
A Additional related work

Deterministic RL Deterministic system is often the starting case in the study of sample-efficient
algorithms, where the issue of exploration and exploitation trade-off is more clearly revealed since
both the transition kernel and reward function are deterministic. The seminal work [81] proposes a
sample-efficient algorithm for Q-learning that works for a family of function classes. Recently, [21]
studies the agnostic setting where the optimal Q-function can only be approximated by a function
class with approximation error. The algorithm in [21] learns the optimal policy with the number of
trajectories linear with the eluder dimension.

B Omitted Proofs in Section 3

B.1 Proof of Section 3.1

Theorem B.1 (Formal statement of Theorem 3.4). Consider MDP M where the transition is
deterministic. Assume the function class in Definition 3.1 satisfies Assumption 2.1 and Assumption 2.2.
For any t ∈ (0, 1), if d ≥ Ω(log(BW /λ)) and n ≥ d ·poly(κ, k, λ,BW , Bϕ, H, log(d/t)), then with
probability at least 1− t Algorithm 1 returns the optimal policy π∗.

Proof. Use π∗
1 , . . . , π

∗
H to denote the global optimal policy. We prove that Algorithm 1 learns π∗

h
from h = H to h = 1.

At level H , the query obtains exact Q∗
H(s, a). Therefore by Theorem B.15, Q̂H = Q∗

H and thus
the optimal planning finds πH = π∗

H . Suppose we have learned π∗
h+1, . . . , π

∗
H at level h. Due to

deterministic transition, the query obtains exact Q∗
h(s, a). Therefore by Theorem B.15, Q̂h = Q∗

h and
thus the optimal planning finds πh = π∗

h. Recursively applying this process to h = 1, we complete
the proof.

B.2 Proof of Section 3.2

Theorem B.2 (Formal statement of Theorem 3.5). Assume the function class in Definition 3.1 satisfies
Assumption 2.1, Assumption 2.2 and is policy complete. For any ϵ > 0 and t ∈ (0, 1) such that
d ≥ Ω(log(BWBϕ/ϵ)), if n ≥ ϵ−2 · d · poly(κ, k,BW , Bϕ, H, log(d/t)), then with probability at
least 1− t Algorithm 2 returns a policy π such that V ∗ − V π ≤ ϵ.

Proof. Use π∗
1 , . . . , π

∗
H to denote the global optimal policy. We prove for all s ∈ S,

V
π∗
h,π

∗
h+1,...,π

∗
H

h (s)− V
πh,πh+1,...,πH

h (s) ≤ (H − h+ 1)ϵ

H
.

At level H , let eH(siH , aiH) = rH(siH , aiH) − Q∗
H(siH , aiH), then eH(siH , aiH) = 0. From Theo-

rem B.13, we have Q̂H(s, a) := v⊤Hσ(WHϕ(s, a)) satisfies |Q̂H(s, a) − Q∗
H(s, a)| ≤ ϵ

2H for all
s ∈ S, a ∈ A. Therefore for all s ∈ S,

V ∗
H(s)− V πH

H (s) = Ea∼π∗
H
[Q∗

H(s, a)]− Ea∼π∗
H
[Q̂H(s, a)]

+ Ea∼π∗
H
[Q̂H(s, a)]− Ea∼πH

[Q̂H(s, a)]

+ Ea∼πH
[Q̂H(s, a)]− Ea∼πH

[Q∗
H(s, a)]

≤ ϵ

H

where in the second step we used Ea∼π∗
H
[Q̂H(s, a)] ≤ Ea∼πH

[Q̂H(s, a)] by optimality of πH and
|Q̂H(s, a)−Q∗

H(s, a)| ≤ ϵ
2H .

Suppose we have learned policies πh+1, . . . , πH , we use π̃h to denote the optimal policy of
Q

πh+1,...,πH

h (s, a). Let

eh(s
i
h, a

i
h) = Q̂i

h −Q
πh+1,...,πH

h (sih, a
i
h)

17

then eh(s
i
h, a

i
h) is zero mean H2 sub-Gaussian (notice that Q̂i

h is unbiased estimate of
Q

πh+1,...,πH

h (sih, a
i
h), and Q̂i

h ≤ O(H)). From Theorem B.13, we have Q̂h(s, a) = v⊤h σ(Whϕ(s, a))

satisfies |Q̂h(s, a)−Q
πh+1,...,πH

h (s, a)| ≤ ϵ
2H for all s ∈ S, a ∈ A. Therefore for all s ∈ S,

V
π̃h,πh+1,...,πH

h (s)− V
πh,πh+1,...,πH

h (s)

= Ea∼π̃h
[Q

πh+1,...,πH

h (s, a)]− Ea∼π̃h
[Q̂h(s, a)]

+ Ea∼π̃h
[Q̂h(s, a)]− Ea∼πh

[Q̂h(s, a)]

+ Ea∼πh
[Q̂h(s, a)]− Ea∼πh

[Q
πh,πh+1,...,πH

h (s, a)]

≤ ϵ

H

where in the second step we used Ea∼π̃h
[Q̂h(s, a)] ≤ Ea∼πh

[Q̂h(s, a)] by optimality of πh and
|Q̂h(s, a)−Q

πh+1,...,πH

h (s, a)| ≤ ϵ
2H .

It thus follows that

V
π∗
h,π

∗
h+1,...,π

∗
H

h (s)− V
πh,πh+1,...,πH

h (s) = V
π∗
h,π

∗
h+1,...,π

∗
H

h (s)− V
π∗
h,πh+1,...,πH

h (s)

+ V
π∗
h,πh+1,...,πH

h (s)− V
π̃h,πh+1,...,πH

h (s)

+ V
π̃h,πh+1,...,πH

h (s)− V
πh,πh+1,...,πH

h (s)

≤ V
π∗
h,π

∗
h+1,...,π

∗
H

h (s)− V
π∗
h,πh+1,...,πH

h (s) +
ϵ

H
≤ · · ·

≤ (H − h+ 1)ϵ

H
.

where in the second step we use V
π∗
h,πh+1,...,πH

h (s) ≤ V
π̃h,πh+1,...,πH

h (s) from optimality of π̃h.
Repeating this argument to h = 1 completes the proof

B.3 Proof of Section 3.3

Theorem B.3 (Formal statement of Theorem 3.6). Assume the function class in Definition 3.1 satisfies
Assumption 2.1, Assumption 2.2, and is Bellman complete. For any ϵ > 0 and t ∈ (0, 1) such that
d ≥ Ω(log(BWBϕ/ϵ)), if n ≥ ϵ−2 · d · poly(κ, k,BW , Bϕ, H, log(d/t)), then with probability at
least 1− t Algorithm 3 returns a policy π such that V ∗ − V π ≤ ϵ.

Proof. Use π∗
1 , . . . , π

∗
H to denote the global optimal policy. We prove

|Q̂h(s, a)−Q∗
h(s, a)| ≤

(H − h+ 1)ϵ

H
(1)

for all s ∈ S, a ∈ A.

At level H , let
eH(siH , aiH) = rH(siH , aiH)−Q∗

H(siH , aiH)

then eH(siH , aiH) = 0 . From Theorem B.13, we have Q̂H(s, a) := v⊤Hσ(WHϕ(s, a)) satisfies
|Q̂H(s, a)−Q∗

H(s, a)| ≤ ϵ
H for all s ∈ S, a ∈ A.

