
Hierarchical Clustering:
O(1)-Approximation for Well-Clustered Graphs∗

Bogdan-Adrian Manghiuc
School of Informatics

The University of Edinburgh
b.a.manghiuc@sms.ed.ac.uk

He Sun
School of Informatics

The University of Edinburgh
h.sun@ed.ac.uk

Abstract

Hierarchical clustering studies a recursive partition of a data set into clusters
of successively smaller size, and is a fundamental problem in data analysis. In
this work we study the cost function for hierarchical clustering introduced by
Dasgupta [12], and present two polynomial-time approximation algorithms: Our
first result is an O(1)-approximation algorithm for graphs of high conductance.
Our simple construction bypasses complicated recursive routines of finding sparse
cuts known in the literature (e.g., [6, 11]). Our second and main result is an O(1)-
approximation algorithm for a wide family of graphs that exhibit a well-defined
structure of clusters. This result generalises the previous state-of-the-art [10], which
holds only for graphs generated from stochastic models. The significance of our
work is demonstrated by the empirical analysis on both synthetic and real-world
data sets, on which our presented algorithm outperforms the previously proposed
algorithm for graphs with a well-defined cluster structure [10].

1 Introduction

Hierarchical clustering (HC) studies a recursive partition of a data set into clusters of successively
smaller size, via an effective binary tree representation. As a basic technique, hierarchical clustering
has been employed as a standard package in data analysis, and has comprehensive applications in
practice. While traditionally HC trees are constructed through bottom-up (agglomerative) heuristics,
which lacked a clearly-defined objective function, Dasgupta [12] has recently introduced a simple
objective function to measure the quality of a particular hierarchical clustering and his work has
inspired a number of research on this topic [3, 6, 7, 8, 10, 11, 20, 24]. Consequently, there has been a
significant interest in studying efficient HC algorithms that not only work in practice, but also have
proven theoretical guarantees with respect to Dasgupta’s cost function.

Our contribution. In this work, we present two new approximation algorithms for constructing
HC trees that can be rigorously analysed with respect to Dasgupta’s cost function. For our first result,
we construct an HC tree of an input graph G entirely based on the degree sequence of V (G), and we
show that the approximation guarantee of our constructed tree is with respect to the conductance of
G, which will be defined formally in Section 2. The striking fact of this result is that, for any n-vertex
graph G with m edges and conductance Ω(1) (a.k.a. expander graph), an O(1)-approximate HC
tree of G can be very easily constructed in O(m+ n log n) time, although obtaining such result for
general graphs is impossible under the Small Set Expansion Hypothesis (SSEH) [6]. Our theorem is
in line with a sequence of results for problems that are naturally linked to the Unique Games and
Small Set Expansion problems: it has been shown that such problems are much easier to solve once

∗The full version of the paper is available at https://arxiv.org/abs/2112.09055.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://orcid.org/0000-0001-6775-2045
https://arxiv.org/abs/2112.09055


the input instance exhibits the high conductance property [4, 5, 16, 18]. However, to the best of our
knowledge, our result is the first of this type for hierarchical clustering.

While our first result presents an interesting theoretical fact, we further study whether we can
extend this O(1)-approximate construction to a much wider family of graphs occurring in practice.
Specifically, we look at well-clustered graphs, i.e., the graphs in which vertices within each cluster are
better connected than vertices between different clusters and the total number of clusters is constant.
This includes a wide range of graphs occurring in practice with a clear cluster-structure, and have
been extensively studied over the past two decades (e.g., [13, 15, 23, 26]). As our second and main
result, we present a polynomial-time O(1)-approximation algorithm that constructs an HC tree for
a well-clustered graph. Given that the class of well-clustered graphs includes graphs with clusters
of different sizes and asymmetrical internal structure, our result significantly improves the previous
state-of-the-art [10], which only holds for graphs generated from stochastic models. At the technical
level, the design of our algorithm is based on the graph decomposition algorithm presented in [13],
which is designed to find a good partition of a well clustered graph. However, our analysis suggests
that, in order to obtain an O(1)-approximation algorithm, directly applying their decomposition isn’t
sufficient for our purpose. To overcome this bottleneck, we refine the output decomposition via a
pruning technique, and carefully merge the refined parts to construct our final HC tree. In our point of
view, our presented stronger graph decomposition procedure might have applications in other settings
as well. To demonstrate the significance of our work, we compare our algorithm against the previous
state-of-the-art with similar approximation guarantee [10] and well-known linkage heuristics on both
synthetic and real-world data sets. Although our algorithm’s performance is marginally better than
[10] for the graphs generated from the stochastic block models (SBM), the cost of our algorithm’s
output is up to 50% lower than the one from [10] when the clusters of the input graph have different
sizes and some cliques are embedded into a cluster.

Related work. Our work fits in a line of research initiated by Dasgupta [12], who introduced a
cost function to measure the quality of an HC tree. Dasgupta proved that a recursive application
of the algorithm for the Sparest Cut problem achieves an O(log3/2 n)-approximation, which has
been subsequently improved to O(log n) and O(

√
log n) by [24] and [6, 11]. It is known to be

NP-hard to find an optimal HC tree [12] , and SSEH-hard to achieve an O(1)-approximation for
a general input instance [6] . Cohen-Addad et al. [10] studied a hierarchical extension of the SBM
and showed that a certain SVD projection algorithm together with several linkage heuristics achieves
a (1 + o(1))-approximation with high probability. We emphasise that our notion of well-clustered
graphs generalises the SBM variant studied in [10] and does not assume the rigid hierarchical structure
of the clusters.

