A Proof of Lemma 2.2

Lemma A. 1 (Concentration for heavy-tailed β-mixing sum, Lemma 2.2). Let $\left\{W_{j}\right\}_{j \geq 1}$ be a sequence of zero-mean real valued random variables satisfying conditions (a) and (c)-(ii) of Assumption 2.1, for some $\eta_{2}>2$. Then for any positive integer $N, 0 \leq d_{1} \leq 1$, and $d_{2} \geq 0$, and for any $t>1$, we have,

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i=1}^{j} W_{i}\right| \geq t\right) \leq \frac{2^{\eta_{2}+3}}{\left(d_{2} \log t\right)^{\frac{1-\eta_{2}}{\eta_{1}}} \frac{N}{t^{\left(1+d_{1}\left(\eta_{2}-1\right)\right)}}+8 \frac{N}{t^{\left(1+c^{\prime} d_{2}\right)}}+2 e^{-\frac{t^{2-2 d_{1}\left(d_{2} \log t\right)^{1 / \eta_{1}}} 9 N}{9 N}}, ~, ~, ~}
$$

where $c^{\prime}>0$ is a constant.
Proof. [Proof of Lemma 2.2] Let $W_{i, M}$ denote the truncated random variable W_{i} such that $W_{i, M}=$ $\max \left(\min \left(W_{i}, M\right),-M\right)$. Then define $\Sigma_{N}:=\sum_{i=1}^{N} W_{i}$. Consider the partition of the samples into blocks of length $A, I_{i}=\{1+(i-1) A, \cdots, i A\}$ for $i=1,2, \cdots, 2 \mu_{1}$ where $\mu_{1}=[N /(2 A)]$. Also let $I_{2 \mu_{1}+1}=\left\{2 \mu_{1} A+1, \cdots, N\right\}$. Define for a finite set I of positive integers, define $\Sigma_{N, M}(I)=$ $\sum_{i \in I} W_{i, M}$. Then we can write, for $j \leq N$

$$
\begin{align*}
\Sigma_{j} & =\sum_{i=1}^{j} W_{i} \tag{28}\\
& =\sum_{i=1}^{j}\left(W_{i}-W_{i, M}\right)+\sum_{i=1}^{j} W_{i, M} \tag{29}\\
& =\sum_{i=1}^{j}\left(W_{i}-W_{i, M}\right)+\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i}\right)+\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i-1}\right)+\sum_{i=A[j / A]+1}^{j} W_{i, M} . \tag{30}
\end{align*}
$$

Then we have,

$$
\begin{align*}
\left|\Sigma_{j}\right| & \leq \sum_{i=1}^{j}\left|W_{i}-W_{i, M}\right|+\left|\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i}\right)\right|+\left|\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i-1}\right)\right|+2 A M \tag{31}\\
\sup _{j \leq N}\left|\Sigma_{j}\right| & \leq \sum_{i=1}^{N}\left|W_{i}-W_{i, M}\right|+\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i}\right)\right|+\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i-1}\right)\right|+2 A M . \tag{32}
\end{align*}
$$

Now we will establish concentration for each of the terms in the above expression. Using Markov's inequality,

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=1}^{N}\left|W_{i}-W_{i, M}\right| \geq t\right) & \leq \frac{1}{t} \sum_{i=1}^{N} \mathbb{E}\left[\left|W_{i}-W_{i, M}\right|\right] \leq \frac{2}{t} \sum_{i=1}^{N} \int_{M}^{\infty} \mathbb{P}\left(\left|W_{i}\right| \geq x\right) d x \\
& \leq \frac{2 N}{t} \int_{M}^{\infty} x^{-\eta_{2}} d x=\frac{2 N}{t\left(\eta_{2}-1\right)} M^{1-\eta_{2}} \tag{33}
\end{align*}
$$

Using Lemma 5 of [DP04], we get independent random variables $\left\{\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right\}_{1 \leq i \leq \mu_{1}}$, where $\Sigma_{N, M}^{*}\left(I_{2 i}\right)$ has the same distribution as $\Sigma_{N, M}\left(I_{2 i}\right)$, such that,

$$
\begin{equation*}
\mathbb{E}\left[\left|\Sigma_{N, M}\left(I_{2 i}\right)-\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right|\right] \leq A \tau(A) \tag{34}
\end{equation*}
$$

Then, using Markov's inequality we have,

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}\left(I_{2 i}\right)\right| \geq t\right) \\
\leq & \mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]}\left(\Sigma_{N, M}\left(I_{2 i}\right)-\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right)\right|+\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]}\left(\Sigma_{N, M}\left(I_{2 i}\right)-\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right)\right| \geq \frac{t}{2}\right)+\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq \frac{t}{2}\right) \\
& \leq \frac{2 \mathbb{E}\left[\sup _{j \leq N}\left|\sum_{i \leq[j / A]}\left(\Sigma_{N, M}\left(I_{2 i}\right)-\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right)\right|\right]}{t}+\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq \frac{t}{2}\right) \\
& \leq \frac{2 \mathbb{E}\left[\sup _{j \leq N} \sum_{i \leq \mu_{1}}\left|\Sigma_{N, M}\left(I_{2 i}\right)-\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right|\right]}{t}+\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq \frac{t}{2}\right) \\
& \leq \frac{2 A \mu_{1} \tau(A)}{t}+\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq \frac{t}{2}\right) .
\end{aligned}
$$

The same results holds for $\left\{\Sigma_{N, M}^{*}\left(I_{2 i-1}\right)\right\}_{i=1,2, \cdots, k}$. So for any $t \geq 2 A M$, we have,

$$
\begin{align*}
\mathbb{P}\left(\sup _{j \leq N}\left|\Sigma_{j}\right| \geq 6 t\right) \leq & \frac{2 N}{t\left(\eta_{2}-1\right)} M^{1-\eta_{2}}+\frac{4 A \mu_{1} \tau(A)}{t}+\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq t\right) \\
& +\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i-1}\right)\right| \geq t\right) \tag{35}
\end{align*}
$$

Now, for $\lambda>0$

$$
\begin{aligned}
\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq t\right) & \leq e^{-\lambda t} \mathbb{E}\left[\exp \left(\lambda \sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right|\right)\right] \\
& \leq e^{-\lambda t} \mathbb{E}\left[\exp \left(\lambda \sum_{i \leq \mu_{1}}\left|\Sigma_{N, M}^{*}\left(I_{2 i}\right)\right|\right)\right] \\
& \leq e^{-\lambda t} \Pi_{i=1}^{\mu_{1}} \mathbb{E}\left[\exp \left(\lambda\left|\Sigma_{N, M}\left(I_{2 i}\right)\right|\right)\right]
\end{aligned}
$$

We have $\left|\Sigma_{N, M}\left(I_{2 i}\right)\right| \leq A M$. So $\left|\Sigma_{N, M}\left(I_{2 i}\right)\right|$ is a sub-gaussian random variable and consequently,

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq t\right) \leq e^{-\lambda t} e^{\frac{\lambda^{2} \mu_{1} A^{2} M^{2}}{2}}
$$

Optimizing over $\lambda>0$ we have,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i}\right)\right| \geq t\right) \leq e^{-\frac{t^{2}}{2 \mu_{1} A^{2} M^{2}}} \tag{36}
\end{equation*}
$$