Suppose we have learned Q̂h+1(s, a) with |Q̂h+1(s, a)−Q∗
h+1(s, a)| ≤

(H−h)ϵ
H . At level h, let

eh(s
i
h, a

i
h) = rh(s

i
h, a

i
h) + V̂h+1(s

i
h+1)− Th(Q̂h+1)(s

i
h, a

i
h)

then eh(s
i
h, a

i
h) is zero mean H2 sub-Gaussian (notice that rh(sih, a

i
h) + V̂h+1(s

i
h+1) is unbiased

estimate of Th(Q̂h+1)(s
i
h, a

i
h), and rh(s

i
h, a

i
h) + V̂h+1(s

i
h+1) ≤ O(H)). From Theorem B.13, we

have Q̂h(s, a) := v⊤h σ(Whϕ(s, a)) satisfies |Q̂h(s, a)− Th(Q̂h+1)(s
i
h, a

i
h)| ≤ ϵ

H for all s ∈ S, a ∈

18

A. Therefore

|Q̂h(s, a)−Q∗
h(s, a)| ≤ |Q̂h(s, a)− Th(Q̂h+1)(s, a)|+ |Th(Q̂h+1)(s, a)−Q∗

h(s, a)|

≤ ϵ

H
+ max

s∈S,a∈A
|Q̂h+1(s, a)−Q∗

h+1(s, a)|

≤ (H − h+ 1)ϵ

H
holds for all s ∈ S, a ∈ A.

It thus follows that for all s1 ∈ S,

V
π∗
1 ,...,π

∗
H

h (s1)− V π1,...,πH

h (s1) = Ea∼π∗
1
[Q∗

1(s1, a)]− Ea∼π1
[Qπ2,...,πH

1 (s1, a)]

≤ Ea∼π∗
1
[Q̂1(s1, a)]− Ea∼π1

[Qπ2,...,πH

1 (s1, a)] + ϵ

≤ Ea∼π1
[Q̂1(s1, a)−Qπ2,...,πH

1 (s1, a)] + ϵ

≤ Ea∼π1
[Q∗

1(s1, a)−Qπ2,...,πH

1 (s1, a)] + 2ϵ

≤ Ea∼π1
Es2∼P(·|s,a)[V

π∗
2 ,...,π

∗
H

2 (s2)− V π2,...,πH

2 (s2)] + 2ϵ

≤ · · ·
≤ 2Hϵ

where the first step comes from definition of value function; the second step comes from Eq (1); the
third step comes from optimality of π1; the fourth step comes from Eq (1); the fifth step comes from
Bellman equation. The proof is complete by rescaling ϵ← ϵ/H .

B.4 Proof of Section 3.4

With gap condition, either Algorithm 2 or Algorithm 3 will work as long as we select ϵ ≈ ρ. The
following displays an adaption from Algorithm 2.

Algorithm 6 Learning realizable Q∗ with optimality gap

1: for h = H, . . . 1 do
2: Sample xi

h, i ∈ [n] from standard Gaussian N (0, Id)
3: for i ∈ [n] do
4: if ∥xi

h∥ ≤ δϕ then
5: Find (sih, a

i
h) ∈ ϕ−1(xi

h) and locate the state sih in the generative model
6: Pull action aih and use πh+1, . . . , πH as the roll-out to collect rewards r(i)h , . . . , r

(i)
H

7: Construct unbiased estimation of Qπh+1,...,πH

h (sih, a
i
h)

Q̂i
h ← r

(i)
h + · · ·+ r

(i)
H

8: else
9: Let Q̂i

h ← 0.
10: end if
11: end for
12: Compute (vh,Wh)← NEURALNETNOISYRECOVERY({(xi

h, Q̂
i
h) : i ∈ [n]})

13: Set Q̂h(s, a)← v⊤h σ(Whϕ(s, a))

14: Let πh(s)← argmaxa∈S Q̂h(s, a)
15: end for
16: Return π1, . . . , πH

Theorem B.4 (Formal statement of Theorem 3.8). Assume the function class in Definition 3.1 satisfies
Assumption 2.1 and Assumption 2.2. Suppose ρ > 0 and d ≥ Ω(log(BWBϕ/ρ)), for any t ∈ (0, 1),
if n = d

ρ2 · poly(κ, k,BW , Bϕ, H, log(d/t)), then with probability at least 1− t Algorithm 6 returns
the optimal policy π∗.

Proof. Use π∗
1 , . . . , π

∗
H to denote the global optimal policy. Similar to Theorem B.1, we prove that

Algorithm 6 learns π∗
h from h = H to h = 1.

19

At level H , the algorithm uses n = d
ρ2 · poly(κ, k, log d,BW , Bϕ, H, log(1/t)) trajectories to obtain

Q̂H such that |Q̂H(s, a)−Q∗(s, a)| ≤ ρ/4 by Theorem B.13. Therefore

V ∗
H(s)−Q∗

H(s, πH(s))

≤ Q∗
H(s, π∗

H(s))−Q∗
H(s, πH(s))

≤ Q∗
H(s, π∗

H(s))− Q̂H(s, π∗
H(s)) + Q̂H(s, π∗

H(s))− Q̂H(s, πH(s))

+ Q̂H(s, πH(s))−Q∗
H(s, πH(s))

≤ ρ/2

where the third inequality uses the optimality of πH(s) under Q̂H . Thus Definition 3.7 gives
πH(s) = π∗

H(s). Suppose we have learned π∗
h+1, . . . , π

∗
H at level h. We apply the same argument to

derive πh = π∗
h. Recursively applying this process to h = 1, we complete the proof.

B.5 Neural network recovery

This section considers recovering neural network ⟨v, σ(Wx)⟩ from the following two models, where
B = Ω(d · poly log(d)).

• Noisy samples from

x ∼ N (0, Id), y = (⟨v, σ(Wx)⟩+ ξ) · 1(∥x∥ ≤ B) (2)

where ξ is ϑ sub-Gaussian noise.
• Noiseless samples from

x ∼ N (0, Id), y = (⟨v, σ(Wx)⟩) · 1(∥x∥ ≤ B) (3)

Recovering neural network has received comprehensive study in deep learning theory [39, 90, 27].
The analysis in this section is mainly based on the method of moments in [90]. However, notice that
the above learning tasks are different from those considered in [90], due to the presence of noise and
the truncated signals. Therefore, additional considerations must be made in the analysis.

We consider more general homogeneous activation functions, specified by the assumptions that follow.
Since the activation function is homogeneous, we assume vi ∈ {±1} in the following without loss of
generality.
Assumption B.5 (Property 3.1 of [90]). Assume σ′(x) is nonnegative and homogeneously bounded,
i.e. 0 ≤ σ′(x) ≤ L1|x|p for some constants L1 > 0 and p ≥ 0.
Definition B.6 (Part of property 3.2 of [90]). Define ρ(z) := min{β0(z)− α2

0(z)− α2
1(z), β2(z)−

α2
1(z) − α2

2(z), α0(z)α2(z) − α2
1(z)}, where αq(z) := Ex∼N (0,1)[σ

′(zx)xq], q ∈ {0, 1, 2}, and
βq(z) := Ex∼N (0,1)[(σ

′)2(zx)xq] for q ∈ {0, 2}.
Assumption B.7 (Part of property 3.2 of [90]). The first derivative σ′(z) satisfies that, for all z > 0,
we have ρ(z) > 0.
Assumption B.8 (Property 3.3 of [90]). The second derivative σ′′(x) is either (a) globally bounded
or (b) σ′′(x) = 0 except for finite points.