For another line of related work, Moseley and Wang [20] studied the dual objective function and
proved that Average Linkage achieves a (1/3)-approximation for the new objective function.
Notice that, although this has received significant attention very recently [3, 7, 8, 9, 25], achieving
an O(1)-approximation is tractable under this alternative objective. This suggests the fundamental
difference on the hardness of the problem under different objective functions, and is our reason to
entirely focus on the Dasgupta’s cost function in this work.

2 Preliminaries

Throughout the paper, we always assume that G = (V,E,w) is an undirected graph with n vertices,
m edges and weight function w : V × V → R≥0. For any edge e = {u, v} ∈ E we write we or
wuv to indicate the similarity weight between u and v. For a vertex u ∈ V , we denote its degree
by du ,

∑
v∈V wuv and we assume that wmax/wmin = O(poly(n)), where wmin(wmax) is the

minimum (maximum) edge weight. We will use dmin, dmax, davg for the minimum, maximum and
average degrees in G, where davg ,

∑
u∈V du/n. For a nonempty subset S ⊂ V , we define G[S] to

be the induced subgraph on S and we denote by G{S} the subgraph G[S], where self loops are added
to vertices v ∈ S such that their degrees in G and G{S} are the same. For any two subsets S, T ⊂ V ,
we define the cut value w(S, T ) ,

∑
e∈E(S,T ) we, where E(S, T ) is the set of edges between S and

T . For any set S ⊆ V , the volume of S is vol(S) ,
∑

u∈S du and we write vol(G) when referring

2



to vol(V (G)). We further define the conductance of S by

ΦG(S) ,
w(S, V \ S)

vol(S)
,

and ΦG , min S⊂V
vol(S)≤vol(G)/2

ΦG(S). We call G an expander graph if ΦG = Ω(1). For a graph G,

let D ∈ Rn×n be the diagonal matrix defined by Duu = du for all u ∈ V . We denote by A ∈ Rn×n

the adjacency matrix of G, where Auv = wuv for all u, v ∈ V . The normalised Laplacian matrix of
G is defined as L , I−D−1/2AD−1/2, where I is the identity n× n matrix. We will denote the
eigenvalues of L by 0 = λ1 ≤ · · · ≤ λn ≤ 2.

Hierarchical clustering. A hierarchical clustering (HC) tree of a given graph G is a binary tree
T with n leaf nodes such that each leaf corresponds to exactly one vertex v ∈ V (G). Let T be
an HC tree of some graph G = (V,E,w) and let N ∈ T be an arbitrary internal node2 of T . We
denote T [N ] to be the subtree of T rooted at N , leaves (T [N ]) to be the set of leaf nodes of T [N ]
and parentT (N) to be the parent of node N in T . In addition, each internal node N ∈ T induces a
unique vertex set C ⊆ V formed by the vertices corresponding to leaves(T [N ]). We will abuse the
notation and write N ∈ T for both the internal node of T and its corresponding set of vertices in V .

To measure the quality of an HC tree T with similarity weights, Dasgupta [12] introduced the
following cost function:

costG(T ) ,
∑

e={u,v}∈E

we · |leaves (T [u ∨ v])| ,

where u ∨ v is the lowest common ancestor of u and v in T . Trees that achieve a better hierarchical
clustering have a lower cost, based on the following consideration: for any pair of vertices u, v ∈ V
that corresponds to an edge of high weight wuv (i.e., u and v are highly similar) a “good” HC tree
would separate u and v lower in the tree, thus reflected in a small size |leaves(T [u ∨ v])|. We denote
by OPTG the minimum cost of any HC tree of G, i.e., OPTG = minT costG(T ), and use T ∗ to
refer to an optimal tree achieving the minimum. We say that an HC tree T is an α-approximate tree
if costG(T ) ≤ α · OPTG. All omitted proofs are deferred to the full version of this paper.

3 Hierarchical clustering for graphs of high conductance

In this section we study hierarchical clustering for graphs with high conductance and prove that, for
any input graph G with ΦG = Ω(1), an O(1)-approximate HC tree of G can be simply constructed
based on the degree sequence of G. As a starting point, we show that costG(T ) for any T can be
upper bounded with respect to ΦG and the degree distribution of V (G).

Lemma 3.1. It holds for any HC tree T of graph G that costG(T ) ≤ 9
4ΦG
· min

{
davg

dmin
, dmax

davg

}
·

OPTG.

V \ SS

(a)

V

S V \ S

(b)

Figure 1: (a) Our considered graph G; (b) the tree that
separates the vertices of high degrees from the others
achieves O(1)-approximation.

While Lemma 3.1 holds for any graph G, it
implies some interesting facts for expander
graphs: first of all, when G = (V,E,w) sat-
isfies dmax/dmin = O(1) and ΦG = Ω(1),
Lemma 3.1 shows that any tree T is an O(1)-
approximate tree. In addition, although ΦG

plays a crucial role in analysing costG(T ) as
for many other graph problems, Lemma 3.1 in-
dicates that the degree distribution of G might
also have significant impact. One could natu-
rally ask the extend to which the degree distribu-
tion of V (G) would influence the construction
of optimal trees.

To study this question, we look at the following graph G where all edges have unit weight: (i) let
G1 = (V,E1) be a constant-degree expander graph of n vertices with ΦG1 = Ω(1), e.g., the ones

2We will always use (internal) nodes for the nodes of T and vertices for the elements of the vertex set V .