Similarly, we also obtain

$$
\begin{equation*}
\mathbb{P}\left(\sup _{j \leq N}\left|\sum_{i \leq[j / A]} \Sigma_{N, M}^{*}\left(I_{2 i-1}\right)\right| \geq t\right) \leq e^{-\frac{t^{2}}{2 \mu_{1} A^{2} M^{2}}} \tag{37}
\end{equation*}
$$

From (35), (36), and (37) we have,

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\Sigma_{j}\right| \geq 6 t\right) \leq \frac{2 N}{t\left(\eta_{2}-1\right)} M^{1-\eta_{2}}+\frac{4 A \mu_{1} \tau(A)}{t}+2 e^{-\frac{t^{2}}{2 \mu_{1} A^{2} M^{2}}}
$$

Condition (a) in Assumption 2.1 implies that the process $\left\{Z_{i}\right\}_{i=-\infty}^{\infty}$ is exponentially τ-mixing [CG14], i.e., for a constant $c^{\prime}>0, \tau(k) \leq e^{-c^{\prime} k^{\eta_{1}}}$. Then we have

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\Sigma_{j}\right| \geq t\right) \leq \frac{12 N}{t\left(\eta_{2}-1\right)} M^{1-\eta_{2}}+\frac{24 A \mu_{1} \exp \left(-c^{\prime} A^{\eta_{1}}\right)}{t}+2 e^{-\frac{t^{2}}{72 \mu_{1} A^{2} M^{2}}}
$$

As $2 A \mu_{1} \leq N \leq 3 A \mu_{1}$ and $\eta_{2}>2$,

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\Sigma_{j}\right| \geq t\right) \leq \frac{12 N M^{1-\eta_{2}}}{t}+\frac{8 N \exp \left(-c^{\prime} A^{\eta_{1}}\right)}{t}+2 e^{-\frac{t^{2}}{36 N A M^{2}}}
$$

Now choosing

$$
\begin{equation*}
M=\frac{t^{d_{1}}}{2\left(d_{2} \log t\right)^{\frac{1}{\eta_{1}}}}, \quad A=\left(d_{2} \log t\right)^{\frac{1}{\eta_{1}}}, \quad 0 \leq d_{1} \leq 1, \quad d_{2} \geq 0 \tag{38}
\end{equation*}
$$

we have, $2 A M \leq t$, and

$$
\mathbb{P}\left(\sup _{j \leq N}\left|\Sigma_{j}\right| \geq t\right) \leq \frac{2^{\eta_{2}+3}}{\left(d_{2} \log t\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N t^{-\left(1+d_{1}\left(\eta_{2}-1\right)\right)}+8 N t^{-\left(1+d_{2} c^{\prime}\right)}+2 e^{-\frac{t^{2-2 d_{1}\left(d_{2} \log t\right)^{1 / \eta_{1}}}}{9 N}}
$$

B Proofs of Section 3

B. 1 Proofs for squared error loss

Similar to the decomposition (1), for squared loss we have

$$
P_{N} L_{f}=\frac{1}{N} \sum_{i=1}^{N}\left(f-f^{*}\right)^{2}\left(X_{i}\right)+\frac{2}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)
$$

Since \mathcal{F} is convex, we also have

$$
\mathbb{E}\left[\xi\left(f-f^{*}\right)(X)\right] \geq 0
$$

Then,

$$
\begin{equation*}
P_{N} L_{f} \geq \frac{1}{N} \sum_{i=1}^{N}\left(f-f^{*}\right)^{2}\left(X_{i}\right)+\frac{2}{N} \sum_{i=1}^{N}\left(\xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)\right]\right) \tag{39}
\end{equation*}
$$

Now our goal is to establish a lower bound (Lemma B.1) on the first term of the RHS of (39), and a two-sided bound ((67) and (69)) on the second term when $\left\|f-f^{*}\right\|_{L_{2}}$ is large. Combining these bounds we will show that if $\left\|f-f^{*}\right\|_{L_{2}}$ is large then $P_{N} L_{f}>0$ which implies f cannot be a minimizer of empirical risk because for the minimizer \hat{f} we have $P_{N} L_{\hat{f}} \leq 0$.
Lemma B.1. Let Condition (a) and (b) of Assumption 2.1 be true. Given $f^{*} \in \mathcal{F}$, set $\mathcal{H}=\mathcal{F}-f^{*}$. Then, for every $\rho>\omega_{\mu}\left(\mathcal{H}, \tau Q_{\mathcal{H}}(2 \tau) / 16\right)$, with probability at least \mathscr{P}_{1}, if $\left\|f-f^{*}\right\|_{L_{2}} \geq \rho$, we have,

$$
\begin{equation*}
\left|\left\{i:\left|\left(f-f^{*}\right)\left(X_{i}\right)\right| \geq \tau\left\|f-f^{*}\right\|_{L_{2}}\right\}\right| \geq \frac{N Q_{\mathcal{H}}(2 \tau)}{4} \tag{40}
\end{equation*}
$$

The proof of Lemma B. 1 follows easily by combining the results of Lemma B.2, and Corollary B. 1 which we state next.
Lemma B.2. Let $S\left(L_{2}\right)$ be the $L_{2}(\pi)$ unit sphere and let $\mathcal{H} \subset S\left(L_{2}\right)$. Consider the partition in (6). Under conditions (a) and (b) of Assumption 2.1, by setting $\mu=\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}}$ for some $\mathscr{G}(N) \leq \frac{c Q_{\mathcal{H}}(2 \tau)^{\eta_{1}} N^{\eta_{1}}}{4^{\eta_{1}}}$, if,

$$
\begin{equation*}
\mathfrak{R}_{\mu}(\mathcal{H}) \leq \frac{\tau Q_{\mathcal{H}}(2 \tau) N}{16 \mu} \tag{41}
\end{equation*}
$$

then with probability at least $1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \exp (-\mathscr{G}(N))$, we have

$$
\begin{equation*}
\inf _{h \in \mathcal{H}}\left|\left\{i:\left|h\left(X_{i}\right)\right| \geq \tau\right\}\right| \geq \frac{N Q_{\mathcal{H}}(2 \tau)}{4} \tag{42}
\end{equation*}
$$

Remark 5. We have the following illustrative instantiations of Lemma B.2:

1. If one sets $\mathscr{G}(N)=k \log N \leq \frac{c Q_{\mathcal{H}}(2 \tau)^{\eta_{1}} N^{\eta_{1}}}{4^{\eta_{1}}}$, then the statement of Lemma B. 2 holds as long as,

$$
\begin{equation*}
\mathfrak{R}_{\mu}(\mathcal{H}) \leq \frac{\tau(k \log N)^{\frac{1}{\eta_{1}}}}{4 c^{\frac{1}{\eta_{1}}}} \tag{43}
\end{equation*}
$$

with probability at least

$$
1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{k \log N}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N^{1-k} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4(k \log N)^{\frac{1}{\eta_{1}}}}
$$

2. If one sets $\mathscr{G}(N)=N^{r} \leq \frac{c Q_{\mathcal{H}}(2 \tau)^{\eta_{1}} N^{\eta_{1}}}{4^{\eta_{1}}}$, for some $0<r<\eta_{1}$, then the statement of Lemma B. 2 holds as long as,

$$
\begin{equation*}
\mathfrak{R}_{\mu}(\mathcal{H}) \leq \frac{\tau(N)^{\frac{r}{\eta_{1}}}}{4 c^{\frac{1}{\eta_{1}}}} \tag{44}
\end{equation*}
$$

with probability at least

$$
1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{N^{r}}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4(N)^{\frac{r}{\eta_{1}}}} \exp \left(-N^{r}\right)
$$