Notice that ReLU, squared ReLU, leaky ReLU, and polynomial activation function functions all
satisfies the above assumption. We make the following assumption on the dimension of feature
vectors, which corresponds to how features can extract information about neural networks from
noisy samples. The dimension only has to be greater than a logarithmic term in 1/ϵ and the norm of
parameters.
Assumption B.9 (Rich feature). Assume d ≥ Ω(log(BW /ϵ)).

First we introduce a notation from [90].
Definition B.10. Define outer product ⊗̃ as follows. For a vector v ∈ Rd and an identity matrix
I ∈ Rd×d,

v⊗̃I =

d∑
j=1

[v ⊗ ej ⊗ ej + ej ⊗ v ⊗ ej + ej ⊗ ej ⊗ v].

20

For a symmetric rank-r matrix M =
∑r

i=1 siviv
⊤
i and an identity matrix I ∈ Rd×d,

M⊗̃I =

r∑
i=1

si

d∑
j=1

6∑
l=1

Al,i,j

where A1,i,j = vi ⊗ vi ⊗ ej ⊗ ej , A2,i,j = vi ⊗ ej ⊗ vi ⊗ ej , A3,i,j = ej ⊗ vi ⊗ vi ⊗ ej ,
A4,i,j = vi ⊗ ej ⊗ ej ⊗ vi, A5,i,j = ej ⊗ vi ⊗ ej ⊗ vi, A6,i,j = ej ⊗ ej ⊗ vi ⊗ vi.

Now we define some moments.
Definition B.11. Define M1,M2,M3,M4,m1,i,m2,i,m3,i,m4,i as follows:

M1 := E[y · x]
M2 := E[y · (x⊗ x− I)]

M3 := E[y · (x⊗3 − x⊗̃I)]
M4 := E[y · (x⊗4 − (x⊗ x)⊗̃I + I⊗̃I)]

γj(x) := Ez∼N (0,1)[σ(x · z)zj],∀j ∈ 0, 1, 2, 3, 4

m1,i := γ1(∥wi∥)
m2,i := γ2(∥wi∥)− γ0(∥wi∥)
m3,i := γ3(∥wi∥)− 3γ1(∥wi∥)
m4,i := γ4(∥wi∥) + 3γ0(∥wi∥)− 6γ2(∥wi∥)

The above expectations are all with respect to x ∼ N (0, Id) and y = ⟨v, σ(Wx)⟩.
Assumption B.12 (Assumption 5.3 of [90]). Assume the activation function satisfies the followings:

• If Mi ̸= 0, then mj,i ̸= 0 for all i ∈ [k].

• At least one of M3 and M4 is not zero.

• If M1 = M3 = 0, then σ(z) is an even function.

• If M2 = M4 = 0, then σ(z) is an odd function.

Now we state the theoretical result that recovers neural networks from noisy data.
Theorem B.13 (Neural network recovery from noisy data). Let the activation function σ satisfies
Assumption B.5 and Assumption B.12. Let κ be the condition number of W . Given n samples from
Eq (2). For any t ∈ (0, 1) and ϵ ∈ (0, 1) such that Assumption B.9 holds, if

n ≥ ϵ−2 · d · poly(κ, k, ϑ, log(d/t))

then there exists an algorithm that takes Õ(nkd) time and returns a matrix Ŵ ∈ Rk×d and a vector
v̂ ∈ {±1}k such that with probability at least 1− t,

∥Ŵ −W∥F ≤ ϵ · poly(k, κ) · ∥W∥F , and v̂ = v.

The algorithm and proof are shown in Appendix B.5.1. By Assumption B.5, the following corollary
is therefore straightforward.
Corollary B.14. In the same setting as Theorem B.13. For any t ∈ (0, 1) and suppose ∥W∥F ≤ BW

and Assumption B.9 holds. Given n samples from Eq (2). If

n ≥ ϵ−2 · d · poly(κ, k, log(d/t), BW , Bϕ, ϑ)

then there exists an algorithm that takes Õ(nkd) time and outputs a matrix Ŵ ∈ Rk×d and a vector
v̂ ∈ {±1}k such that with probability at least 1− t, for all ∥x∥2 ≤ Bϕ

|⟨v̂, σ(Ŵx)⟩ − ⟨v, σ(Wx)⟩| ≤ ϵ.

In particular, when Bϕ = O(d · poly log d) the following sample complexity suffices

n ≥ ϵ−2 · dO(1+p) · poly(κ, k, log(d/t), BW , ϑ).

21

Now we state the theoretical result that precisely recovers neural networks from noiseless data. The
proof and method are shown in Appendix B.5.2.
Theorem B.15 (Exact neural network recovery from noiseless data). Let the activation function
satisfies Assumption B.5 and Assumption B.12, Assumption B.7 and Assumption B.8(b). Given n
samples from Eq (3). For any t ∈ (0, 1), suppose d ≥ Ω(log(BW /λ)) and

n ≥ d · poly(κ, k, λ, log(d/t)),
then there exists an algorithm that output exact W and v with probability at least 1− t.

B.5.1 Recover neural networks from noisy data

In this section we prove Theorem B.13. Denote W = [w1, · · · , wk]
⊤ where wi ∈ Rd and wi =

wi/∥wi∥2.
Definition B.16. Given a vector α ∈ Rd. Define P2 := Mj2(I, I, α, · · · , α) where j2 = min{j ≥
2 : Mj ̸= 0} and P3 := Mj3(I, I, I, α, · · · , α) where j3 = min{j ≥ 3 : Mj ̸= 0}.

The method of moments is presented in Algorithm 7. Here we sketch its ideas, and refer readers to
[90] for thorough explanations. There are three main steps. In the first step, it computes the span
of the rows of W . By power method, Line 7 finds the top-k eigenvalues of CI + P̂2 and CI − P̂2.
It then picks the largest k eigenvalues from CI + P̂2 and CI − P̂2, by invoking TOPK in Line 15.
Finally it orthogonalizes the corresponding eigenvectors in Line 19 and finds an orthogonal matrix V
in the subspace spanned by {w1, . . . , wk}.

In the second step, the algorithm forms third order tensor R3 = Ps(V, V, V) ∈ Rk×k×k and use the
robust tensor decomposition method in [47] to find û that approximates siV ⊤wi with unknown signs
si. In the third step, the algorithm determines s, v and wi, i ∈ [k]. Since the activation function is
homogeneous, we assume vi ∈ {±1} and mj,i = cj∥wi∥p+1 for universal constants cj without loss
of generality. For illustration, we define Q1 and Q2 as follows.

Q1 = Ml1(I, α, · · · , α︸ ︷︷ ︸
(l1−1) α’s

) =

k∑
i=1

vicl1∥wi∥p+1(α⊤wi)
l1−1wi, (4)

Q2 = Ml2(V, V, α, · · · , α︸ ︷︷ ︸
(l2−2) α’s

) =

k∑
i=1

vicl2∥wi∥p+1(α⊤wi)
l2−2(V ⊤wi)(V

⊤wi)
⊤, (5)

where l1 ≥ 1 such that Ml1 ̸= 0 and l2 ≥ 2 such that Ml2 ̸= 0 are specified later. Then the solutions
of the following linear systems

z∗ = argmin
z∈Rk

∥∥∥∥∥
k∑

i=1

zisiwi −Q1

∥∥∥∥∥ , r∗ = argmin
r∈Rk

∥∥∥∥∥
k∑

i=1

riV
⊤wi(V

⊤wi)
⊤ −Q2

∥∥∥∥∥
F

. (6)

are the followings

z∗i = vis
l1
i cl1∥wi∥p+1(α⊤siwi)

l1−1, ri = vis
l2
i cl2∥wi∥p+1(α⊤siwi)

l2−2.

