
A Notation

Table 1 provides an overview of the notation used in this paper. We distinguish between variables
used in the original model described in Section 2 [7] and quantities necessary for our inference
method described in Section 3.

Table 1: Notation
xt ∈ Rm state at time t
ut ∈ Rp action
yt ∈ Rk agent’s observation of the state
T number of time steps
A,B,H system dynamics and agent’s observation matrices
ξt,ωt,ηt, εt, εt standard Gaussian noise terms
V,W,E scaling matrices for system, observation and estimation noise
C1, . . . Cd scaling matrices for control-dependent system noise
D1, . . . Dc scaling matrices for state-dependent observation noise
Qt state-dependent costs
Rt control-dependent costs
x̃t agent’s state estimate
Kt filter gain matrices
Lt control gain matrices
S researcher’s observation matrix
U scaling matrix for researcher’s observation noise

θ model parameters
N number of trials
F, F̃ dynamics of the joint dynamical system
ζt,ϑt standard Gaussian noise terms
M,M̃ scaling of the signal-dependent noises in the joint dynamical system
G scaling of the signal-independent noise in the joint dynamical system
ot ∈ Rs experimenter’s observation of the state
µ̂t, Σ̂t mean and covariance of the Gaussian approximation of state and agent’s estimate
µ̂x̃|x, Σ̂x̃|x mean and covariance of the experimenter’s belief about the agent’s estimate

B Approximate optimal control of LQG systems with sensorimotor noise
characteristics

For approximately solving a system as described in Section 2, the optimal filters Kt and controllers
Lt can be iteratively determined in an alternating fashion, leaving the respective other one constant
Todorov [7].

Given filter matrices Kt, the optimal control matrices Lt are computed in form of a backward pass as

Lt =

(
Rt +BTP xt+1B +

∑
i

CTi
(
P xt+1 + P et+1

)
Ci

)−1

BTP xt+1A

P xt = Qt +ATP xt+1 (A−BLt) +
∑
i

DT
i K

T
t P

e
t+1KtDi

P et = ATP xt+1BLt + (A−KtH)
T
P et+1 (A−KtH)

st = tr
(
P xt+1V V

T + P et+1

(
V V T + EET +KtWWTKT

t

))
+ st+1,

where we initialize P xT = QT , P
e
T = 0, sT = 0.
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Given optimal control matrices Lt, the optimal filter matrices Kt are computed in form of a forward
pass as

Kt = AΣetH
T

(
HΣetH

T +WWT +
∑
i

Di

(
Σet + Σx̃t + Σẽxt + Σx̃et

)
DT
i

)−1

Σet+1 = V V T + EET + (A−KtH) ΣetA
T +

∑
i

CiLtΣ
x̃
tL

T
t C

T
i

Σx̃t+1 = EET +KtHΣetA
T + (A−BLt) Σx̃t (A−BLt)T

+ (A−BLt) Σx̃et H
TKT

t +KtHΣẽxt (A−BLt)T

Σx̃et+1 = (A−BLt) Σx̃et (A−KtH)
T − EET ,

with Σẽxt =
(
Σx̃et

)T
and we initialize

Σe1 = Σ1

Σx̃1 = x̃1x̃
T
1

Σx̃e1 = 0.

C Joint update equation derivation

C.1 Fully-observable state

Stacking Eq. (7) and Eq. (8) into a vector, gives

[
xt+1

x̃t+1

]
=


Axt −BLx̃t + V ξt −

d∑
i=1

εitCiLtx̃t,

(A−BLt −KtH)x̃t +KtHxt +KtWωt +Kt

c∑
i=1

εitDixt + Eηt


=

[
A

KtH

]
xt +

[
−BLt

A−BLt −KtH

]
x̃+

[
0
Kt

] c∑
i=1

εitDixt +

d∑
i=1

εitCi

[
−Lt

0

]
x̃

+

[
V 0 0
0 KtW E

] [ξt
ωt
ηt

]

=

([
A

KtH

]
+

[
0
Kt

] c∑
i=1

εitDi

)
xt +

([
−BLt

A−BLt −KtH

]
+

d∑
i=1

εitCi

[
−Lt

0

])
x̃

+

[
V 0 0
0 KtW E

] [ξt
ωt
ηt

]

=: (Ft +Mt

c∑
i=1

εitDi)xt + (F̃t +

d∑
i=1

εitCiM̃t)x̃+Gtζt.

