµ4(k − 1)2

)
Setting δ2 = δ3 = t = δ/6, we get that for any k ≥ 1 + d 221184δ3µ2me + d 576

δ3/2µ2
√
m
e, under H1,

Algorithm 3 rejects the null hypothesis with probability at least 1− δ.

In summary, the sample complexity required for correctness is

k ≥ 1 + max

{⌈
45

δ3/2µ2
√
m

⌉
,

⌈
221184

δ3µ2m

⌉
+

⌈
576

δ3/2µ2
√
m

⌉}
= Θ

(
1

µ2

(
1

δ3/2
√
m

+
1

δ3m

))
We proceed to analyze privacy, by adapting the approach in the proof of [10, Theorem 3]. We first
observe that the minimum probability of any output in Algorithm 3 is δ2/2. This holds because in
line 3, if |Zi| > 4

kδ2ε0
ln 1

δ2
, which happens with probability δ2, the algorithm returns either 0 or 1,

with equal probability.

Using that the minimum probability of any output in Algorithm 3 is δ2/2, we can reduce (0, (δ2ε0)/2)-
privacy to (ε0, 0)-privacy as follows:

P(M(D) = b) ≤ P(M(D′) = b) + (δ2ε0)/2

≤ (1 + ε0)P(M(D′) = b)

≤ eε0P(M(D′) = b)
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where b ∈ {0, 1}, and D and D′ differ from each other in a single ranking.

We next show that Algorithm 3 is (0, (δ2ε0)/2)-private. When Algorithm 3 returns in line 3, the
output does not depend on the input. Hence, this part of the algorithm is fully private.

Regarding line 10, let us consider two neighboring datasets D and D′. Switching from D and D′ can
change at most m/2 terms in the following sum:∣∣∣∣∣∣ 2

mk

m/2∑
i=1

k∑
`=1

X`
(2i−1),2i

∣∣∣∣∣∣ ,
where corresponding terms that differ from each other differ by 2. Then, the sensitivity of the sum
is 2/k, and by [17, Theorem 3.6], adding Laplacian noise Z ∼ Lap

(
4

kδ2ε0

)
to the sum makes this

part of the algorithm (0, (δ2ε0)/2)-private.

Finally, when the algorithm returns in line 16, we compute the sensitivity of the test statistics for
neighboring datasets D′ and D′, which differ in one ranking, as follows:

|Y ′(D)− Y ′(D′)| = 16

mµ2(k − 1)

∣∣∣∣∣∣
m/2∑
i=1

( 1√
k

k∑
`=1

X`
(2i−1),2i

)2

−

(
1√
k

k∑
`=1

X ′`(2i−1),2i

)2
∣∣∣∣∣∣

≤ 64

mµ2k(k − 1)

∣∣∣∣∣∣
m/2∑
i=1

(
k∑
`=1

X`
(2i−1),2i − 1

)∣∣∣∣∣∣
=

32

µ2(k − 1)

∣∣∣∣∣∣ 2

mk

m/2∑
i=1

(
k∑
`=1

X`
(2i−1),2i − 1

)∣∣∣∣∣∣
≤ 32

µ2(k − 1)

(√
2 ln(2/δ1)

mk
+

4

δ2kε0
ln

1

δ2
+

1

k

)

Using that δ1 = δ2 = δ/6, as in the correctness part, each term should be smaller than δ2ε0/2 =
δε0/12. Therefore,

k ≥ 1 + max

{⌈
67 ln1/3(12/δ)

µ4/3m1/3ε02/3δ2/3

⌉
,

⌈
96
√

ln(6/δ)

µε0δ

⌉
,

⌈
20

µ
√
δε0

⌉}
where the last term can be omitted, since it is dominated by the second term.
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E Proof of Theorem 7

Proof. When a random variable X ∈ {−1,+1} such that P(X = 1) = p passes through the channel
then for the output X ′ it holds that

P(X ′ = −1) =
1

eγ + 1
+ p

eγ − 1

eγ + 1

and
P(X ′ = −1) =

eγ

eγ + 1
− pe

γ − 1

eγ + 1
.

thus
E[X ′] = (2p− 1)

eγ − 1

eγ + 1

That means the bias of the binary value is going to change, otherwise the proof goes analogous to the
proof of Theorem 5.

F LDP algorithm

Algorithm 5 Local-DP curator algorithm
1: Input: significance δ > 0, tolerance ε > 0
2: Initialization: Picks a random random ranking π0 uniformly at random and sends it to each peer
3: Renumber the items so that π0 = (1, . . . ,m)
4: Let φε = supφ∈[0,1]{dTV (M1,π0

,Mφ,π0) > ε}
5: Set k as in Theorem 7 and gather (X

′`
1(2), . . . , X

′`
(m−1)m) for ` ∈ [k] from peers.

6: Let Yi(i+1) =
(

1√
k

∑k
`=1X

`
i(i+1)

)2
7: Let Y = Y12 + Y34 + · · ·+ Y(m−1)m
8: if Y < m/2 + 2

√
m ln(1/δ) then

9: Output 0 . ACCEPT
10: else
11: Output 1 . REJECT

Algorithm 6 Local-DP algorithm at peer `
1: Input: significance δ > 0, tolerance ε > 0, privacy parameter ε0
2: if Public randomness is used then
3: Receives π0 ∈ Sm from the curator algorithm
4: else
5: Set π0 to the identity ranking
6: Renumber the items so that π0 = (1, . . . ,m)
7: Let π` ∈ Sm denote the samples at peer `
8: X`

i(i+1) = 1, if i �π′` i+ 1, and −1 otherwise.

9: X
′`
i(i+1) ∼W

(
.|X`

i(i+1)

)
with parameter γ = 2ε0

m . Adding RR noise

10: Send (X
′`
1(2), . . . , X

′`
(m−1)m) to the curator algorithm
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