When cl1 and cl2 do not have the same sign, we can recover vi and si by vi = sign(r∗i cl2), si =
sign(viz

∗
i cl1), and recover wi by

wi =

(∣∣∣∣ z∗i
cl1(α

⊤siwi)l1−1)

∣∣∣∣)1/(p+1)

wi.

In Algorithm 7, we use V ûi to approximate siwi, and use moment estimators Q̂1 and Q̂2 to approxi-
mate Q1 and Q1. Then the solutions ẑ, r̂ to the optimization problems in Line 29 should approximate
z∗ and r∗, due to robustness for solving linear systems. As such, the outputs ṽ, W̃ approximately
recover the true model parameters.

Since Algorithm 7 carries out the same computation as [90], the computational complexity is the
same. The difference of sample complexity comes from the noise ξ in the model and the truncation
of standard Gaussian. The proof entails bounding the error in estimating P2 in Line 4, R3 in Line 20
and Q1, Q2 in Line 28. In the following, unless further specified, the expectations are all with respect
to x ∼ N (0, Id) and y ∼ (⟨v, σ(Wx)⟩+ ξ) · 1(∥x∥ ≤ B).

22

Algorithm 7 Using method of moments to recover neural network parameters

1: procedure NEURALNETNOISYRECOVERY(S = {(xi, yi) : i ∈ [n]})
2: Choose α to be a random unit vector
3: Partition S into S1, S2, S3, S4 of equal size
4: P̂2 ← ES1

[P2], C ← 3∥P2∥, T ← log(1/ϵ)

5: Choose V̂
(0)
1 , V̂

(0)
1 ∈ Rd×k to be random matrices ▷ Estimate subspace V

6: for t = 1, . . . , T do
7: V̂

(t)
1 ← QR(CV̂

(t−1)
1 + P̂2V̂

(t−1)
1), V̂

(t)
2 ← QR(CV̂

(t−1)
2 − P̂2V̂

(t−1)
2)

8: end for
9: for j = 1,2 do

10: V̂
(T)
1 ← [V̂j,1, · · · , V̂j,k]

11: for i ∈ [k] do
12: λj,i ← |V̂j,iP̂2V̂j,i|
13: end for
14: end for
15: π1, π2, k1, k2 ← TOPK(λ, k)
16: for j = 1,2 do
17: Vj ← [V̂j,πj(1), · · · , V̂j,πj(kj)]
18: end for
19: Ṽ2 ← QR((I − V1V

⊤
1)V2), V ← [V1, Ṽ2]

20: R̂3 ← ES2 [P3(V, V, V)], {ûi}i∈[k] ← TENSORDECOMPOSITION(R̂3) ▷ Learn siV
⊤wi

21: if M1 = M3 = 0 then
22: l1, l2 = min{j ∈ {2, 4} : Mj ̸= 0}
23: else if M2 = M4 = 0 then
24: l1 ← min{j ∈ {1, 3} : Mj ̸= 0}, l2 ← 3
25: else
26: l1 ← min{j ∈ {1, 3} : Mj ̸= 0}, l2 = min{j ∈ {2, 4} : Mj ̸= 0}
27: end if
28: Q̂1 ← ES3

[Q1], Q̂2 ← ES4
[Q2]

29: ẑ ← argminz ∥
∑k

i=1 ziV ûi − Q̂1∥, r̂ ← argminr ∥
∑k

i=1 riûiûi − Q̂2∥F
30: for i = 1, . . . , k do ▷ Learn parameters v,W
31: v̂i ← sign(r̂icl2), ŝi ← sign(v̂iẑicl1)

32: ŵi ← ŝi(| ẑi
cl1 (α

⊤V ûi)l1−1)
|)1/(p+1)V ûi

33: end for
34: Ŵ ← [ŵi, · · · , ŵk]

35: Return (v̂, Ŵ)
36: end procedure

Lemma B.17. Let P̂2 be computed in Line 4 of Algorithm 7 and P2 defined in Definition B.16.
Suppose m0 = mini∈[k]{|mj2,i|2(w⊤

i α)
2(j2−2)} and

|S| ≳ d · poly(κ, ϑ, log(d/t))/(ϵ2m0)

then with probability at least 1− t,

∥P2 − P̂2∥ ≲ ϵ

k∑
i=1

|vimj2,i(wi
⊤α)j2−2|+ ϵ.

Proof. It suffices to bound ∥M2 − M̂2∥, ∥M3(I, I, α) − M̂3(I, I, α)∥ and ∥M4(I, I, α, α) −
M̂4(I, I, α, α)∥. The main strategy is to bound all relevant moment terms and to invoke Claim E.6.

Specifically, we show that with probability at least 1− t/4,

∥M2 − M̂2∥ ≲ ϵ

k∑
i=1

|vim2,i|+ ϵ. (7)

23

∥M3(I, I, α)− M̂3(I, I, α)∥ ≲ ϵ

k∑
i=1

|vim3,i(w
⊤
i α)|+ ϵ. (8)

∥M4(I, I, α, α)− M̂4(I, I, α, α)∥ ≲ ϵ

k∑
i=1

|vim4,i|(w⊤
i α)

2 + ϵ. (9)

Recall that for sample (xj , yj) ∈ S, yj =
∑k

i=1 viσ(w
⊤
i xj) + ξj where ξj is independent of xj .

Consider each component i ∈ [k]. Define Ci(xj), Bi(xj) ∈ Rd×d as follows:

Bi(xj) = (σ(w⊤
i xj) + ξj) · (x⊗4

j − (xj ⊗ xj)⊗̃I + I⊗̃I)(I, I, α, α)

= (σ(w⊤
i xj) + ξj) · ((x⊤α)2x⊗2 − (α⊤x)2I − 2(α⊤x)(xα⊤ + αx⊤)− xx⊤ + 2αα⊤ + I),

and Ci(xj) = 1(∥xj∥ ≤ B) · Bi(xj). Then from Claim E.5 we have E[Bi(xj)] =

m4,i(w
⊤
i α)

2wiw
⊤
i . We calculate

σ(w⊤
i xj) · (x⊗4

j − (xj ⊗ xj)⊗̃I + I⊗̃I)(I, I, α, α)

≲(|w⊤
i xj |p+1 + |ϕ(0)|) · ((x⊤

j α)
2∥xj∥2 + 1 + ∥xj∥2 + (α⊤xj)

2)

≲ |wi|p+1 · |xj |p+5,

By Assumption B.5, using Claim E.1 and B ≥ d · poly log(d) we have

∥E[Ci(xj)]−m4,i(w
⊤
i α)

2wiw
⊤
i ∥ ≲ E[1∥xj∥≥B |wi|p+1 · |xj |p+5]

≲ (∥wi∥d)p+5 · e−Ω(d log d)

≲ ϵ.

Also, 1
2 |m4,i|(w⊤

i α)
2 ≤ ∥E[Ci(xj)]∥ ≤ 2|m4,i|(w⊤

i α)
2.