3



presented in [14]; (ii) we choose bn2/3c vertices from V to form S, and let K = (S, S × S) be a
complete graph defined on S; (iii) partition the vertices of V \S into bn2/3c groups of roughly the same
size, associate each group to a unique vertex in S and let E2 be the set of edges formed by connecting
every vertex in S with all the vertices in its associated group. (iv) let G , (V,E1 ∪ (S×S)∪E2) be
the union of G1, K and the edges in E2, see Figure 1(a) for illustration. By construction, we know
that ΦG = Ω(1), and the degrees of G satisfy dmax = Θ(n2/3), dmin = Θ(1), and davg = Θ(n1/3).
Therefore, the ratio between costG(T ) for any HC tree T and OPTG could be as high as Θ(n1/3). On
the other side, it’s not difficult to show that the tree T ∗ illustrated in Figure 1(b), which first separates
the set S of high-degree vertices from V \ S at the top of the tree, actually O(1)-approximates
OPTG

3.

This example suggests that grouping vertices of similar degrees first could potentially help reduce
costG(T ) for our constructed T . This motivates us to design the following Algorithm 1 to construct
an HC tree. We highlight that the output of Algorithm 1 is uniquely determined by the ordering of
the vertices of G according to their degrees, which can be computed in O (n · log n) time.

Algorithm 1: HCwithDegrees(G{V })
Input: G = (V,E,w) with the ordered vertices such that dv1 ≥ . . . ≥ dv|V | ;
Output: An HC tree Tdeg(G);

1 if |V | = 1 then
2 return the single vertex in V as the tree;
3 else
4 imax := blog2(|V | − 1)c; r := 2imax ; A := {v1, . . . , vr}; B := V \A;
5 Let T1 = HCwithDegrees(G{A}); T2 = HCwithDegrees(G{B});
6 return Tdeg with T1 and T2 as the two children.

Theorem 1. Given any graph G = (V,E,w) with conductance ΦG as input, Algorithm 1 runs in
O(m + n log n) time, and returns an HC tree Tdeg of G that satisfies costG(Tdeg) = O

(
1/Φ4

G

)
·

OPTG.

Theorem 1 guarantees that, when the input G satisfies ΦG = Ω(1), the output Tdeg of Algorithm 1
achieves an O(1)-approximation. Moreover, as the high-conductance property can be determined in
nearly-linear time by computing λ2(LG) and applying the Cheeger inequality, Algorithm 1 presents
a very simple construction of an O(1)-approximate HC tree once the input G is known to have high
conductance.

Proof sketch of Theorem 1. The key notion employed in our proof is that of the dense branch
which can be informally described as follows: we perform a traversal in T starting at the root nodeA0

and we sequentially travel to the child of higher volume. The process stops whenever we reach a node
Ak, for some k ∈ Z≥0, such that vol(Ak) > vol(G)/2 and both its children have volume at most
vol(G)/2. The sequence of visited nodes by this process is the dense branch of T . Formally, for any
HC tree T of G, the dense branch is the path (A0, A1, . . . , Ak) in T for some k ∈ Z≥0, such that the
following conditions hold: (1) A0 is the root of T ; (2) Ak is the node such that vol(Ak) > vol(G)/2
and both children of Ak have volume at most vol(G)/2. It is important to note that the dense branch
of a tree T is unique and it contains all nodes Ai such that vol(Ai) > vol(G)/2 and only those nodes.

At a very high level, the proof of Theorem 1 starts with any optimal HC tree T0 of G and constructs
trees T1, T2, T3 and T4 such that (i) costG(Ti) can be upper bounded with respect to costG (Ti−1) for
every 1 ≤ i ≤ 4, (ii) the final constructed T4 is exactly the tree Tdeg(G), the output of Algorithm 1.
Combining these two facts allows us to upper bound costG(Tdeg) with respect to OPTG.

Step 1: Regularisation. Let (A0, . . . , Ak0
) be the dense branch of any optimal T0, and let Bi be

the sibling of Ai, for all 1 ≤ i ≤ k0. Let imin = blog2(|Ak0
|)c and imax = blog2(|V | − 1)c.

For simplicity, we assume that the dense branch has size at least 2, that |A1| ≥ 2imax and that
|Ak0
| = 2imin , which ensures that imin ≤ imax. These assumptions allow us to better present the

proof techniques by ignoring some corner cases. In the full version of our paper we deal with the

3To see this, notice that cost(T ∗) ≤ cost(T ∗[S]) + n · vol(G1) + n2 = Θ(n2), as the complete subgraph
G[S] induces a cost of Θ((n2/3)3) [12]. The subgraph G[S] also implies that OPTG = Ω(n2).

4



Aj−1

Aj

Aj+1 Bj+1

Bj

Aj−1

A1
j

A2
j

Aj+1 B2
j+1

B1
j+1

Bj

(a)

Aj1−1

Aj1

Aj1+1

...

Aj2−1

Aj2

...

Bj2

Bj2−1

Bj1+1

Bj1

Aj−1

Aj1

Aj2

...

Cj1

...