C.2 Partially-observable state

Stacking Eq. (7), Eq. (8), and Eq. (12) into a vector, gives

[
xt+1

x̃t+1

]
=



Axt −BLx̃t + V ξt −
d∑
i=1

εitCiLtx̃t

(A−BLt −KtH)x̃t +KtHxt +KtWωt +Kt

c∑
i=1

εitDixt + Eηt

S

(
Axt −BLx̃t + V ξt −

d∑
i=1

εitCiLtx̃t

)
+ Uϑt
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=

[
A

KtH
SA

]
xt +

[ −BLt
A−BLt −KtH
−SBLt

]
x̃+

[
0
Kt

0

]
c∑
i=1

εitDixt +

d∑
i=1

εitCi

[ −Lt
0
−SLt

]
x̃

+

[
V 0 0 0
0 KtW E 0
SV 0 0 U

]ξtωtηt
ϑ


=

([
A

KtH
SA

]
+

[
0
Kt

0

]
c∑
i=1

εitDi

)
xt +

([ −BLt
A−BLt −KtH
−SBLt

]
+

d∑
i=1

εitCi

[ −Lt
0
−SLt

])
x̃

+

[
V 0 0 0
0 KtW E 0
SV 0 0 U

]ξtωtηt
ϑ


=: (Ft +Mt

c∑
i=1

εitDi)xt + (F̃t +

d∑
i=1

εitCiM̃t)x̃+Gtζt.

D Approximate likelihood in case of partially-observable state

In the following, we define x̆t as the true state xt and the agent’s belief x̃t stacked together, i.e.,
x̆t = [xt, x̃t]. First, we assume that the belief of the agent’s belief at time step t is given by a
Gaussian distribution

p(xt, x̃t | o1:t) = N
([
xt
x̃t

] ∣∣∣∣ µx̆|o =

[
µx|o
µx̃|o

]
, Σx̆|o =

[
Σx|o Σxx̃|o
Σx̃x|o Σx̃|o

])
.

To approximately propagate p(xt, x̃t | o1:t) through Eq. (9), we compute the mean and variance of
the resulting distribution via moment matching (see Appendix E) and obtain the approximation

p(x̆t+1,ot+1 | o1:t) ≈ N
([
x̆t+1

ot+1

] ∣∣∣∣ µ̂t+1 =

[
µx̆
µ̂o

]
, Σ̂t+1 =

[
Σ̂x̆ Σ̂x̆o
Σ̂ox̆ Σ̂o

])
, (14)

with

µ̂t+1 = Ftµx|o + F̃tµx̃|o = F̆µx̆|o,

Σ̂t+1 = Mt(

c∑
i=1

Di(Σx|o + µx|oµ
T
x|o)D

T
i )MT +

d∑
i=1

CiM̃(Σx̃|o + µx̃|oµ
T
x̃|o)M̃

TCTi

+ F̆Σx̆|oF̆
T +GGT ,

where F̆t consists of Ft and F̃t vertically stacked, i.e., F̆t :=
[
FTt F̃Tt

]T
.

Marginalizing over xt+1 and x̃t+1 gives an approximation of the likelihood factor of time step
t + 1, p(ot+1 | o1:t) ≈ N (µ̂o, Σ̂oo). On the other hand, conditioning on observation ot+1 gives
the belief of the state and the agent’s estimate for the following time step, p(xt+1, x̃t+1 | o1:t+1) =

N
(
µ̂x̆|o, Σ̂x̆|o

)
, with

µ̂x̆|o = µ̂x̆ + Σ̂x̆oΣ̂
−1
oo (ot+1 − µ̂o), Σ̂x̆|o = Σ̂x̆x̆ − Σ̂x̆oΣ̂

−1
oo Σ̂ox̆. (15)

We initialize p(x0, x̃0 | o0) with our initial belief of the state and of the agent’s belief.