For any constant t ∈ (0, 1), we have with probability 1− t/4,

∥Ci(xj)∥ ≲(|w⊤
i xj |p+1 + |ϕ(0)|+ |ξj |) · ((x⊤

j α)
2∥xj∥2 + 1 + ∥xj∥2 + (α⊤xj)

2)

≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ) · d · poly(log(d/t))
where the first step comes from Assumption B.5 and the second step comes from Claim E.2 and
Claim E.3.

Using Claim E.4, we have∥∥E[Ci(xj)
2]
∥∥ ≲

(
E[(ϕ(w⊤

i xj) + ξj)
4]
)1/2 (E[(x⊤

j α)
8]
)1/2 (E[∥xj∥4]

)1/2
≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ)2d.

Furthermore we have,

max
∥a∥=1

(
E
[
(a⊤Ci(xj)a)

2
])1/2

≲
(
E
[
(ϕ(w⊤

i xj) + ξj)
4
])1/4

≲ ∥wi∥p+1 + |ϕ(0)|+ ϑ.

Then by Claim E.6, with probability at least 1− t,∥∥∥∥∥∥m4,i(w
⊤
i α)

2wiw
⊤
i −

1

|S|
∑
xj∈S

Ci(xj)

∥∥∥∥∥∥
≤
∥∥m4,i(w

⊤
i α)

2wiw
⊤
i − E[Ci(xj)]

∥∥+
∥∥∥∥∥∥E[Ci(xj)]−

1

|S|
∑
xj∈S

Ci(xj)

∥∥∥∥∥∥
≲ ϵ|m4,i|(w⊤

i α)
2 + ϵ.

Summing up all components i ∈ [k], we proved Eq (9). Eq (7) and Eq (8) can be shown similarly.

24

Lemma B.18. Let V ∈ Rd×k be an orthogonal matrix. Let R̂3 be computed in Line 20 of Algorithm 7
and R3 = P3(V, V, V). Suppose

m0 = min
i∈[k]
{|mj3,i|2(w⊤

i α)
2(j3−3)}

and

|S| ≳ d · poly(κ, ϑ, log(d/t))/(ϵ2m0)

then with probability at least 1− t,

∥R3 − R̂3∥ ≲ ϵ

k∑
i=1

|vimj3,i(wi
⊤α)j3−3|+ ϵ.

Proof. From the definition of R3, it suffices to bound ∥M3(V, V, V) − M̂3(V, V, V)∥ and
∥M4(V, V, V, α)− M̂4(V, V, V, α)∥. The proof is similar to the previous one.

Specifically, we show that with probability at least 1− t/4,

∥M3(V, V, V)− M̂3(V, V, V)∥ ≲ ϵ
k∑

i=1

|vim3,i|+ ϵ. (10)

∥M4(V, V, V, α)− M̂4(V, V, V, α)∥ ≲ ϵ

k∑
i=1

|vim4,i(w
⊤
i α)|+ ϵ. (11)

Recall that for sample (xj , yj) ∈ S, yj =
∑k

i=1 viσ(w
⊤
i xj) + ξj where ξj is independent of xj .

Consider each component i ∈ [k]. Define Ti(xj), Si(xj) ∈ Rk×k×k:

Ti(xj) = (σ(w⊤
i xj) + ξj)

·
(
x⊤
i α · v(x)⊗3 − (V ⊤α)⊗̃(v(x)⊗ v(x))− α⊤x · v(x)⊗̃I + (V ⊤α)⊗̃I

)
,

Si(xj) = 1(∥xj∥ ≤ B) · Ti(xj)

where v(x) = V ⊤x. Flatten Ti(xj) along the first dimension to obtain Bi(xj) ∈ Rk×k2

, flatten
Si(xj) along the first dimension to obtain Ci(xj) ∈ Rk×k2

.

From Claim E.7, E[Bi(xj)] = m4,i(α
⊤wi)(V

⊤wi)vec((V ⊤wi)(V
⊤wi)

⊤)⊤. Therefore we have,

∥E[Bi(x)]∥ = |m4,i(α
⊤wi)| · ∥V ⊤wi∥3.

We calculate

∥Eξj [Bi(xj)]∥ ≲(|w⊤
i xj |p+1 + |ϕ(0)|) · ((x⊤

j α)
2∥V ⊤xj∥3

+ 3∥V ⊤xj∥3 + 3|x⊤
j α|∥V ⊤xj∥

√
k + 3∥V ⊤α∥

√
k)

≲
√
k · ∥wi∥p+1∥xj∥p+6.

By Assumption B.5, using Claim E.1 and B ≥ d · poly log(d),

∥E[Ci(xj)]−m4,i(α
⊤wi)(V

⊤wi)vec((V ⊤wi)(V
⊤wi)

⊤)⊤∥

≲ E[1∥xj∥≤B

√
k∥wi∥p+1∥xj∥p+6]

≤ ϵ.

For any constant t ∈ (0, 1), we have with probability 1− t,

∥Ci(xj)∥ ≲(|w⊤
i xj |p+1 + |ϕ(0)|+ |ξj |) · ((x⊤

j α)
2∥V ⊤xj∥3

+ 3∥V ⊤xj∥3 + 3|x⊤
j α|∥V ⊤xj∥

√
k + 3∥V ⊤α∥

√
k)

≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ)k3/2poly(log(d/t))

25

where the first step comes from Assumption B.5 and the second step comes from Claim E.2 and
Claim E.3.

Using Claim E.4, we have∥∥E[Ci(xj)Ci(xj)
⊤]
∥∥ ≲

(
E
[
(ϕ(w⊤

i xj) + ξj)
4
])1/2 (E [(α⊤xj)

4
])1/2 (E [∥V ⊤xj∥6

])1/2
≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ)2k3/2.

and ∥∥E[Ci(xj)
⊤Ci(xj)]

∥∥
≲
(
E[(ϕ(w⊤

i xj) + ξj)
4]
)1/2 (E[(α⊤xj)

4]
)1/2 (E[∥V ⊤xj∥4]

)1/2
·
(

max
∥A∥F=1

E
[
⟨A, (V ⊤xj)(V

⊤xj)
⊤⟩4
])1/2

≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ)2k2.

Furthermore we have,

max
∥a∥=∥b∥=1

(
E
[
(a⊤Ci(xj)b)

2
])1/2

≲
(
E[(ϕ(w⊤

i xj) + ξj)
4]
)1/4 (E [(α⊤xj)

4
])1/4

max
∥a∥=1

(
E
[
(a⊤V ⊤xj)

4
])1/2

· max
∥A∥F=1

(
E
[
⟨A, (V ⊤xj)(V

⊤xj)
⊤⟩4
])1/2

≲ (∥wi∥p+1 + |ϕ(0)|+ ϑ)k.

Then by Claim E.6, with probability at least 1− t,∥∥∥∥∥∥m4,i(α
⊤wi)(V

⊤wi)vec((V ⊤wi)(V
⊤wi)

⊤)⊤ − 1

|S|
∑
xj∈S

Ci(xj)

∥∥∥∥∥∥
≤
∥∥m4,i(α

⊤wi)(V
⊤wi)vec((V ⊤wi)(V

⊤wi)
⊤)⊤ − E[Ci(xj)]

∥∥
+

∥∥∥∥∥∥E[Ci(xj)]−
1

|S|
∑
xj∈S

Ci(xj)

∥∥∥∥∥∥
≲ ϵ|vim4,i(w

⊤
i α)|+ ϵ.