Proof. [Proof of Lemma B.2] Let $\psi_{u}: \mathbb{R}_{+} \rightarrow[0,1]$ be the function

$$
\psi_{u}(t)= \begin{cases}1 & t \geq 2 u \\ \frac{t}{u}-1 & u \leq t \leq 2 u \\ 0 & t<u\end{cases}
$$

Similar to (6), let us define sequences of i.i.d blocks $\left\{\tilde{Z}_{i}^{(a)}\right\}_{i=1}^{\mu}$, and $\left\{\tilde{Z}_{i}^{(b)}\right\}_{i=1}^{\mu}$ where the samples within each block are assumed to be drawn from the same β-mixing distribution of $\left\{Z_{i}^{(a)}\right\}_{i=1}^{\mu}$, and $\left\{Z_{i}^{(b)}\right\}_{i=1}^{\mu}$. Let $\tilde{S}_{a}=\left(\tilde{Z}_{1}^{(a)}, \cdots, \tilde{Z}_{\mu}^{(a)}\right)$, and $\tilde{S}_{b}=\left(\tilde{Z}_{1}^{(b)}, \cdots, \tilde{Z}_{\mu}^{(b)}\right)$. Now let us concentrate on the term $\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right|$.

$$
\begin{align*}
& \left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \\
\leq & \left|\frac{1}{N} \sum_{i=1}^{N} \psi_{u}\left(h\left(\left|X_{i}\right|\right)\right)-P \psi_{u}(|h|)\right| \\
\leq & \left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a} \psi_{u}\left(\left|h\left(X_{(i-1)(a+b)+j}\right)\right|\right)+\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{b} \psi_{u}\left(h\left(\left|X_{(i-1)(a+b)+a+j}\right|\right)\right)-P \psi_{u}(|h|)\right| \\
\leq & \left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|X_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)\right|+\frac{b \mu}{N} . \tag{45}
\end{align*}
$$

Using (45) and Corollary 2.7 of [Yu94], for some a, b, μ to be chosen later such that $(a+b) \mu=N$ we have,

$$
\begin{align*}
& \mathbb{P}\left(\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq t+\frac{b \mu}{N}\right) \tag{46}\\
\leq & \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|X_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)\right|+\frac{b \mu}{N} \geq t+\frac{b \mu}{N}\right) \tag{47}\\
= & \mathbb{E}\left[\mathbb{1}\left(\left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|X_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)\right| \geq t\right)\right] \tag{48}
\end{align*}
$$

$$
\begin{align*}
& \leq \mathbb{E}\left[\mathbb{1}\left(\left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|\tilde{X}_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)\right| \geq t\right)\right]+(\mu-1) \beta(b) \tag{49}\\
& =\mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|\tilde{X}_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)\right| \geq t\right)+(\mu-1) \beta(b) \tag{50}\\
& =\mathbb{P}\left(\left|\frac{1}{\mu} \sum_{i=1}^{\mu} \tilde{\psi}\left(\tilde{Z}_{i}^{(a)}\right)\right| \geq \frac{N t}{\mu}\right)+(\mu-1) \beta(b) \tag{51}
\end{align*}
$$

where

$$
\tilde{\psi}\left(\tilde{Z}_{i}^{(a)}\right)=\sum_{j=1}^{a}\left(\psi_{u}\left(h\left(\left|\tilde{X}_{(i-1)(a+b)+j}\right|\right)\right)-P \psi_{u}(|h|)\right)
$$

and $\mathbb{1}(\cdot)$ is the indicator function. Observe that the function

$$
W\left(\tilde{Z}_{1}^{(a)}, \tilde{Z}_{2}^{(a)}, \cdots, \tilde{Z}_{\mu}^{(a)}\right)=\mu^{-1} \sum_{i=1}^{\mu} \tilde{\psi}\left(\tilde{Z}_{i}^{(a)}\right)
$$

has bounded difference with coefficient $2 a / \mu$. Then using Mcdiarmid's bounded-difference inequality on $W\left(\tilde{Z}_{1}^{(a)}, \tilde{Z}_{2}^{(a)}, \cdots, \tilde{Z}_{\mu}^{(a)}\right)$ we get,

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{\mu} \sum_{i=1}^{\mu} \tilde{\psi}\left(\tilde{Z}_{i}^{(a)}\right)\right| \geq \frac{N t}{\mu}\right) \leq 2 \exp \left(-\frac{N^{2} t^{2}}{2 a^{2} \mu}\right) \tag{52}
\end{equation*}
$$

Combining (51), and (52), we get

$$
\mathbb{P}\left(\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq t+\frac{b \mu}{N}\right) \leq 2 \exp \left(-\frac{N^{2} t^{2}}{2 a^{2} \mu}\right)+(\mu-1) \beta(b)
$$

which implies

$$
\begin{aligned}
& \mathbb{P}\left(\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq \frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{b \mu}{N}+\frac{t}{\sqrt{N}}\right) \\
\leq & 2 \exp \left(-\frac{N^{2}\left(\frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{t}{\sqrt{N}}\right)^{2}}{2 a^{2} \mu}\right)+(\mu-1) \beta(b)
\end{aligned}
$$

Also note that, for any t, we have $\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq t$ which implies that we also have $\sup _{h \in \mathcal{H}}\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq t$. Hence,

$$
\begin{align*}
& \mathbb{P}\left(\sup _{h \in \mathcal{H}}\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \geq \frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{b \mu}{N}+\frac{t}{\sqrt{N}}\right) \\
\leq & 2 \exp \left(-\frac{N^{2}\left(\frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{t}{\sqrt{N}}\right)^{2}}{2 a^{2} \mu}\right)+(\mu-1) \beta(b) \tag{53}
\end{align*}
$$

In other words, with probability at least $1-2 \exp \left(-\frac{N^{2}\left(\frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{t}{\sqrt{N}}\right)^{2}}{2 a^{2} \mu}\right)-(\mu-1) \beta(b)$, we have

$$
\begin{equation*}
\sup _{h \in \mathcal{H}}\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \leq \frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{b \mu}{N}+\frac{t}{\sqrt{N}} \tag{54}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
P_{N} \mathbf{1}_{\{|h| \geq u\}} \geq \inf _{h \in \mathcal{H}} \mathbb{P}(|h| \geq 2 u)-\sup _{h \in \mathcal{H}}\left|P_{N} \psi_{u}(|h|)-P \psi_{u}(|h|)\right| \tag{55}
\end{equation*}
$$

So, combining (53), and (55), with probability at least $1-2 \exp \left(-\frac{N^{2}\left(\frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})+\frac{t}{\sqrt{N}}\right)^{2}}{2 a^{2} \mu}\right)-(\mu-$ 1) $\beta(b)$ we have

$$
P_{N} \mathbf{1}_{\{|h| \geq u\}} \geq \inf _{h \in \mathcal{H}} \mathbb{P}(|h| \geq 2 u)-\frac{4 \mu}{N u} \mathbb{R}_{\mu}(\mathcal{H})-\frac{b \mu}{N}-\frac{t}{\sqrt{N}}
$$