E Derivation of approximate propagation

For a fully-observable state, the goal is to derive a closed-form approximation for p(xt+1, x̃t+1 |x1:t)
when propagating the (approximate) belief p(x̃t |x1:t) and the state xt through the extended dynamics
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model p(xt+1, x̃t+1 | xt, x̃t) by matching the result with a Gaussian distribution. In this section
we will consider first the more general case where the state is partially observable, and derive
the equations for a fully-observable state as a special case afterwards. As the fully- and partially-
observable cases differ in the number of random variables (for partial-observability we have random
variables ot in addition to the true state xt), we will consider a general joint dynamics model
p(wt+1 | xt, x̃t) and general observations ot. Then, the goal becomes to derive the approximation
for p(wt+1 | o1:t) when propagating the belief p(xt, x̃t | o1:t) through the model p(wt+1 | xt, x̃t).

We restate the update equation for wt+1, coinciding with both Eq. (9) and Eq. (13),

wt+1 = (Ft +Mt

c∑
i=1

εitDi)xt + (F̃t +

d∑
i=1

εitCiM̃t)x̃+Gtζt, (16)

where the matrices Ft,Mt, F̃t, Ct, and Gt are partitioned as described in Appendix C.1.

We assume that p(xt, x̃t | o1:t) follows a Gaussian distribution with

p(xt, x̃t | o1:t) ∼ N
([
xt
x̃t

] ∣∣∣∣ µt =

[
µx
µx̃

]
,Σt =

[
Σxx Σxx̃
Σx̃x Σx̃x̃

])
. (17)

To match p(wt+1 | o1:t) with a Gaussian distribution, we compute the mean µ̂ and variance Σ̂ of
Eq. (16) where x and x̃ are distributed according to Eq. (17). In the following, we will drop time
indices to enhance readability. For the mean, we obtain

µ̂ = E x,ε,x̃,ε,ζ

[
(F +M

c∑
i=1

Diε
i)x+ (F̃ +

d∑
i=1

Ciε
iM̃)x̃+Gζ

]

= E x,ε

[
(F +M

c∑
i=1

Diε
i)x

]
+ E x̃,ε

[
(F̃ +

d∑
i=1

Ciε
iM̃)x̃

]
+ E ζ [Gζ]

= E x

[
(F +M

c∑
i=1

Di E εi
[
εi
]
)x

]
+ E x̃

[
(F̃ +

d∑
i=1

Ci E εi
[
εi
]
M̃)x̃

]
+GE ζ [ζ]

= E x [Fx] + E x̃
[
F̃ x̃
]

+GE ζ [ζ]

= Fµx + F̃µx
=: µ̂x + µ̂x.

For the variance, we use that ζ is independent of x̆ :=
[
xT , x̃T

]T
, therefore

Σ̂ = Σ̂x̆ + Σ̂ζ ,

with Σ̂ζ = GGT and we define

Tx + Tx̃ := (F +M

c∑
i=1

Diε
i)x+ (F̃ +

d∑
i=1

Ciε
iM̃)x̃.

To derive Σ̂x̆, we first regard the terms E x,ε
[
TxT

T
x

]
:

E x,ε
[
TxT

T
x

]
= E x,ε

[
(F +M

c∑
i=1

Diε
i)xxT (FT +

c∑
i=1

εiDT
i M

T )

]

= E ε

[
(F +M

c∑
i=1

Diε
i)E x

[
xxT

]
(FT +

c∑
i=1

εiDT
i M

T )

]

= E ε

[
(F +M

c∑
i=1

Diε
i)Υxx(FT +

c∑
i=1

εiDT
i M

T )

]
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= FΥxxF
T + E ε

[
FΥxx

c∑
i=1

εiDT
i M

T

]
+ E ε

[
M(

c∑
i=1

Diε
i)ΥxxF

T

]

+ E ε

[
M(

c∑
i=1

Diε
i)Υxx(

c∑
i=1

εiDT
i M

T )

]

= FΥxxF
T + FΥxx

c∑
i=1

E ε
[
εi
]
DT
i M

T +M(

c∑
i=1

Di E ε
[
εi
]
)ΥxxF

T

+ E ε

[
M(

c∑
i=1

Diε
i)Υxx(

c∑
i=1

εiDT
i M

T )

]

= FΥxxF
T + E ε

[
M(

c∑
i=1

Diε
i)Υxx(

c∑
i=1

εiDT
i M

T )

]

= FΥxxF
T + E ε

M(

c∑
i=1

c∑
j=1

Diε
iΥxxε

jDT
j )MT


= FΥxxF

T + E ε

[
M(

c∑
i=1

Diε
iΥxxε

iDT
i )MT

]

= FΥxxF
T +M(

c∑
i=1

Di E εi
[
εiεi
]

ΥxxD
T
i )MT

= FΥxxF
T +M(

c∑
i=1

DiΥxxD
T
i )MT ,

where we defined the (raw) second moments of x as

Υx := E x
[
xxT

]
= Σx + µxµ

T
x .