Summing up all neurons i ∈ [k], we proved Eq (11). Eq (10) can be shown similarly.

Lemma B.19. Let Q̂1 and Q̂2 be computed in Line 28 of Algorithm 7. Let Q1 be defined by Eq 4
and Q2 be defined by Eq 5. Suppose

m0 = min
i∈[k]
{|mj1,i|2(w⊤

i α)
2(j1−1), |mj2,i|2(w⊤

i α)
2(j2−2)}

and

|S| ≳ d · poly(κ, ϑ, log(d/t))/(ϵ2m0)

then with probability at least 1− t,

∥Q1 − Q̂1∥ ≲ ϵ

k∑
i=1

|vimj1,i(wi
⊤α)j1−1|+ ϵ,

∥Q2 − Q̂2∥ ≲ ϵ

k∑
i=1

|vimj2,i(wi
⊤α)j2−2|+ ϵ.

26

Proof. Recall the expression of Q1 and Q2,

Q1 = Ml1(I, α, · · · , α︸ ︷︷ ︸
(j1−1) α’s

) =

k∑
i=1

vicj1∥wi∥p+1(α⊤wi)
j1−1wi,

Q2 = Mj2(V, V, α, · · · , α︸ ︷︷ ︸
(j2−2) α’s

) =

k∑
i=1

vicj2∥wi∥p+1(α⊤wi)
j2−2(V ⊤wi)(V

⊤wi)
⊤.

The proof is essentially similar to Lemma B.17 and Lemma B.18.

We also use the following Lemmata from [47, 90].

Lemma B.20 (Adapted from Theorem 3 of [47]). Given a tensor T̂ =
∑k

i=1 πiu
⊗3
i + ϵR ∈ Rd×d×d.

Assume incoherence u⊤
i uj ≤ µ. Let L0 := (50

1−µ2)
2 and L ≥ L0 log(15d(k − 1)/t)2. Then there

exists an algorithm such that, with probability at least 1− t, for every ui, the algorithm returns a ũi

such that

∥ũi − ui∥2 ≤ O

(√
∥π∥1πmax

π2
min

· ∥V
⊤∥22

1− µ2
· (1 + C(t))

)
ϵ+ o(ϵ),

where C(t) := log(kd/t)
√
d/L and V is the inverse of the full-rank extension of (u1 . . . uk) with

unit-norm columns.
Lemma B.21 (Adapted from Lemma E.6 of [90]). Let P2 be defined as in Definition B.16 and P̂2 be
its empirical version calculated in Line 4 of Algorithm 7. Let U ∈ Rd×k be the orthogonal column
span of W ∈ Rd×k. Assume ∥P̂2−P2∥ ≤ sk(P2)/10. Let C be a large enough positive number such
that C > 2∥P2∥. Then after T = O(log(1/ϵ)) iterations, the V ∈ Rd×k computed in Algorithm 7
will satisfy

∥UU⊤ − V V ⊤∥ ≲ ∥P̂2 − P2∥/sk(P2) + ϵ,

which implies

∥(I − V V ⊤)wi∥ ≲ (∥P̂2 − P2∥/sk(P2) + ϵ)∥wi∥.

Lemma B.22 (Adapted from Lemma E.13 in [90]). Let U ∈ Rd×k be the orthogonal column span of
W ∗. Let V ∈ Rd×k denote an orthogonal matrix satisfying that ∥V V ⊤−UU⊤∥ ≤ δ̂2 ≲ 1/(κ2

√
k).

For each i ∈ [k], let ûi denote the vector satisfying ∥siûi − V ⊤wi∥ ≤ δ̂3 ≲ 1/(κ2
√
k). Let Q1 be

defined as in Eq (4) and Q̂1 be the empirical version of Q1 such that ∥Q1−Q̂1∥ ≤ δ̂4∥Q1∥ ≤ 1
4∥Q1∥.

Let z∗ ∈ Rk and ẑ ∈ Rk be defined as in Eq (6) and Line 29. Then

|ẑi − z∗i | ≤ (κ4k3/2(δ̂2 + δ̂3) + κ2k1/2δ̂4)∥z∗∥1.

Lemma B.23 (Adapted from Lemma E.14 in [90]). Let U ∈ Rd×k be the orthogonal column span
of W ∗ and V be an orthogonal matrix satisfying that ∥V V ⊤ − UU⊤∥ ≤ δ̂2 ≲ 1/(κ

√
k). For each

i ∈ [k], let ûi denote the vector satisfying ∥siûi − V ⊤w∗
i ∥ ≤ δ̂3 ≲ 1/(

√
kκ3).

Let Q2 be defined as in Eq (5) and Q̂2 be the empirical version of Q2 such that ∥Q2 − Q̂2∥F ≤
δ̂4∥Q2∥F ≤ 1

4∥Q2∥F . Let r∗ ∈ Rk and r̂ ∈ Rk be defined as in Eq (6) and Line 29. Then

|r̂i − r∗i | ≤ (k3κ8δ̂3 + κ2k2δ̂4)∥r∗∥.

Now we are in the position of proving Theorem B.13.

Proof. Consider Algorithm 7. First, by Lemma B.21 and Lemma B.17, we have

∥V V ⊤wi − wi∥ ≤ (∥P̂2 − P2∥/sk(P2) + ϵ)

≤ (poly(k, κ)∥P̂2 − P2∥+ ϵ)

≤ poly(k, κ)ϵ. (12)

27

Next, combining Lemma B.20 and Lemma B.18, we have

∥V ⊤wi − siûi∥ ≤ poly(k, κ)∥R̂3 −R3∥ ≤ ϵpoly(k, κ). (13)

It thus follows that

∥wi − siV ûi∥ ≤ ∥V V ⊤wi − wi∥+ ∥V V ⊤wi − V siûi∥
= ∥V V ⊤wi − wi∥+ ∥V ⊤wi − siûi∥
≤ ϵpoly(k, κ), (14)

where the first step applies triangle inequality and the last step uses Eq (12) and Eq (13).

We proceed to bound the error in r̂ and ẑ. We have,

|r̂i − r∗i | ≲ poly(k, κ)(∥Q2 − Q̂2∥+ ∥siûi − V ⊤wi∥) · ∥r∗∥
≲ ϵpoly(k, κ) · ∥r∗∥ (15)

where the first step comes from Lemma B.23 and the second step comes from Lemma B.19 and
Eq (14). Furthermore,

|ẑi − z∗i | ≲ poly(k, κ) · (∥Q1 − Q̂1∥+ ∥siûi − V ⊤wi∥+ ∥V V ⊤ − UU⊤∥) · ∥z∗∥1
≲ ϵpoly(k, κ)∥z∗∥1, (16)

where the first step comes from Lemma B.22 and the second step comes from combining Lemma B.19,
Lemma B.21, and Eq (14). Finally, combining Eq (15), Eq (16) and Eq (14), the output in Line 32
satisfies ∥ŵi −wi∥F ≤ ϵpoly(k, κ) · ∥wi∥F . Since vi are discrete values, they are exactly recovered.