Cj2−2

Bj2
Bj2−1

Bj1+1

Bj1

(b)

Figure 2: (a) With a proper partition of Bj+1, we have a new node A2
j of size 2i; (b) The nodes between Aj1

and Aj2 (left) have size in (2i−1, 2i); These nodes are compressed (right) and only the nodes of size some power
of 2 remain in the dense branch.

general case when some of these assumptions do not hold. The goal of this step is to adjust the dense
branch of T0, such that the resulting tree T1 satisfies the following condition: for all i ∈ [imin, imax],
there is a node of size exactly 2i along the dense branch of T1. We achieve this by applying a sequence
of operations, each of which creating a new node of exact size 2i for some suitable i. Concretely, let
i ∈ [imin, imax] be the largest integer such that there is no node of size 2i on the dense branch of T0.
As |Ak0

| = 2imin , there is some node Aj on the dense branch such that |Aj | > 2i and |Aj+1| < 2i.
We adjust the branch at Aj as follows: (i) we consider a partition of Bj+1 = B1

j+1 ∪B2
j+1 such that

|Aj+1|+ |B2
j+1| = 2i; (ii) we replace the node Aj by some newly created node A1

j that has children
B1

j+1 and a new node A2
j . (iii) the two children of A2

j will be Aj+1 and B2
j+1. This adjustment is

illustrated in Figure 2(a), and we repeat this process until no such i exists any more. We call the
resulting tree T1, and the following lemma gives an upper bound of costG(T1).

Lemma 3.2. Our constructed tree T1 satisfies costG(T1) ≤ (1 + 4/ΦG) · costG(T0).

Step 2: Compression. With potential relabelling of the nodes, let (A0, . . . , Ak1
) be the dense branch

of T1 for some k1 ∈ Z+ satisfying |Ak1
| = 2imin , and Bi be the sibling of Ai. The objective of this

step is to ensure that, by a sequence of adjustments, all the nodes along the dense branch are of size
equal to some power of 2. Here, we describe how one such adjustment is performed, and refer the
reader to Figure 2(b) for illustration. Let i ∈ [imin, imax] be some index such that |Aj1 | = 2i and
|Aj2 | = 2i−1 for some j1 < j2. We compress the dense branch by removing all nodes between Aj1
and Aj2 as follows: The two children of Aj1 will be Aj2 and some new node Cj1 , which has children
Cj1+1 and Bj1+1; The two children of Cj1+1 will be some new node Cj1+2 and Bj1+2, etc. The
last node Cj2−2 has children Bj2−1 and Bj2 . In addition, we perform one more such adjustment to
remove all nodes Aj of size 2imax < |Aj | < n and ensure all nodes (except potentially A0) on the
dense branch have size 2i for some i ∈ [imin, imax]. We call the resulting tree T2, and the following
lemma bounds the cost of T2.

Lemma 3.3. Our constructed tree T2 satisfies that costG(T2) ≤ 2 · costG(T1).

Step 3: Matching. Let (A0, . . . , Ak2
) be the dense branch of T2, for some k2 ∈ Z+, and Bi be the

sibling of Ai. In this step we transform T2 into T3, such that T3 is isomorphic to Tdeg(G), which
ensures that T3 and Tdeg(G) have the same structure. To achieve this, for every 1 ≤ i ≤ k2 we simply
replace each T2[Bi] with Tdeg (G{Bi}). We further replace T2[Ak2

] with Tdeg (G{Ak2
}). We call

the resulting tree T3, and bound its cost by the following lemma:

Lemma 3.4. Our constructed tree T3 satisfies that costG(T3) ≤ (1 + 4/ΦG) costG(T2).

5



Step 4: Sorting. We assume that (A0, . . . , Ak3) is the dense branch of T3 for some k3 ∈ Z+, and we
extend the dense branch to (A0, . . . , Aimax) with the same property that for every i ∈ [k3, imax] Ai

is the child of Ai−1 with the higher volume, and let S , {B1, . . . , Bimax
, Aimax

}. Recall that in
Tdeg(G) the first r = 2imax vertices of the highest degrees, i.e., {v1, . . . , vr} belong to A1, of which
the first 2imax−1 vertices belong to A2, and so on; however, this might not be the case for T3. Hence,
in the final step, we prove that T3 can be transformed into Tdeg(G) without a significant increase of
the total cost. In this step we will swap vertices between the internal nodes B1, B2, . . . , Bimax

, Aimax

in such a way that Aimax
will consist of v1 and v2, Bimax

will consist of v3 and v4, Bimax−1 will
consist of v5 up to v8, etc. We call vertex u misplaced if the position of u is T3 is different from
the one in Tdeg(G). To transform T3 into Tdeg(G) we perform a sequence of operations, each of
which consisting in a chain of swaps focusing on the vertex of the highest degree that is currently
misplaced. For the sake of argument, we assume that v1 6∈ Aimax

is misplaced, and we apply the
following operation to move v1 to Aimax

: (i) let v1 ∈ Bi0 for some i0 ≥ 1, and let y be the vertex of
the lowest degree among the vertices in S \ {B1, . . . , Bi0}. Say y ∈ Bi1 for some i1 > i0, and swap
v1 with y while keeping the structure of the tree unchanged; (ii) repeat the swap operation above
until v1 reaches its correct place Aimax . Once the above process is complete and v1 reaches Aimax ,
we apply a similar chain of swaps to v2 to ensure v2 also reaches Aimax . Then, we sequentially apply
the process to v3 and v4 to ensure they reach Bimax

, and continue this process until there are no more
misplaced vertices.