With that, we obtain for E x,ε
[
TxT

T
x

]
− µxµTx :

E x,ε
[
TxT

T
x

]
− µxµTx = FΥxxF

T +M(

c∑
i=1

DiΥxxD
T
i )MT − FµxµTxFT

= F (Υxx − µxµTx )FT +M(

c∑
i=1

DiΥxxD
T
i )MT

= FΣxxF
T +M(

c∑
i=1

DiΥxxD
T
i )MT

A similar derivation follows for E x̃,ε
[
Tx̃T

T
x̃

]
− µx̃µTx̃ , giving

E x̃,ε
[
Tx̃T

T
x̃

]
− µx̃µTx̃ = F̃Σx̃x̃F̃

T +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi .

Using these intermediate results, we can now compute Σ̂x̆:

Σ̂x̆ = E x,ε,x̃,ε
[
(Tx + Tx̃)(Tx + Tx̃)T

]
− E x,ε,x̃,ε [(Tx + Tx̃)]E x,ε,x̃,ε [(Tx + Tx̃)]

T

= E x,ε,x̃,ε
[
(TxT

T
x + TxT

T
x̃ + Tx̃T

T
x + Tx̃T

T
x̃ )
]
− (µx + µx̃)(µx + µx̃)T

= E x,ε
[
TxT

T
x

]
− µxµTx + E x,ε,x̃,ε

[
TxT

T
x̃

]
− µxµTx̃ + E x,ε,x̃,ε

[
Tx̃T

T
x

]
− µx̃µTx + E x̃,ε

[
Tx̃T

T
x̃

]
− µx̃µTx̃
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(∗)
= FΣxxF

T +M(

c∑
i=1

DiΥxxD
T
i )MT + F̃Σx̃x̃F̃

T +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi

+ E x,ε,x̃,ε
[
TxT

T
x̃

]
− µxµTx̃ + E x,ε,x̃,ε

[
Tx̃T

T
x

]
− µx̃µTx

= M(

c∑
i=1

DiΥxxD
T
i )MT +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi + FΣxxF

T + F̃Σx̃x̃F̃
T

+ FΣxx̃F̃
T + F̃Σx̃xF

T

= M(

c∑
i=1

DiΥxxD
T
i )MT +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi + F̆ΣF̆T ,

where in (∗) we used the previously derived results and defined F̆t as Ft and F̃t vertically stacked,
i.e., F̆t :=

[
FTt F̃Tt

]T
.

By putting everything together, we get wt+1 ∼ N (µ̂w, Σ̂w) with

µ̂w = Fµx + F̃µx̃ = F̆µx̆,

Σ̂w = M(

c∑
i=1

DiΥxxD
T
i )MT +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi + F̆ΣF̆T +GGT

= M(

c∑
i=1

Di(Σxx + µxµ
T
x )DT

i )MT +

d∑
i=1

CiM̃(Σx̃x̃ + µx̃µ
T
x̃ )M̃TCTi + F̆ΣF̆T +GGT ,

(18)

where F̆t consists of Ft and F̃t vertically stacked, i.e., F̆t :=
[
FTt , F̃

T
t

]T
.

E.1 Partially-observable state

In case of partial observability, we havewt+1 =
[
xTt+1, x̃

T
t+1,o

T
t+1

]T
with observations ot, so the

goal becomes to approximate p(xt+1, x̃t+1,ot+1 |o1:t). If p(xt, x̃t |o1:t) is distributed as in Eq. (17),
Eq. (18) gives directly the formula for the approximation of p(xTt+1, x̃

T
t+1,o

T
t+1 | o1:t).

E.2 Fully-observable state

In case of a fully-observable state, we have wt+1 =
[
xTt+1, x̃

T
t+1

]T
, with observation ot = xt, so

we are interested in approximating p(xt+1, x̃t+1 | x1:t). We assume p(x̃t | x1:t) = N
(
µx̃|x,Σx̃|x

)
and xt to be observed and therefore deterministic. We can then informally write

p(xt, x̃t | x1:t) ∼ N
([
xt
x̃t

] ∣∣∣∣ µt =

[
xt
µx̃|x

]
,Σt =

[
0 0
0 Σx̃|x

])
.