B.5.2 Exact recovery of neural networks from noiseless data

In this section we prove Theorem B.15. Similar to Appendix B.5.1, denote W = [w1, · · · , wk]
⊤

where wi ∈ Rd and Ŵ = [ŵ1, · · · , ŵk]
⊤. We use D to denote the distribution of x ∼ N (0, Id)

and y = ⟨v, σ(Wx)⟩. We define the empirical loss for explored features and the population loss as
follows,

Ln(Ŵ) =
1

2n

∑
(x,y)∈S(1)

(
k∑

i=1

viσ(ŵ
⊤
i xi)− yi

)2

, (17)

L(Ŵ) =
1

2
ED

(k∑
i=1

viσ(ŵ
⊤
i x)− y

)2
 . (18)

Algorithm 8 Using method of moments and gradient descent to recover neural network parameters

1: procedure NEURALNETRECOVERY(S = {(xi, yi) : i ∈ [n]})
2: Let S(1) ← {(x, y) ∈ S : ∥x∥ ≤ B}
3: Compute (v, Ŵ)← NEURALNETNOISYRECOVERY(S(1))
4: Find W (1) as the global minimum of Ln(·), where Ln(·) is defined in Eq (17).
5: Return (v,W (1))
6: end procedure

Definition B.24. Let si be the i-th singular value of W , λ :=
∏k

i=1(si/sk). Let τ =
(3s1/2)

4p/minz∈[sk/2,3s1/2]{ρ2(z)}.

We use the follow results adapted from [90]. The only difference is that the rewards are potentially
truncated if ∥x∥ ≥ B, and due to B = d · poly log(d) we can bound its difference between standard
Gaussian in the same way as Appendix B.5.1.

28

Lemma B.25 (Concentration, adapted from Lemma D.11 in [90]). Let samples size n ≥
ϵ−2dτpoly(log(d/t)), then with probability at least 1− t,

∥∇2Ln(W)−∇2L(W)∥ ≲ ks2p1 ϵ+ poly(BW , d)e−Ω(d).

Lemma B.26 (Adapted from Lemma D.16 in [90]). Assume activation σ(·) satisfies Assumption B.8
and Assumption B.7. Then for any t ∈ (0, 1), if n ≥ d ·poly(log(d/t)), with probability at least 1− t,
for any Ŵ (which is not necessarily to be independent of samples) satisfying ∥W − Ŵ∥ ≤ sk/4, we
have

∥∇2Ln(Ŵ)−∇2Ln(W)∥ ≤ ksp1∥W − Ŵ∥d(p+1)/2.

Now we prove Theorem B.15.

Proof. The exact recovery consists of first finding (exact) v and (approximate) Ŵ close enough to
W by tensor method (Appendix B.5.1), and then minimizing the empirical loss Ln(·). We will prove
that Ln(·) is locally strongly convex, thus we find the precise W .

From Lemma D.3 from [90] we know:

Ω(ρ(sk)/λ)I ⪯ ∇2L(W) ⪯ O(ks2p1)I. (19)

Combining Lemma B.25, d ≥ log(BW /λ), and n ≥ k2λ2s4p1
ρ2(sk)

dτpoly(log(d/t)), we know∇2Ln(W)

must be positive definite.

Next we uniformly bound Lipschitzness of ∇2Ln. From Lemma B.26 there exists a universal
constant c, such that for all Ŵ that satisfies ∥W − Ŵ∥ ≤ cks2p1 /(ksp1d

(p+1)/2) = csp1d
−(p+1)/2,

∇L2
n(Ŵ) ≳ ks2p1 holds uniformly. So there is a unique miminizer of Ln in this region.

Notice Ln(W) = 0, therefore we can find W by directly minimizing the empirical loss as long as
we find any Ŵ in this region. This can be achieved by tensor method in Appendix B.5.1. We thus
complete the proof.

C Omitted Proofs in Section 4

For the proofs of Theorem 4.2, Example 4.3, and Example 4.4, we refer the readers to [36].

Lemma C.1. Consider the polynomial family FV of dimension D. Assume that n > 2D. For any
E ∈ Rd that is of positive measure, by sampling n samples {xi} i.i.d. from Px∈N (0,Id)(·|x ∈ E) and
observing the noiseless feedbacks yi = f∗(xi), one can almost surely uniquely determine the f∗ by
solving the system of equations yi = f(xi), i = 1, . . . , n, for f ∈ FV .

Proof. By Theorem 4.2, there exists a set N ∈ Rd × . . .Rd of Lebesgue measure zero, such that if
(x1, · · · , xn) /∈ N , one can uniquely determine the f∗ by the observations on the n samples. There-
fore, we only need to show that with probability 1, the sampling procedure returns (x1, . . . , xn) /∈ N .
This is because

P(x1, . . . , xn ∈ N) = Pxi∈N (0,Id)((x1, . . . , xn) ∈ N | x1, . . . , xn ∈ E)

=
Pxi∈N (0,Id)((x1, . . . , xn) ∈ N ∩ (E × · · · × E))

Pxi∈N (0,Id)((x1, . . . , xn) ∈ (E × · · · × E))

=
0

[Px1∈N (0,Id)(x1 ∈ E)]n

= 0.

By Lemma C.1 above, it is not hard to see that Algorithms 4 and 5 work.

29

D Omitted Constructions and Proofs in Subsection 4.1

Construction of the Reward Functions The following construction of the polynomial hard case is
adopted from [36].

Let d be the dimension of the feature space. Let ei denotes the i-th standard orthonormal basis of Rd,
i.e., ei has only one 1 at the i-th entry and 0’s for other entries. Let p denote the highest order of the
polynomial. We assume d≫ p. We use Λ to denote a subset of the p-th multi-indices

Λ = {(α1, . . . , αp)|1 ≤ α1 ≤ · · · ≤ αp ≤ d}.
For an α = (α1, . . . , αp) ∈ Λ, denote Mα = eα1

⊗ · · · ⊗ eαp
, xα = eα1

+ · · ·+ eαp
.

The model spaceM is a subset of rank-1 p-th order tensors, which is defined asM = {Mα|α ∈ Λ}.
We define two subsets of feature space F0 and F as F0 = {xα|α ∈ Λ}, F = conv(F0). For Mα ∈
M, x ∈ F , define r(Mα, x) as r(Mα, x) = ⟨Mα, x

⊗p⟩ =
∏p

i=1⟨eαi
, x⟩. We assume that for each

level h, there is a M (h) = Mα(h) ∈M, and the noiseless reward is rh(s, a) = r(M (h), ϕh(s, a)).

We have the following properties.
Proposition D.1 ([36]). For Mα ∈M and xα′ ∈ F0, we have

r(Mα, xα′) = I{α=α′}.

Proposition D.2. For Mα ∈M , we have

max
x∈F

r(Mα, x) = 1.

proof of Proposition D.2. For all x ∈ F , since F = conv(F0), we can write

x =
∑
α∈Λ

pα(eα1 + · · ·+ eαp),

where
∑

α∈Λ pα = 1 and pα ≥ 0. Therefore,

r(Mα′ , x) =

p∏
i=1

⟨eα′
i
, x⟩.

Plug in the expression of x, we have

⟨eα′
i
, x⟩ =

∑
α

pα⟨eα′
i
, eα1 + · · ·+ eαp⟩

=
∑
α

pαI{α′
i∈α}

≤
∑
α

pα = 1.

Therefore,

r(Mα′ , x) =

p∏
i=1

⟨eα′
i
, x⟩

=
(∑

α

pαI{eα′
1
∈α}

)
· · ·
(∑

α

pαI{eα′
p
∈α}

)
≤ 1.

Finally, since r(Mα′ , xα′) = 1, we have maxx∈F r(Mα, x) = 1.