We call the resulting tree T ′3 , and notice that every node X ∈ S in T ′3 contains the correct set of
vertices. However, the positions of these vertices in T ′3 [X] might be different from the ones in
Tdeg(G{X}). To overcome this issue, we repeat Step 3 again to the tree T ′3 , and this will introduce
another factor of (1+4/ΦG) to the total cost of the constructed tree. Importantly, the final constructed
tree after this step is exactly the tree Tdeg(G) and we bound its cost by the following lemma:

Lemma 3.5. It holds for Tdeg that cost(Tdeg) ≤ (1 + 24/ΦG) (1 + 4/ΦG) · cost(T3).

Finally, by combining Lemmas 3.2, 3.3, 3.4 and 3.5 we prove the approximation guarantee of Tdeg in
Theorem 1. The runtime of Algorithm 1 follows by a simple application of the master theorem.

4 Hierarchical clustering for well-clustered graphs

So far we have shown that an O(1)-approximate tree can be easily constructed for expander graphs.
We will now focus on a wider class of well-clustered graphs. Informally, a well-clustered graph
is a collection of densely-connected components (clusters) of high conductance, which are weakly
interconnected. As these graphs form some of the most meaningful objects for clustering in practice,
one would naturally ask whether our O(1)-approximation for expanders can be extended to well-
clustered graphs. In this section, we will give an affirmative answer to this question.

To formalise the well-clustered property, we consider the notion of (Φin,Φout)-decomposition
introduced by Gharan and Trevisan [13]. Formally, for a graph G = (V,E,w) and k ∈ Z+, we
say that G has k well-defined clusters if V (G) can be partitioned into disjoint subsets {Pi}ki=1,
such that the following hold: (i) there’s a sparse cut between Pi and V \ Pi for any 1 ≤ i ≤ k,
which is formulated as ΦG(Pi) ≤ Φout; and (ii) each induced subgraph G[Pi] has high conductance
ΦG[Pi] ≥ Φin. We underline that, through the celebrated higher-order Cheeger inequality [17], this
condition of (Φin,Φout)-decomposition can be approximately reduced to other formulations of a
well-clustered graph studied in the literature, e.g., [23, 26, 27].

The starting point of our second result is the following polynomial-time algorithm presented by Gharan
and Trevisan [13], which produces a (Φin,Φout)-decomposition of graph G for some parameters Φin

and Φout. Specifically, given a well-clustered graph as input, their algorithm returns disjoint sets of
vertices {Pi}`i=1 with bounded Φ(Pi) and ΦG[Pi] for each Pi, and the algorithm’s performance is as
follows:

Lemma 4.1 ([13], Theorem 1.6). Let G = (V,E,w) be a graph such that λk+1 > 0, for some k ≥ 1.
Then, there is a polynomial-time algorithm that finds an `-partition {Pi}`i=1 of V , for some ` ≤ k,
such that the following hold for every 1 ≤ i ≤ `:

(A1) Φ(Pi) = O
(
k6
√
λk
)

;

6



(A2) ΦG[Pi] = Ω
(
λ2
k+1/k

4
)
.

Informally, this result states that, when the underlying input graph G presents a clear structure of
clusters, one can find in polynomial-time a partition {Pi}`i=1 such that both the outer and inner
conductance of every Pi can be bounded. One natural question raising from this partition {Pi}`i=1 is
whether we can directly use {Pi}`i=1 to construct an HC tree. As an obvious approach, one could
consider to (i) construct trees Ti = Tdeg(G[Pi]) for every 1 ≤ i ≤ `, and (ii) merge the tres {Ti}
in the best way to construct the final tree TG. Unfortunately, this direct approach does not work,
and we present in the full version of the paper an example where this approach fails to achieve an
O(1)-approximation4. To address this, we follow our intuition gained from Figure 1, and further
decompose every Pi into smaller subsets. Similar with analysing dense branches, we introduce the
critical nodes associated with each Ti.
Definition 4.2 (Critical nodes). Let Ti = Tdeg(G[Pi]) be the tree computed by Algorithm 1 to the in-
duced graphG[Pi]. Suppose (A0, . . . , Ari) is the dense branch of Ti, for some ri ∈ Z+,Bj is the sib-
ling of Aj and let Ari+1, Bri+1 be the two children of Ari . We define Si , {B1, . . . , Bri+1, Ari+1}
and call every node N ∈ Si a critical node.

We remark that each critical node N ∈ Si (1 ≤ i ≤ `) is an internal node of maximum size in Ti
that is not on the dense branch. Moreover, each Si is a partition of Pi. Based on critical nodes, we
present an improved decomposition algorithm, which is similar to the one in Lemma 4.1, and prove
that the output quality of our algorithm can be significantly strengthened for hierarchical clustering.
Specifically, in addition to satisfying (A1) and (A2), we prove that the total weight between each
critical node N ∈ Si and all the other clusters Pj , for all i 6= j, can be upper bounded. We highlight
that this is one of the key properties that allows us to obtain our main result, and also suggests that
the original decomposition algorithm in [13] might not suffice for our purpose.
Lemma 4.3 (Strong Decomposition Lemma). LetG = (V,E,w) be a graph such that λk+1 > 0 and
λk = O(k−12). Then, there is a polynomial-time algorithm that finds an `-partition of V into sets
{Pi}`i=1, for some ` ≤ k, such that properties (A1) and (A2) hold for every 1 ≤ i ≤ `. Moreover,
for every cluster Pi and every critical node N ∈ Si, it holds that

(A3) w(N,V \ Pi) ≤ 6(k + 1) · volG[Pi](N).