Now, setting

$$
\begin{equation*}
u=\tau \quad t=\frac{\sqrt{N} Q_{\mathcal{H}}}{4} \quad a=\frac{\left(4-Q_{\mathcal{H}}(2 \tau)\right)(\mathscr{G}(N))^{\frac{1}{\eta_{1}}}}{Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}} \quad b=\left(\frac{\mathscr{G}(N)}{c}\right)^{\frac{1}{\eta_{1}}} \quad \mu=\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \tag{56}
\end{equation*}
$$

and using the condition $\mathscr{G}(N)>c$, we get, with probability at least

$$
1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \exp (-\mathscr{G}(N))
$$

we have

$$
P_{N} \mathbf{1}_{\{|h| \geq u\}} \geq \frac{Q_{\mathcal{H}}(2 \tau)}{4}
$$

Corollary B.1. Let Condition (a) and (b) of Assumption 2.1 be true. Let \mathcal{H} be star-shaped around 0 and assume that there is some $\tau>0$ for which $Q_{\mathcal{H}}(2 \tau)>0$. Then for every $\rho>\omega_{\mu}\left(\mathcal{H}, \tau Q_{\mathcal{H}}(2 \tau) / 16\right)$, with probability at least

$$
\mathscr{P}_{1}:=1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \exp (-\mathscr{G}(N)),
$$

for every $h \in \mathcal{H}$ that satisfies $\|h\|_{L_{2}} \geq \rho$,

$$
\begin{equation*}
\left|\left\{i:\left|h\left(X_{i}\right)\right| \geq \tau\|h\|_{L_{2}}\right\}\right| \geq N \frac{Q_{\mathcal{H}}(2 \tau)}{4} \tag{57}
\end{equation*}
$$

Proof. [Proof of Corollary B.1] Let $\rho>\omega_{\mu}\left(\mathcal{H}, \tau Q_{\mathcal{H}}(2 \tau) / 16\right)$ and as \mathcal{H} is star-shaped around 0 ,

$$
\begin{equation*}
\Re_{\mu}(\mathcal{H} \cap \rho \mathcal{D}) \leq \frac{\tau Q_{\mathcal{H}}(2 \tau)}{16} \rho \tag{58}
\end{equation*}
$$

Consider the set,

$$
\begin{equation*}
V=\left\{h / \rho: h \in \mathcal{H} \cap \rho S\left(L_{2}\right)\right\} \subset S\left(L_{2}\right) . \tag{59}
\end{equation*}
$$

Clearly, $Q_{V}(2 \tau) \geq Q_{\mathcal{H}}(2 \tau)$ and

$$
\begin{equation*}
\mathfrak{R}_{\mu}(V)=\mathbb{E}\left[\sup _{h \in \mathcal{H} \cap \rho S\left(L_{2}\right)}\left|\frac{1}{\mu} \sum_{i=1}^{\mu} \epsilon_{i} \frac{h\left(\tilde{X}_{i}\right)}{\rho}\right|\right] \leq \frac{\tau Q_{\mathcal{H}}(2 \tau)}{16} \leq \frac{\tau Q_{V}(2 \tau)}{16} \tag{60}
\end{equation*}
$$

Using Lemma B. 2 on the set V, we get with probability at least \mathscr{P}_{1}, for every $v \in V$

$$
\inf _{h \in \mathcal{H}}\left|\left\{i:\left|v\left(X_{i}\right) \geq \tau\right|\right\}\right| \geq \frac{N Q_{V}(2 \tau)}{4} \geq \frac{N Q_{\mathcal{H}}(2 \tau)}{4}
$$

Now for any h with $\|h\|_{L_{2}} \geq \rho$, since \mathcal{H} is star-shaped around 0 , we have $\left(\rho /\|h\|_{L_{2}}\right) h \in \mathcal{H} \cap \rho S\left(L_{2}\right)$ which implies, $h /\|h\|_{L_{2}} \in V$. So we have (57).
Theorem B. 1 (Restatement of Theorem 3.1). Consider the LS-ERM procedure. For $\tau_{0}<$ $\tau^{2} Q_{\mathcal{H}}(2 \tau) / 8$, setting $\mu=\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4}$, for some constants $c, c^{\prime}>0$, and $0<r<1$, we have, for any $N \geq 4$,

1. under condition (a), (b), (c)-(i), and (d) of Assumption 2.1, for $0<\iota<\frac{1}{4}$,

$$
\begin{equation*}
\left(\int\left(\hat{f}-f^{*}\right)^{2} d \pi\right)^{\frac{1}{2}}=\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{N^{-\frac{1}{4}+\iota}, \omega_{\mu}\left(\mathcal{F}-\mathcal{F}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right)\right\} \tag{61}
\end{equation*}
$$

with probability at least

$$
\begin{align*}
& 1-2 \exp \left(-\frac{N^{r} Q_{\mathcal{H}}(2 \tau)^{3} c^{\frac{1}{\eta_{1}}}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\right)-\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \exp \left(-N^{(1-r) \eta_{1}}\right)-N \exp \left(-\frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\eta}}{C_{1}}\right) \\
& -\exp \left(-\frac{N^{1+4 \iota} \tau_{0}^{2}}{C_{2}(1+N V)}\right)-\exp \left(-\frac{N^{4 \iota} \tau_{0}^{2}}{C_{3}} \exp \left((1-\eta)^{\eta} \frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right), \tag{62}
\end{align*}
$$

where V is defined in (8) and C_{1}, C_{2}, C_{3} are some positive constants.
2. under condition (a), (b), and (c)-(ii) of Assumption 2.1, for $0<\iota<\left(1-1 / \eta_{2}\right) / 4$,

$$
\begin{equation*}
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{N^{-\frac{1}{4}\left(1-\frac{1}{\eta_{2}}\right)+\iota}, \omega_{\mu}\left(\mathcal{F}-\mathcal{F}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right)\right\} \tag{63}
\end{equation*}
$$

with probability at least

$$
\begin{align*}
& 1-2 \exp \left(-\frac{N^{r} Q_{\mathcal{H}}(2 \tau)^{3} c^{\frac{1}{\eta_{1}}}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\right)-\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \exp \left(-N^{(1-r) \eta_{1}}\right)-8 \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}} N^{-\frac{4 \eta_{2}}{1+\eta_{2}}} \\
& -\frac{2^{\eta_{2}+3} c^{\frac{1-\eta_{2}}{\eta_{2}}} \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}}}{\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-2 e^{-\frac{\tau_{0}^{\frac{2 \eta_{2}}{1+\eta_{2}}}\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{1 / \eta_{1}}}{9 c^{1 / \eta_{1}}}} N^{\frac{4 \iota \eta_{2}}{1+\eta_{2}}} \tag{64}
\end{align*}
$$

Proof. [Proof of Theorem B.1] We first prove Part 1. We will denote the class $\mathcal{F}-f^{*}$ by \mathcal{H}. From Lemma B. 2 it follows that if $\rho>\omega_{\mu}\left(\mathcal{H}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right)$, then with probability at least

$$
\mathscr{P}_{1}=1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{n_{1}}}} \exp (-\mathscr{G}(N)),
$$

for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \rho$,

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N}\left(f-f^{*}\right)^{2}\left(X_{i}\right) \geq \frac{\tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} Q_{\mathcal{H}}(2 \tau)}{4} \tag{65}
\end{equation*}
$$