MDP constructions Consider a family of MDPs with only two states S = {Sgood, Sbad}. The
action set A is set to be F . Let f be a mapping from F to F0 such that f is identity when restricted
to F0. For all level h ∈ [H], we define the feature map ϕh : S ×A→ F to be

ϕh(s, a) =

{
a if s = Sgood,
f(a) if s = Sbad.

30

Given an unknown sequence of indices α(1), . . . , α(H), the reward function at level h is rh(s, a) =
r(Mα(h) , ϕh(s, a)). Specifically, we have

rh(Sgood, a) = r(Mα(h) , a), rh(Sbad, a) = r(Mα(h) , f(a)).

The transition Ph is constructed as
Ph(Sbad|s, a) = 1 for all s ∈ S, a ∈ A.

This construction means it is impossible for the online scenarios to reach the good state for h > 1.

The next proposition shows that Q∗
h is polynomial realizable and falls into the case of Example 4.4.

Proposition D.3. We have for all h ∈ [H] and s ∈ S, a ∈ A, V ∗
h (s) = H − h+ 1 and Q∗

h(s, a) =
rh(s, a) +H − h+ 1. Furthermore, Q∗

h(s, a), viewed as the function of ϕh(s, a), is a polynomial of
the form qh(Uhϕh(s, a)) for some degree-p polynomial qh and Uh ∈ Rp×d.

proof of Proposition D.3. First notice that by Proposition D.2, for all h ∈ [H] and s ∈ S, we have
max
a∈A

rh(s, a) = 1.

Therefore, by induction, suppose we have proved for all s′, V ∗
h+1(s

′) = H − h, then we have

V ∗
h (s) = max

a∈A
Q∗

h(s, a)

= max
a∈A
{rh(s, a) + Es′∼Ph(·|s,a)[V

∗
h+1(s

′)]}

= 1 +H − h.

Then we have Q∗
h(s, a) = rh(s, a) +H − h+ 1.

Furthermore, we have
Q∗

h(s, a) = rh(s, a) +H − h+ 1

= r(Mα(h) , ϕh(s, a)) +H − h+ 1

=

p∏
i=1

⟨e
α

(h)
i

, ϕh(s, a)⟩+H − h+ 1

= qh(Uhϕh(s, a)),

where qh(x1, . . . , xp) = x1x2 · · ·xp + (H − h + 1) and Uh ∈ Rp×d is a matrix with e
α

(h)
i

as the
i-th row.

Theorem D.4. Under the online RL setting, any algorithm needs to play at least (
(
d
p

)
− 1) = Ω(dp)

episodes to identify α(2), . . . , α(H) and thus to identify the optimal policy.

proof of Theorem D.4. Under the online RL setting, any algorithm enters and remains in Sbad for
h > 1. When sh = Sbad, no matter what ah the algorithm chooses, we have ϕh(sh, ah) = f(ah) ∈
F0. Notice that for any Mα(h) ∈ M and any xα ∈ F0, we have r(Mα(h) , xα) = I{α=α(h)} as
Proposition D.1 suggests. Hence, we need to play (

(
d
p

)
− 1) times at level h in the worst case to find

out α(h). The argument holds for all h = 2, 3, . . . ,H .

Theorem D.5. Under the generative model setting, by querying 2d(p+ 1)pH = O(dH) samples,
we can almost surely identify α(1) ,α(2), . . . , α(H) and thus identify the optimal policy.

proof of Theorem D.5. By Proposition D.3, we know that Q∗
h(s, a), viewed as the function of

ϕh(s, a), falls into the case of Example 4.4 with k = p.

Next, notice that for all h ∈ [H], {ϕh(s, a) | s ∈ S, a ∈ A} = F . Although F is not of positive
measure, we can actually know the value of Q∗

h when ϕh(s, a) is in conv(F ,0) since the reward
is p-homogenous. Specifically, for every feature of the form c · ϕh(s, a), where 0 ≤ c ≤ 1 and
ϕh(s, a) ∈ F , the reward is cp times the reward of (s, a). Therefore, to get the reward at c · ϕh(s, a),
we only need to query the generative model at (s, a) of level h, and then multiply the reward by cp.

Notice that conv(F ,0) is of positive Lebesgue measure. By Theorem 4.7, we know that only
2d(p+ 1)pH = O(dH) samples are needed to determine the optimal policy almost surely.

31

E Technical claims

Claim E.1. Let χ2(d) denote χ2-distribution with degree of freedom d. For any t > 0 we have,

Pr
z∼χ2(d)

(z ≥ d+ 2t+ 2
√
dt) ≤ e−t

We use the following facts from [90].
Claim E.2. Given a fixed vector z ∈ Rd, for any C ≥ 1 and n ≥ 1, we have

Pr
x∼N (0,Id)

[|⟨x, z⟩|2 ≤ 5C∥z∥2 log n] ≥ 1− 1/(ndC).

Claim E.3. For any C ≥ 1 and n ≥ 1, we have

Pr
x∼N (0,Id)

[∥x∥2 ≤ 5Cd log n] ≥ 1− 1/(ndC).

Claim E.4. Let a, b, c ≥ 0 be three constants, let u, v, w ∈ Rd be three vectors, we have

E
x∼N (0,Id)

[
|u⊤x|a|v⊤x|b|w⊤x|c

]
≈ ∥u∥a∥v∥b∥w∥c.

Claim E.5. Let Mj , j ∈ [4] be defined in Definition B.11. For each j ∈ [4], Mj =
∑k

i=1 vimj,iw
⊗j
i .

Claim E.6. Let B denote a distribution over Rd1×d2 . Let d = d1 + d2. Let B1, B2, · · ·Bn be
i.i.d. random matrices sampled from B. Let B = EB∼B[B] and B̂ = 1

n

∑n
i=1 Bi. For parameters

m ≥ 0, γ ∈ (0, 1), ν > 0, L > 0, if the distribution B satisfies the following four properties,

(1) Pr
B∼B

[∥B∥ ≤ m] ≥ 1− γ;

(2)
∥∥∥ E
B∼B

[B]
∥∥∥ > 0;

(3) max
(∥∥∥ E

B∼B
[BB⊤]

∥∥∥ ,∥∥∥ E
B∼B

[B⊤B]
∥∥∥) ≤ ν;

(4) max
∥a∥=∥b∥=1

(
E

B∼B

[(
a⊤Bb

)2])1/2 ≤ L.

Then we have for any 0 < ϵ < 1 and t ≥ 1, if

n ≥ (18t log d) · (ν + ∥B∥2 +m∥B∥ϵ)/(ϵ2∥B∥2) and γ ≤ (ϵ∥B∥/(2L))2

with probability at least 1− 1/d2t − nγ,

∥B̂ −B∥ ≤ ϵ∥B∥.

Claim E.7. Let P2 and P3 be defined in Definition B.16. Then

P2 =

k∑
i=1

vimj2,i(α
⊤wi)

j2−2w⊗2
i

and

P3 =

k∑
i=1

vimj3,i(α
⊤wi)

j3−3w⊗3
i .

32

	Additional related work
	Omitted Proofs in Section 3
	Proof of Section 3.1
	Proof of Section 3.2
	Proof of Section 3.3
	Proof of Section 3.4
	Neural network recovery
	Recover neural networks from noisy data
	Exact recovery of neural networks from noiseless data

	Omitted Proofs in Section 4
	Omitted Constructions and Proofs in Subsection 4.1
	Technical claims