To underline the importance of (A3), recall that, in general, each subtree Ti cannot be directly used
to construct an O(1)-approximate HC tree of G because of the potential high cost of the crossing
edges E(Pi, V \ Pi). However, if the internal cost of Ti is high enough to compensate for the cost
introduced for the crossing edges E(Pi, V \ Pi), then one can safely use this Ti as a building block.
This is one of the most crucial insights that leads us to design our final algorithm PruneMerge.

Now we are ready to describe the algorithm PruneMerge, and we refer the reader to Algorithm 2 for
the formal presentation. At a high-level, our algorithm consists of three phases: Partition, Prune
and Merge. In the Partition phase (Lines 1–2), the algorithm invokes Lemma 4.3 to partition V (G)
into sets {Pi}`i=1, and applies Algorithm 1 to obtain the corresponding trees {Ti}`i=1. The Prune
phase (Lines 4–11) consists of a repeated pruning process: for every such tree Ti, the algorithm checks
in Line 7 if the maximal possible cost of the edges E(Pi, V \ Pi) (i.e., the LHS of the inequality in
the if-condition) can be bounded by the internal cost of the critical nodes N ∈ Si, up to a factor of
O(k).

• If so, the algorithm uses Ti as a building block and adds it to a global set of trees T;
• Otherwise, the algorithm prunes the subtree Ti[N ], where N ∈ Si is the critical node closest

to the root in Ti, and adds Ti[N ] to T (Line 11).

The process is repeated with the pruned Ti until either the condition in Line 7 is satisfied, or Ti is
completely pruned. Finally, in the Merge phase (Lines 13–15) the algorithm combines the trees in
T in a “caterpillar style” according to an increasing order of their sizes. The performance of this
algorithm is summarised in Theorem 2.
Theorem 2. Let G = (V,E,w) be graph, and k > 1 such that λk+1 > 0 and λk = O(k−12). The
algorithm PruneMerge runs in polynomial-time and constructs an HC tree TPM of G satisfying
costG(TPM) = O

(
k22/λ10

k+1

)
· OPTG. In particular, when λk+1 = Ω(1) and k = O(1), the

algorithm’s constructed tree TPM satisfies that costG(TPM) = O(1) · OPTG.
4The example consists of two copies of the graph in Figure 1(a), connected by a sparse cut.

7



Algorithm 2: PruneMerge(G, k)

Input: A graph G = (V,E,w), a parameter k ∈ Z+ such that λk+1 > 0;
Output: An HC tree TPM of G;

1 Apply the partitioning algorithm (Lemma 4.3) on input (G, k) to obtain {Pi}`i=1 for some ` ≤ k;
2 Let Ti = HCwithDegrees(G[Pi]);
3 Initialise T = ∅;
4 for All clusters Pi do
5 Let Si be the set of critical nodes of Ti;
6 while Si is nonempty do
7 if n ·

∑
N∈Si w(N,V \ Pi) ≤ 6(k + 1) ·

∑
N∈Si |parentTi(N)| · volG[Pi](N) then

8 Update T← T ∪ Ti and Si = ∅;
9 else

10 Let N,M be the two children of the root of Ti such that N ∈ Si;
11 Update T← T ∪ Ti[N ], Si ← Si \ {N} and Ti ← Ti[M ];

12 Let t = |T| and T = {T̃1, . . . , T̃t} be such that |T̃i| ≤ |T̃i+1|, for all 1 ≤ i < t;
13 Initialise TPM = T̃1;
14 for i = 2 . . . t do
15 Let TPM be the tree with TPM and T̃i as its two children;
16 return TPM.

We remark that, although Algorithm 2 requires a parameter k as input, we can apply the standard
technique of running Algorithm 2 for different values of k and returning the tree with the lowest cost.
By introducing a factor of O(k) to the algorithm’s runtime, this ensures that one of the constructed
trees by Algorithm 2 would always satisfy our promised approximation ratio.

5 Experiments

We experimentally evaluate the performance of our proposed algorithm, and compare it against the
three well-known linkage heuristics for computing hierarchical clustering trees, and different variants
of the algorithm proposed in [10], i.e. Linkage++, on both synthetic and real-world data sets. At a
high level, Linkage++ consists of the following three steps:

(i) Project the input data points into a lower dimensional Euclidean subspace;

(ii) Run the Single Linkage algorithm [11] until k clusters are left;

(iii) Run a Density based linkage algorithm on the k clusters until one cluster is left.

Specifically, our algorithm PruneMerge will be compared against the following 6 algorithms:

• Average Linkage, Complete Linkage, and Single Linkage: the three well-known
linkage algorithms studied in the literature. We refer the reader to [11] for a complete
description.

• Linkage++, PCA+ and Density: the algorithm proposed in [10], together with two variants
also studied in [10]. The algorithm PCA+ corresponds to running Steps (i) and (ii) of
Linkage++ until one cluster is left (as opposed to k clusters), while Density corresponds
to running Steps (i) and (iii) of Linkage++.

All algorithms were implemented in Python 3.8 and the experiments were performed using an Intel(R)
Core(TM) i5-6500 CPU @ 3.20GHz processor, with 16 GB RAM. All of the reported costs below
are averaged over 5 independent runs.

Synthetic data sets. We first compare the performance of our algorithm with the aforementioned
other algorithms on synthetic data sets.