So, with probability at least \mathscr{P}_{1}, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \rho$,

$$
\begin{equation*}
P_{N} \mathcal{L}_{f} \geq 2\left(\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi\left(f-f^{*}\right)\right]\right)+\frac{\tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} Q_{\mathcal{H}}(2 \tau)}{4} . \tag{66}
\end{equation*}
$$

When $\left\|f-f^{*}\right\|_{L_{2}} \geq \mathscr{A}(N)>2\left(N \tau_{0}\right)^{-1 / 2}$, we have $\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \leq 2\left(N \tau_{0} \| f-\right.$ $\left.f^{*} \|_{L_{2}}^{2}\right)^{(1-\eta) / 2} /(1-\eta)$. Under Conditions (a), (c)-(i), and (d) of Assumption 2.1, using Lemma 2.1, we get

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
\leq & N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}(1+N V)}\right)
\end{aligned}
$$

$$
\begin{align*}
& \quad+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta(1-\eta)}}{C_{4}\left(\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{\eta}}\right)\right) \\
& \leq \\
& \quad N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}(1+N V)}\right) \\
& \quad+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) \\
& \leq \tag{67}\\
& \quad N \exp \left(-\frac{\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2} \mathscr{A}(N)^{4}}{C_{2}(1+N V)}\right) \\
& \quad+\exp \left(-\frac{N \tau_{0}^{2} \mathscr{A}(N)^{4}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) \equiv \mathscr{P}_{2},
\end{align*}
$$

where

$$
V \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \mathbb{E}\left[B_{i}\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right],
$$

$\left\{B_{i}\right\}$ is some sequence such that $B_{i} \in[0,1], \mathbb{E}\left[B_{i}\right] \leq \beta(i)$ and C_{1}, C_{2}, C_{3} are constants which depend on $c, \eta, \eta_{1}, \eta_{2}$. Observe that,

$$
\begin{aligned}
V & \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \mathbb{E}\left[B_{i}\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right] \\
& \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \sqrt{\mathbb{E}\left[B_{i}^{2}\right] \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \\
& \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \sqrt{\mathbb{E}\left[B_{i}\right]} \\
& \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \sqrt{\beta(i)} \\
& \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \exp \left(-c i^{\eta_{1}} / 2\right) \\
& \leq 2^{\frac{2}{\eta_{2}}}+C 4^{1+\frac{2}{\eta_{2}}} .
\end{aligned}
$$

Combining (66), and (67), with probability at least $\mathscr{P}_{1}-\mathscr{P}_{2}$, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \max (\rho, \mathscr{A}(N))$, we get

$$
P_{N} L_{f} \geq-2 \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}+\frac{\tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} Q_{\mathcal{H}}(2 \tau)}{4} .
$$

Choosing $\tau_{0}<\tau^{2} Q_{\mathcal{H}}(2 \tau) / 8$, we have,

$$
P_{N} L_{f}>0 .
$$

But the empirical minimizer \hat{f} satisfies $P_{N} L_{\hat{f}} \leq 0$. This implies, together with choosing $\mathscr{A}(N)=$ $N^{-1 / 4+\iota}$, that with probability at least $\mathscr{P}=\mathscr{P}_{1}-\mathscr{P}_{2}$,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\omega_{\mu}\left(\mathcal{F}-\mathcal{F}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right), \mathscr{A}(N)\right),
$$

where

$$
\begin{aligned}
\mathscr{P}=1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \exp (-\mathscr{G}(N)) \\
-N \exp \left(-\frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\eta}}{C_{1}}\right)-\exp \left(-\frac{N^{1+4 \iota} \tau_{0}^{2}}{C_{2}(1+N V)}\right)-\exp \left(-\frac{N^{4 \iota} \tau_{0}^{2}}{C_{3}} \exp \left((1-\eta)^{\eta} \frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) .
\end{aligned}
$$

Choosing $\mathscr{G}(N)=N^{(1-r) \eta_{1}}$ for some $0<r<1$, we get,

$$
\begin{aligned}
\mathscr{P}=1 & -2 \exp \left(-\frac{N^{r} Q_{\mathcal{H}}(2 \tau)^{3} c^{\frac{1}{\eta_{1}}}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\right)-\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \exp \left(-N^{(1-r) \eta_{1}}\right) \\
& -N \exp \left(-\frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\eta}}{C_{1}}\right)-\exp \left(-\frac{N^{1+4 \iota} \tau_{0}^{2}}{C_{2}(1+N V)}\right) \\
& -\exp \left(-\frac{N^{4 \iota} \tau_{0}^{2}}{C_{3}} \exp \left((1-\eta)^{\eta} \frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right),
\end{aligned}
$$

and

$$
\begin{equation*}
\mu=\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \tag{68}
\end{equation*}
$$

We now prove part 2. Since Lemma B. 1 only depends on Condition (a) and (b) of Assumption 2.1, Lemma B. 1 remains unchanged in this case. To deal with the multiplier process we need a concentration result similar to Lemma 2.1. So we use the concentration inequality we proved in Lemma 2.2. When $\left\|f-f^{*}\right\|_{L_{2}} \geq \mathscr{A}(N)$, using Lemma 2.2 we have

$$
\begin{align*}
& \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
\leq & \frac{2^{\eta_{2}+3}}{\left(d_{2} \log N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{-\left(1+d_{1}\left(\eta_{2}-1\right)\right)}+8 N\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{-\left(1+d_{2} c^{\prime}\right)} \\
& +2 e^{-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{2-2 d_{1}\left(d_{2} \log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{1 / \eta_{1}}} 9 N}{9 N}} \\
\leq & \frac{2^{\eta_{2}+3}}{\left(d_{2} \log \left(N \tau_{0} \mathscr{A}(N)^{2}\right)\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{-\left(1+d_{1}\left(\eta_{2}-1\right)\right)}+8 N\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{-\left(1+d_{2} c^{\prime}\right)} \\
& +2 e^{-\frac{\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{2-2 d_{1}\left(d_{2} \log \left(N \tau_{0} \mathscr{A}(N)^{2}\right)\right)^{1 / \eta_{1}}} 9 N}{9 N}} \equiv \mathscr{P}_{2} \tag{69}
\end{align*}
$$

We will choose d_{1} suitably to allow $\mathscr{A}(N)$ to decrease with N as fast as possible while ensuring $\lim _{N \rightarrow \infty} \mathscr{P}_{2} \rightarrow 0$. Combining (66), and (69), with probability at least $\mathscr{P}_{1}-\mathscr{P}_{2}$, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \max (\rho, \mathscr{A}(N))$, we get

$$
P_{N} L_{f} \geq-2 \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}+\frac{\tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} Q_{\mathcal{H}}(2 \tau)}{4}
$$