Plugging this into Eq. (18), we obtain wt+1 ∼ N (µ̂w, Σ̂w), with
µ̂w = Fµx + F̃µx̃

= Fxt + F̃µx̃|x,

Σ̂w = M(

c∑
i=1

DiΥxxD
T
i )MT +

d∑
i=1

CiM̃Υx̃x̃M̃
TCTi + FΣxxF

T + F̃Σx̃x̃F̃
T

+ FΣxx̃F̃
T + F̃Σx̃xF

T +GGT

= M(

c∑
i=1

Dixtx
T
t D

T
i )MT +

d∑
i=1

CiM̃Υx̃|xM̃
TCTi + F̃Σx̃|xF̃

T +GGT

= M(

c∑
i=1

Dixtx
T
t D

T
i )MT +

d∑
i=1

CiM̃(Σx̃|x + µx̃|xµ
T
x̃|x)M̃TCTi + F̃Σx̃|xF̃

T +GGT ,

where the time-dependency of the matrices was omitted to enhance readability.
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F Further information on applications

If not stated otherwise, we used 100 trajectories to determine the MLEs. For optimization, we ran the
optimizer 10 times with random initial points and took the optimal value to avoid local optima.

F.1 Reaching model

The reaching model was the same one used in the original publication [7], where all details can be
found. The cost function which was minimized, is given by(

xp(T )− x∗p
)2

+ (v · xv(T ))
2

+ (f · xf (T ))
2

+
r

M − 1

M−1∑
k=0

u(k∆)2,

where xp is the position, xv the velocity, xf the force, x∗p the target position, and ∆ the time
discretization, discretizing T into M time steps, i.e., ∆M = T . Note that there is no explicit
parameter for the cost of the end-point position needed because the other parameters are relative to
this quantity.

We used the same model for the real reaching data, which were taken from the Database for Reaching
Experiments and Models4 and were previously published [55]. We took the horizontal component of
reaching movements towards targets at 0 degrees (right of center) and truncated each trial so that it
contained the movement only.

F.2 Saccadic eye movement problem

We used the model by Crevecoeur and Kording [56] with a time discretization of 1.25 ms. The initial
angle was set to −10 and the target angle to 10 as shown in Figure 1b of the referenced paper.

F.3 Random models

The random models were inspired by the work of Todorov [7]. For these models, the state space was
four-dimensional with an additional dimension for modelling the target that the first dimension of the
state should be controlled to. The action space was n = 2-dimensional. The matrices A, B and H of
the dynamical system were randomly sampled with

Aij , Bij , Hij ∼ N (0, 1).

A and B were normalized to 1 using the Frobenius norm. The additive noises V , W , and E were
sampled from LKJ-Cholesky distributions

V,W ∼ LKJ-Cholesky(1)

and the multiplicative noises were sampled with

Cij , Dij ∼ Uniform(0, 0.5).

The state cost matrices Qt were set to Q1:T−1 = 0 and QT = ddT with d = [1 0 . . . −1]
yielding a state cost at the last time step of (xT − 1)(xT − 1)T . The control cost was parametrized
with R = diag [r1, . . . , rn]. We used our maximum likelihood method to infer the parameters
r1, . . . , rn.

G Additional results

In this section we will provide additional results for the reaching and random problems.

G.1 Synthetic reaching data

G.1.1 Comparison to a baseline

Fig. 6 shows the RMSEs of our method in comparison to the two baselines described in Section 4.1.
4https://crcns.org/data-sets/movements/dream/overview
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Figure 6: Evaluation of the proposed inverse optimal control method in terms of RMSE of
the maximum-likelihood parameter estimates. Left: Our method, in which the likelihood is
approximated via moment-matching. Middle: Standard LQG (without signal-dependent noise),
for which the likelihood of the parameters given the data can be calculated in closed-form. Right:
Standard LQG where the additive noise level was set to the average noise magnitude in the trajectories.

A KL for pairs B Average KL

Figure 7: KL divergences. As a secondary evaluation metric, we show the KL divergence between
trajectories simulated using the true parameters and trajectories simulated using the MLEs. The results
are qualitatively similar to the RMSEs and show that the inferred parameters generate trajectories
very similar to the observed data.