8



Clusters of the same size. Our first set of experiments employ input graphs generated according to
random stochastic models, where all clusters have the same size. For our first experiment, we look
at graphs generated from the standard Stochastic Block Model (SBM). We first set the number of
clusters as k = 3, and the number of vertices in each cluster {Pi}3i=1 as 1, 000. We assume that any
pair of vertices within each cluster is connected by an edge with probability p, and any pair of vertices
from different clusters is connected by an edge with probability q. We fix the value q = 0.002, and
consider different values of p ∈ [0.04, 0.2]. Our experimental results are illustrated in Figure 3(a).

For our second experiment, we consider graphs generated according to a hierarchical stochastic block
model (HSBM) [11]. This model assumes the existence of a ground-truth hierarchical structure of the
clusters. For the specific choice of parameters, we set the number of clusters as k = 5, and the number
of vertices in each cluster {Pi}5i=1 as 600. For every pair of vertices (u, v) ∈ Pi × Pj , we assume
that u and v are connected by an edge with probability p if i = j; otherwise u and v are connected by
an edge with probability qi,j defined as follows: (i) for all i ∈ {1, 2, 3} and j ∈ {4, 5}, qi,j = qj,i =
qmin; (ii) for i ∈ {1, 2}, qi,3 = q3,i = 2 · qmin; (iii) q4,5 = q5,4 = 2 · qmin; (iv) q1,2 = q2,1 = 3 · qmin.
We fix the value qmin = 0.0005 and consider different values of p ∈ [0.04, 0.2] as illustrated in
Figure 3(b). We remark that this choice of parameters resembles similarities with [10] and this is to
ensure that the underlying clusters exhibit a ground truth hierarchical structure.

As reported in Figure 3, our experimental results for both sets of graphs are similar, and the perfor-
mance of our algorithm is marginally better than Linkage++. This is well expected, as Linkage++ is
specifically designed for the HSBM, in which all the clusters have the same inner density characterised
by parameter p, and their algorithm achieves a (1 + o(1))-approximation for those instances.

(a) (b)

Figure 3: Results for clusters of the same size. The x-axis represents different values of p, while the y-axis
represents the cost of the algorithms’ returned HC trees normalised by the cost of PruneMerge. Figure (a)
corresponds to inputs generated according to the SBM, while Figure (b) to those according to the HSBM.

Clusters with non-uniform densities. Next we study graphs in which edges are present non-uniformly
within each cluster (e.g., Figure 1(a) discussed earlier). Specifically, we set k = 3, |Pi| = 1000, q =
0.002, p = 0.06, and every pair of vertices (u, v) ∈ Pi×Pj is connected by an edge with probability
p if i = j and probability q otherwise. Moreover, this time we choose a random set Si ⊂ Pi of size
|Si| = cp · |Pi| from each cluster, and add edges to connect every pair of vertices in each Si so that
the vertices of each Si form a clique. By setting different values of cp ∈ [0.05, 0.4], the performance
of our algorithm is about 20% – 50% better than Linkage++ with respect to the cost value of the
constructed tree, see Figure 4(a) for detailed results. To explain the outperformance of our algorithm,
notice that, by adding a clique into some cluster, the cluster structure is usually preserved with respect
to (Φin,Φout) or similar eigen-gap assumption on well-clustered graphs. However, the existence of
such a clique within some cluster would make the vertices’ degrees highly unbalanced; as such many
clustering algorithms that involve the matrix perturbation theory in their analysis might not work
well.

Clusters of different sizes. To further highlight the significance of our algorithm on synthetic graphs
of non-symmetric structures among the clusters, we study the graphs in which the clusters have
different sizes. We choose the same set of k and q values as before (k = 3, q = 0.002), but set
the sizes of the clusters to be |P1| = 1900, |P2| = 900 and |P3| = 200. Every pair of vertices
u, v ∈ Pi, for i ∈ {1, 2} is connected by an edge with probability p1 = 0.06, while pairs of vertices

9



(a) (b)

Figure 4: Results for graphs with non-uniform densities, or different sizes. The x-axis represents the cp-values,
while the y-axis represents the cost of the algorithms’ constructed trees normalised by the cost of the ones
constructed by PruneMerge. Figure (a) corresponds to inputs where all clusters have the same size, while in
Figure (b) the clusters have different sizes.

u, v ∈ P3 are connected with probability5 p2 = 5 · p1 = 0.3. We further plant a clique Si ⊂ Pi of
size |Si| = cp · Pi for each cluster Pi, as in the previous set of experiments. By choosing different
values of cp from [0.05, 0.4], our results are reported in Figure 4(b), demonstrating that our algorithm
performs better than the ones in [10].

Figure 5: Results on real-world data sets. The x-axis
represents the various data sets and our choice of the
σ-value used for constructing the similarity graphs. The
y-axis corresponds to the cost of the algorithms’ output
normalised by the cost of PruneMerge.

Real-world data sets. To evaluate the perfor-
mance of our algorithm on real-world data sets,
we follow the sequence of recent work on hier-
archical clustering [2, 10, 19, 24], all of which
are based on the following 5 data sets from the
Scikit-learn library [22] as well as the UCI ML
repository [1]: Iris, Wine, Cancer, Boston and
Newsgroup6. Similar with [24], for each data
set we construct the similarity graph based on
the Gaussian kernel, in which the σ-value is cho-
sen according to the standard heuristic [21]. As
reported in Figure 5, our algorithm performs
marginally worse than Linkage++ and signifi-
cantly better than PCA+.