Choosing $\tau_{0}<\tau^{2} Q_{\mathcal{H}}(2 \tau) / 8$, we have,

$$
P_{N} L_{f}>0
$$

But the empirical minimizer \hat{f} satisfies $P_{N} L_{\hat{f}} \leq 0$. This implies, together with choosing $\mathscr{A}(N)=$ $N^{-\left(1-1 / \eta_{2}\right) / 4+\iota}, d_{1}=1 /\left(1+\eta_{2}\right), d_{2}=\left(\eta_{2}-1\right) /\left(\eta_{2}+1\right)$, and $\iota<\left(1-1 / \eta_{2}\right) / 4$, that with probability at least $\mathscr{P}=\mathscr{P}_{1}-\mathscr{P}_{2}$,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\omega_{\mu}\left(\mathcal{F}-\mathcal{F}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right), \mathscr{A}(N)\right)
$$

where

$$
\begin{aligned}
\mathscr{P} & =1-2 \exp \left(-\frac{N Q_{\mathcal{H}}(2 \tau)^{3}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\left(\frac{c}{\mathscr{G}(N)}\right)^{\frac{1}{\eta_{1}}}\right)-\frac{N Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4 \mathscr{G}(N)^{\frac{1}{\eta_{1}}}} \exp (-\mathscr{G}(N)) \\
& -\frac{2^{\eta_{2}+3} \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}}}{\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-8 \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-2 e^{-\frac{\tau_{0}^{\frac{2 \eta_{2}}{1+\eta_{2}}\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{1 / \eta_{1}}} N^{\frac{4 \iota \eta_{2}}{1+\eta_{2}}}}{9}} .
\end{aligned}
$$

Choosing $\mathscr{G}(N)=N^{(1-r) \eta_{1}}$ for some $0<r<1$, we get,

$$
\begin{aligned}
\mathscr{P} & =1-2 \exp \left(-\frac{N^{r} Q_{\mathcal{H}}(2 \tau)^{3} c^{\frac{1}{\eta_{1}}}}{2\left(4-Q_{\mathcal{H}}(2 \tau)\right)^{2}}\right)-\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \exp \left(-N^{(1-r) \eta_{1}}\right) \\
& -\frac{2^{\eta_{2}+3} \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}}}{\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-8 \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-2 e^{-\frac{\tau_{0}^{\frac{2 \eta_{2}}{1+\eta_{2}}}\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right)^{2}\right)^{1 / \eta_{1}}}{9} N^{\frac{4 \iota \eta_{2}}{1+\eta_{2}}}}
\end{aligned}
$$

and

$$
\begin{equation*}
\mu=\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \tag{70}
\end{equation*}
$$

Proof. [Proof of Corollary 3.1] Note that Assumption 3.1 implies Condition (b) of Assumption 2.1 as shown in Lemma 4.1 in [Men15]. Under Assumption 3.1 with $p=8$, using Cauchy-Schwarz inequality we have,

$$
\begin{aligned}
V & \leq \mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\xi_{1}\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \exp \left(-c i^{\eta_{1}} / 2\right) \\
& \leq \sqrt{\mathbb{E}\left[\xi_{1}^{4}\right]} \sqrt{\mathbb{E}\left[\left(\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]}+4 C \sqrt{\sqrt{\mathbb{E}\left[\xi_{1}^{8}\right]} \sqrt{\mathbb{E}\left[\left(\left(f-f^{*}\right)\left(X_{1}\right)\right)^{8}\right]}} \\
& \leq M_{1}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}\left(\sqrt{\mathbb{E}\left[\xi_{1}^{4}\right]}+4 C\left(\mathbb{E}\left[\xi_{1}^{8}\right]\right)^{\frac{1}{4}}\right) \\
& \leq M_{2}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}
\end{aligned}
$$

for some constant M_{2}. Then, from (67) we have,

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
& \leq N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}(1+N V)}\right) \\
& \quad+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta(1-\eta)}}{C_{4}\left(\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{\eta}}\right)\right) \\
& \leq N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}\left(1+N M_{2}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)}\right) \\
& \quad+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta(1-\eta)}}{C_{4}\left(\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{\eta}}\right)\right) .
\end{aligned}
$$

If $N\left\|f-f^{*}\right\|_{L_{2}}^{2} \geq N \mathscr{A}(N)^{2} \geq \max \left(1 / M_{2}^{2}, 1 / \tau_{0}\right)$, then

$$
\begin{aligned}
& \quad \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i}\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\xi\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
& \leq \\
& \quad N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}}{2 C_{2} M_{2}^{2}}\right) \\
& \quad+\exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right)
\end{aligned}
$$

and the second term dominates the third term in the above expression. Now if choose $\mathscr{A}(N)=$ $N^{-1 / 2+\iota}$, then with probability at least

$$
\mathscr{P}=1-\exp \left(-\frac{N^{2 \iota} \tau_{0}^{2}}{2 C_{2} M_{2}^{2}}\right)-\exp \left(-\frac{N^{4 \iota-1} \tau_{0}^{2}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N^{2 \iota} \tau_{0}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right)
$$

we get

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(N^{-1 / 2+\iota}, \omega_{\mu}\left(\mathcal{F}-\mathcal{F}, \tau Q_{\mathcal{F}-\mathcal{F}}(2 \tau) / 16\right)\right)
$$

B. 2 Proofs for convex loss

Recall the decomposition (1)

$$
P_{N} L_{f} \geq \frac{1}{16 N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(f-f^{*}\right)^{2}\left(X_{i}\right)+\frac{1}{N} \sum_{i=1}^{N} \ell^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)
$$

Since \mathcal{F} is convex, we also have

$$
\mathbb{E}\left[\ell^{\prime}(\xi)\left(f-f^{*}\right)(X)\right] \geq 0
$$

Then,
$P_{N} L_{f} \geq \frac{1}{16 N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(f-f^{*}\right)^{2}\left(X_{i}\right)+\frac{1}{N} \sum_{i=1}^{N}\left(\ell^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[\ell^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)\right]\right)$.

Now our goal is to establish a lower bound (Proposition B.1) on the first term of the RHS of (71), and a two-sided bound ((93) and (94)) on the second term when $\left\|f-f^{*}\right\|_{L_{2}}$ is large. Combining these bounds we will show that if $\left\|f-f^{*}\right\|_{L_{2}}$ is large then $P_{N} L_{f}>0$ which implies f cannot be a minimizer of empirical risk because for the minimizer \hat{f} we have $P_{N} L_{\hat{f}} \leq 0$. Let $\rho\left(t_{1}, t_{2}\right):=$ $\inf \left\{l^{\prime \prime}(x): x \in\left[t_{1}, t_{2}\right], 0 \leq t_{1}<t_{2}\right\}$. First we prove the following extension of bounded difference inequality to the β-mixing sequence which we will use frequently in our proofs.
Lemma B. 3 (Bounded difference inequality for strictly stationary β-mixing sequence). Let $\left\{U_{i}\right\}_{i=1}^{N}$ be a sample from a strictly stationary β-mixing sequence, $\left|U_{i}\right| \leq M$, and $\mathbb{E}\left[U_{i}\right]=U^{*}$. Let $N>a, b, \mu>0$ be such that $(a+b) \mu=N$. Then with probability at least $1-\exp \left(-\frac{(t-2 b \mu)^{2}}{2 \mu a^{2} M^{2}}\right)-$ $2 M(\mu-1) \beta(b)$, we have $\forall t>2 b \mu$,

$$
\sum_{i=1}^{N} U_{i} \leq N U^{*}+t
$$

Proof. Consider the partition as in (6). Then, using Corollary 2.7 of [Yu94], we get $\forall t>2 b \mu$,