G.1.2 Kullback–Leibler divergence as evaluation measure

As an alternative evaluation measure, we propose to compare the distributions induced by the true
parameters and the maximum likelihood parameters. For this, we estimate empirical distributions
of the trajectories by generating 10,000 trajectories and computing the mean and variance for each
time step to approximate the distribution for each time step by a Gaussian. The Kullback–Leibler
(KL) divergence between two Gaussian distributions p = N (µp,Σp) and q = N (µq,Σq) can be
calculated in closed form as

DKL(p ‖ q) =
1

2

[
log
|Σq|
|Σp|

− k + (µp − µq)T Σ−1
q (µp − µq) + tr

{
Σ−1
q Σp

}]
.

Instead of using the KL divergence directly, which is not symmetric, we consider instead a symmetric
version,

1

2
DKL(p ‖ q) +

1

2
DKL(q ‖ p),

and compute the mean over time to aggregate the values over time.

The results like in Fig. 2 E and F with KL divergence instead of RMSE as a metric are shown in
Fig. 7.

G.1.3 Partially observable state

We evaluate a version of the reaching model in which the experimenter observes only the position
and treats velocity and acceleration as latent variables. The results are qualitatively similar to the
fully observed case. However, there are regions in the parameter space where estimates are worse
(Fig. 8 A). Additionally, estimates of the parameters representing the penalty on velocity (v) and
acceleration (f ) are worse by an order of magnitude compared to the fully observed case (Fig. 8 B),
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D Average KL

A RMSE for pairs B per parameter

C KL for pairs

Figure 8: Evaluation of partially observed model. RMSEs and KLs for partially observed reaching
model.

A Log Likelihood

Figure 9: Negative log likelihod of the partially observed model.

which is to be expected when only the position is observed. Specifically, the average RMSEs are
4.0× 10−2 (r), 1.1× 10−1 (v), and 2.6× 10−1 (f ). However, the parameter errors do not result in
large differences in the KL divergence of the simulated trajectories (position only) w.r.t. the observed
trajectories, so we suspect that the higher RMSEs in estimated parameters are due to ambiguities in
the trajectories for this particular model.

G.1.4 Evaluation of moment matching approximation

In Section 3.2 we introduced a moment matching approximation to make computation of the likelihood
tractable. An experimentalist comparing an optimal control model to experimental data might be
interested in the influence of this approximation on trajectories. For the reaching model from
Section 4.1, we therefore compare the empirical distributions over trajectories estimated using Monte
Carlo rollouts (using 10,000 trajectory samples) to the approximate distribution over trajectories
determined using our method (given the true parameters). The difference in symmetrized KL (see
Appendix G.1.2) between the empirically estimated distribution and our approximation is found to be
1.60× 10−3. Additionally, we compare this result to a baseline by replacing the signal-dependent
noise by additive noise, for which the trajectory distribution can be calculated in closed form. The
additive noise magnitude is chosen as the average of the signal-dependent noise magnitudes for
the whole trajectories. Note that this quantity is not directly available and therefore has to be also
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Figure 10: Empirical evaluation of the moment matching approximation. Trajectory distribu-
tions of the reaching task using a Monte-Carlo approximation (mean: black solid line, 2 × STD
in gray), our moment-matching approximation (orange, dashed), and a baseline where the signal-
dependent noise is replaced by additive noise (blue, dotted). The gray and orange areas are hardly
distinguishable visually, showing that the moment matching approximation estimates the trajectory
distribution very precisely. The baseline overestimates the variance through the signal-dependent
noise in early time steps, leading to an overall too high variance of the trajectories.

A Individual random seed B Aggregated

Figure 11: Random problems (second parameter). A MLEs for a range of parameter values of r2

for different random problems and different values of r1. B Aggregated results (median, percentiles)
for 1000 random problems.

estimated, e.g., via Monte-Carlo rollouts. The difference in symmetrized KL between the empirical
estimate and the baseline is 6.05. A plot of the resulting distributions is shown in Fig. 10. As
expected, the moment matching approximation estimates the trajectory distribution very precisely in
comparison to the baseline.

G.2 Random problems

In Fig. 11 A we show the errors for a range of parameter values r2 for different random models.
The median and quantiles for the results of 1000 random problems are shown in Fig. 11 B. One can
observe that the estimates are generally very close to the true parameters.
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