6 Conclusion

The experimental results on synthetic data sets demonstrate that our presented algorithm PruneMerge
not only has excellent theoretical guarantees, but also produces output of lower cost than the previous
algorithm Linkage++. In particular, the outperformance of our algorithm is best illustrated on graphs
whose clusters have asymmetric internal structure and non-uniform densities. On the other side, the
experimental results on real-world data sets show that the performance of PruneMerge is inferior
to Linkage++ and especially to Average Linkage. We believe that developing more efficient
algorithms for well-clustered graphs is a very meaningful direction for future work.

Finally, our experimental results indicate that the Average Linkage algorithm performs extremely
well on all instances, when compared to PruneMerge and Linkage++. This leads to the open
question whether Average Linkage achieves an O(1)-approximation for well-clustered graphs,
although it fails to achieve an O(1)-approximation for general graphs [11]. In our point of view, the
answer to this question could help us design more efficient algorithms for hierarchical clustering that
not only work in practice, but also have rigorous theoretical guarantees.

5Such choice of p2 is to compensate for the small size of clusterP3, and this ensures that the outer conductance
ΦG(C3) is low.

6Due to the very large size of this data set, we consider only a subset consisting of “comp.graphics”,
“comp.os.ms-windows.misc”, “comp.sys.ibm.pc.hardware”, “comp.sys.mac.hardware”, “rec.sport.baseball”, and
“rec.sport.hockey”.

10



Acknowledgements

Bogdan Manghiuc is supported by an EPSRC Doctoral Training Studentship (EP/R513209/1), and
He Sun is supported by an EPSRC Early Career Fellowship (EP/T00729X/1).

References
[1] UCI ML Repository. https://archive.ics.uci.edu/ml/index.php. Accessed: 2021-

05-22.

[2] Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-dimensional
hierarchical clustering. In 33rd Advances in Neural Information Processing Systems
(NeurIPS’19), pages 11576–11586, 2019.

[3] Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: a 0.585 revenue ap-
proximation. In 33rd Annual Conference on Learning Theory (COLT’20), pages 153–162,
2020.

[4] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. Journal of the ACM, 62(5), November 2015.

[5] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nisheeth K.
Vishnoi. Unique games on expanding constraint graphs are easy: extended abstract. In 40th
Annual ACM Symposium on Theory of Computing (STOC’08), pages 21–28, 2008.

[6] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest
cut and spreading metrics. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’17), pages 841–854, 2017.

[7] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than
average-linkage. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19),
pages 2291–2304, 2019.

[8] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for Euclidean data. In 22nd International Conference on Artificial Intelligence and
Statistics (AISTATS’19), pages 2721–2730, 2019.

[9] Vaggos Chatziafratis, Grigory Yaroslavtsev, Euiwoong Lee, Konstantin Makarychev, Sara
Ahmadian, Alessandro Epasto, and Mohammad Mahdian. Bisect and conquer: Hierarchical
clustering via max-uncut bisection. In 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS’20), pages 3121–3132, 2020.

[10] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. Hierarchical clus-
tering beyond the worst-case. In 31st Advances in Neural Information Processing Systems
(NeurIPS’17), pages 6201–6209, 2017.

[11] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hi-
erarchical clustering: Objective functions and algorithms. Journal of the ACM, 66(4):1–42,
2019.

[12] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In 48th Annual
ACM Symposium on Theory of Computing (STOC’16), pages 118–127, 2016.

[13] Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’14), pages 1256–1266, 2014.

[14] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[15] Ravi Kannan, Santosh S. Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
Journal of the ACM, 51(3):497–515, 2004.

[16] Alexandra Kolla. Spectral algorithms for unique games. In 25th Conference on Computational
Complexity (CCC’10), pages 122–130, 2010.

11

https://archive.ics.uci.edu/ml/index.php


[17] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and
higher-order cheeger inequalities. Journal of the ACM, 61(6):37:1–37:30, 2014.

[18] Huan Li, He Sun, and Luca Zanetti. Hermitian Laplacians and a Cheeger inequality for the
Max-2-Lin problem. In 27th Annual European Symposium on Algorithms (ESA’19), pages
71:1–71:14, 2019.

[19] Aditya Krishna Menon, Anand Rajagopalan, Baris Sumengen, Gui Citovsky, Qin Cao, and
Sanjiv Kumar. Online hierarchical clustering approximations. arXiv:1909.09667, 2019.

[20] Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. In 31st Advances in Neural Information
Processing Systems (NeurIPS’17), pages 3094–3103, 2017.

[21] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In 15th Advances in Neural Information Processing Systems (NeurIPS’02), pages 849–856,
2002.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[23] Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! SIAM Journal on Computing, 46(2):710–743, 2017.

[24] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. The Journal
of Machine Learning Research, 18(1):3077–3111, 2017.

[25] Danny Vainstein, Vaggos Chatziafratis, Gui Citovsky, Anand Rajagopalan, Mohammad Mah-
dian, and Yossi Azar. Hierarchical clustering via sketches and hierarchical correlation clustering.
In 24th International Conference on Artificial Intelligence and Statistics (AISTATS’21), pages
559–567, 2021.

[26] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

[27] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S. Mirrokni. A local algorithm for finding
well-connected clusters. In 30th International Conference on Machine Learning (ICML’13),
pages 396–404, 2013.

12


	Introduction
	Preliminaries
	Hierarchical clustering for graphs of high conductance
	Hierarchical clustering for well-clustered graphs
	Experiments
	Conclusion