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{N}\left(U_{i}-U^{*}\right) \geq t\right) \\
\leq & \mathbb{P}\left(\sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(U_{i}-U^{*}\right) \geq t-2 b \mu\right) \\
\leq & \mathbb{P}\left(\sum_{i=1}^{\mu} \sum_{j=1}^{a}\left(\tilde{U}_{(a+b)(i-1)+j}-U^{*}\right) \geq t-2 b \mu\right)+2 M(\mu-1) \beta(b) .
\end{aligned}
$$

where $\sum_{j=1}^{a}\left(\tilde{U}_{(a+b)(i-1)+j}-U^{*}\right)$ is an iid sequence for $i=1,2, \cdots, \mu$. Using bounded difference inequality,

$$
\mathbb{P}\left(\sum_{i=1}^{N}\left(U_{i}-U^{*}\right) \geq t\right) \leq \exp \left(-\frac{(t-2 b \mu)^{2}}{2 \mu a^{2} M^{2}}\right)+2 M(\mu-1) \beta(b)
$$

So with probability at least $1-\exp \left(-\frac{(t-2 b \mu)^{2}}{2 \mu a^{2} M^{2}}\right)-2 M(\mu-1) \beta(b)$,

$$
\sum_{i=1}^{N} U_{i} \leq N U^{*}+t
$$

Lemma B.4-B. 6 are needed to prove Lemma B. 7 which is the main result needed to prove Proposition B.1.
Lemma B.4. Let $X_{i}, i=1,2, \cdots, N$ be a sample from a sequence for which condition (a) of Assumption 2.1 is true. For every $0<Q_{\mathcal{H}}(2 \tau)<1$, we have that with probability at least $1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}}$, for some constants $c_{1}, c_{2}>0$, there is a subset $S \subset\{1,2, \cdots, N\}$ such that $|S| \geq N\left(1-Q_{\mathcal{H}}(2 \tau)\right)$, and $\forall i \in S$,

$$
\begin{equation*}
\left|X_{i}\right| \leq \frac{2\left\|X_{i}\right\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}} \tag{72}
\end{equation*}
$$

Proof. Let $\zeta_{i}=\mathbb{1}\left(\left|X_{i}\right| \geq \frac{2\left\|X_{i}\right\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right)$. Then, by Markov's inequality,

$$
\mathbb{E}\left[\zeta_{i}\right]=\mathbb{P}\left(\left|X_{i}\right| \geq \frac{2\left\|X_{i}\right\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right) \leq Q_{\mathcal{H}}(2 \tau) / 4
$$

Then using Lemma B.3, we have with probability at least $1-\exp \left(-\frac{(t-2 b \mu)^{2}}{2 \mu a^{2}}\right)-2(\mu-1) \beta(b)$,

$$
\sum_{i=1}^{N} \zeta_{i} \leq \frac{N Q_{\mathcal{H}}(2 \tau)}{4}+t
$$

Now, setting
$t=\frac{3 N Q_{\mathcal{H}}(2 \tau)}{4} \quad a=\frac{\left(4-Q_{\mathcal{H}}(2 \tau)\right) N^{\frac{1}{1+\eta_{1}}}}{c^{\frac{1}{\eta_{1}}} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}}} \quad b=\frac{Q_{\mathcal{H}}(2 \tau)^{\frac{1}{\eta_{1}}} N^{\frac{1}{1+\eta_{1}}}}{c^{\frac{1}{\eta_{1}}}} \quad \mu=\frac{N^{\frac{\eta_{1}}{1+\eta_{1}}} c^{\frac{1}{\eta_{1}}} Q_{\mathcal{H}}(2 \tau)^{\frac{\eta_{1}-1}{\eta_{1}}}}{4}$,
we have $\sum_{i=1}^{N} \zeta_{i} \leq N Q_{\mathcal{H}}(2 \tau)$, with probability at least

$$
1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}
$$

Lemma B.5. Let $X_{i}, i=1,2, \cdots, N$ be a sample from a sequence for which condition (a) and (b) of Assumption 2.1 is true. Then with probability at least with

$$
1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}
$$

there is a subset $S \subset\{1,2, \cdots, N\}$ such that $|S| \geq 3 N Q_{\mathcal{H}}(2 \tau) / 4$, and $\forall i \in S,\left|X_{i}\right| \geq 2 \tau\left\|X_{i}\right\|_{L_{2}}$.
Proof. Let $\zeta_{i}=\mathbb{1}\left(\left|X_{i}\right| \geq 2 \tau\left\|X_{i}\right\|_{L_{2}}\right)$. Using condition (b) of Assumption 2.1, we have $\mathbb{E}\left[\zeta_{i}\right]>$ $Q_{\mathcal{H}}(2 \tau)$. Then using Lemma B.3, with probability at least

$$
1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}
$$

we have

$$
3 N Q_{\mathcal{H}}(2 \tau) / 4 \leq \sum_{i=1}^{N} \zeta_{i} \leq 5 N \mathbb{E}\left[\zeta_{i}\right] / 4
$$

Lemma B.6. Let $X_{i}, i=1,2, \cdots, N$ be a sample from a sequence for which conditions (a) and (b) of Assumption 2.1 is true. Then with probability at least with

$$
1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}
$$

there is a subset $S \subset\{1,2, \cdots, N\}$ such that $|S| \geq N Q_{\mathcal{H}}(2 \tau) / 2$, and $\forall i \in S$,

$$
2 \tau\left\|X_{i}\right\|_{L_{2}} \leq\left|X_{i}\right| \leq \frac{2\left\|X_{i}\right\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}
$$

Proof. The proof is immediate from Lemma B.4, and Lemma B.5.
Lemma B.7. Let \mathcal{H} be a class of function which is star-shaped around 0 and satisfies condition (b) of Assumption 2.1. If $\zeta_{1} \sim 2 \tau Q_{\mathcal{H}}(2 \tau)^{3 / 2}, \zeta_{2} \sim 2 \tau Q_{\mathcal{H}}(2 \tau)$, and $r=\|h\|_{L_{2}}>\omega_{Q}\left(\zeta_{1}, \zeta_{2}\right)$, there is a set $V_{r} \subset \mathcal{H} \cap r S\left(L_{2}\right)$ such that there is an event \mathcal{A} with probability at least $1-c_{6} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{7} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$ we have:
1.

$$
\begin{equation*}
\left|V_{r}\right| \leq \exp \left(c_{2}^{\prime} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)} / 2\right) \tag{74}
\end{equation*}
$$

where $c_{2}^{\prime} \leq 1 / 1000$
2. For every $v \in V_{r}$ there is a subset $S_{v} \subset\{1,2, \cdots, N\}$ such that $\left|S_{v}\right| \geq Q_{\mathcal{H}}(2 \tau) N / 2$, and for every $i \in S_{v}$,

$$
\begin{equation*}
2 \tau r \leq\left|v\left(X_{i}\right)\right| \leq \frac{c_{3} r}{\sqrt{Q_{\mathcal{H}}(2 \tau)}} \tag{75}
\end{equation*}
$$

3. For every $h \in \mathcal{H} \cap r S\left(L_{2}\right)$ there is some $v \in V_{r}$, and a subset $K_{h} \subset S_{v}$, containing at least $3 / 4$ of the coordinates of S_{v}, and for every $k \in K_{h}$,

$$
\begin{equation*}
\tau\|h\|_{L_{2}} \leq\left|h\left(X_{k}\right)\right| \leq c_{9}\left(2 \tau+\frac{1}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right)\|h\|_{L_{2}} \tag{76}
\end{equation*}
$$

and $h\left(X_{k}\right)$ and $v\left(X_{k}\right)$ have the same sign.
Proof. Let $r=\|h\|_{L_{2}}>\omega_{Q}\left(\zeta_{1}, \zeta_{2}\right)$. Let $V_{r} \subset H \cap r S\left(L_{2}\right)$ be a maximal ρ-separated set such that

$$
\left|V_{r}\right| \leq \exp \left(c_{2}^{\prime} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)} / 2\right)
$$

where $c_{2}^{\prime}=\min \left(c_{2}, 1 / 500\right)$. Applying Lemma B. 6 on all the elements of V_{r}, using union bound we obtain that with probability at least

$$
1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)} / 2}
$$

for every $v \in V_{r}$ there is a subset S_{v} such that $\left|S_{v}\right| \geq N Q_{\mathcal{H}}(2 \tau) / 2$ and for all $i \in S_{v}$, we have

$$
\begin{equation*}
2 \tau\left\|v\left(X_{i}\right)\right\|_{L_{2}} \leq\left|v\left(X_{i}\right)\right| \leq \frac{c_{3}\left\|v\left(X_{i}\right)\right\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}} \tag{77}
\end{equation*}
$$

Since we have assumed $r>\omega_{1}\left(\zeta_{1}\right)$, from Sudakov's inequality we have,

$$
\begin{equation*}
\rho \leq c_{4} \frac{\sqrt{2} \mathbb{E}\left[\|G\|_{\mathcal{H} \cap r S\left(L_{2}\right)}\right]}{\sqrt{c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}} \leq \frac{c_{5} \zeta_{1} r}{\sqrt{Q_{\mathcal{H}}(2 \tau)}} \tag{78}
\end{equation*}
$$

where $c_{5}=\sqrt{2} c_{4} / \sqrt{c_{2}}$. For all $h \in \mathcal{H} \cap r S\left(L_{2}\right)$, let $h_{v} \in V_{r}$ so that $\left\|h-h_{v}\right\|_{L_{2}} \leq \rho$. Now let $\delta_{h}=\mathbb{1}_{\left(\left|h-h_{v}\right|>\tau r\right)}$ and put

$$
\begin{equation*}
\Delta_{r}=\left\{\delta_{h}: h \in \mathcal{H} \cap r S\left(L_{2}\right)\right\} \tag{79}
\end{equation*}
$$

Define a function $\psi_{1}(t)=\max (\min (t /(\tau r), 1), 0)$. Observe that $\delta_{h}(X) \leq \psi_{1}\left(\left|h-h_{v}\right|(X)\right)$. Now we want to show that the number of points where $\left|h-h_{v}\right|>\tau r$ is small.

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{\delta_{h} \in \Delta_{r}} \frac{1}{N} \sum_{i=1}^{N} \delta_{h}\left(X_{i}\right)\right] \\
& \leq \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{N} \sum_{i=1}^{N} \psi_{1}\left(\left|h-h_{v}\right|\left(X_{i}\right)\right)\right] \\
& \leq \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{N} \sum_{i=1}^{N}\left(\psi_{1}\left(\left|h-h_{v}\right|\left(X_{i}\right)\right)-\mathbb{E}\left[\psi_{1}\left(\left|h-h_{v}\right|(X)\right]\right)\right]+\mathbb{E}\left[\operatorname { s u p } _ { h \in \mathcal { H } \cap r S (L _ { 2 }) } \mathbb { E } \left[\psi_{1}\left(\left|h-h_{v}\right|(X)\right],\right.\right.\right.
\end{aligned}
$$

where $X \sim \pi$. Consider the partition introduced in (6). Then,

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{\delta_{h} \in \Delta_{r}} \frac{1}{N} \sum_{i=1}^{N} \delta_{h}\left(X_{i}\right)\right] \\
\leq & \mathbb{E}\left[\operatorname { s u p } _ { h \in \mathcal { H } \cap r S (L _ { 2 }) } \frac { 1 } { N } \sum _ { i = 1 } ^ { \mu } \sum _ { j = 1 } ^ { a } \left(\psi_{1}\left(\left|h-h_{v}\right|\left(X_{(a+b)(i-1)+j)}\right)-\mathbb{E}\left[\psi_{1}\left(\left|h-h_{v}\right|(X)\right]\right)\right]\right.\right. \\
& +\frac{2 b \mu}{N}+\frac{1}{\tau r} \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \mathbb{E}\left[\left|h-h_{v}\right|(X)\right]\right] \\
\leq & \frac{\mu}{N} \sum_{j=1}^{a} \mathbb{E}\left[\operatorname { s u p } _ { h \in \mathcal { H } \cap r S (L _ { 2 }) } \frac { 1 } { \mu } \sum _ { i = 1 } ^ { \mu } \left(\psi_{1}\left(\left|h-h_{v}\right|\left(X_{(a+b)(i-1)+j)}\right)-\mathbb{E}\left[\psi_{1}\left(\left|h-h_{v}\right|(X)\right]\right)\right]\right.\right. \\
& +\frac{2 b \mu}{N}+\frac{\rho}{\tau r} \\
\leq & \frac{\mu}{N} \sum_{j=1}^{a} \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{\mu} \sum_{i=1}^{\mu}\left(\psi_{1}\left(\left|h-h_{v}\right|\left(\tilde{X}_{(a+b)(i-1)+j}\right)\right)-\mathbb{E}\left[\psi_{1}\left(\left|h-h_{v}\right|(X)\right]\right)\right]\right. \\
& +2(\mu-1) \beta(a+b)+\frac{2 b \mu}{N}+\frac{\rho}{\tau r} .
\end{aligned}
$$

Now using symmetrization, we get

$$
\begin{aligned}
\mathbb{E}\left[\sup _{\delta_{h} \in \Delta_{r}} \frac{1}{N} \sum_{i=1}^{N} \delta_{h}\left(X_{i}\right)\right] \leq & \frac{\mu}{N} \sum_{j=1}^{a} \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{\mu} \sum_{i=1}^{\mu} Q_{\mathcal{H}}(2 \tau)_{i} \psi_{1}\left(\left|h-h_{v}\right|\left(\tilde{X}_{(a+b)(i-1)+j}\right)\right)\right] \\
& +2(\mu-1) \beta(a+b)+\frac{2 b \mu}{N}+\frac{\rho}{\tau r} .
\end{aligned}
$$

Since $\psi_{1}(|\cdot|)$ is a $1 /(\tau r)$-Lipschitz continuous mapping, using properties of Rademacher complexity we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{\mu} \sum_{i=1}^{\mu} Q_{\mathcal{H}}(2 \tau)_{i} \psi_{1}\left(\left|h-h_{v}\right|\left(\tilde{X}_{(a+b)(i-1)+j}\right)\right)\right] \\
\leq & \left.\frac{1}{\tau r} \mathbb{E}\left[\sup _{h \in \mathcal{H} \cap r S\left(L_{2}\right)} \frac{1}{\mu} \sum_{i=1}^{\mu} Q_{\mathcal{H}}(2 \tau)_{i}\left(h-h_{v}\right)\left(\tilde{X}_{(a+b)(i-1)+j}\right)\right)\right] .
\end{aligned}
$$

Since we assumed $r>\omega_{2}\left(\zeta_{2}\right)$, and using (78) we have,

$$
\mathbb{E}\left[\sup _{\delta_{h} \in \Delta_{r}} \frac{1}{N} \sum_{i=1}^{N} \delta_{h}\left(X_{i}\right)\right] \leq \frac{a \zeta_{2} \mu}{N \tau}+2(\mu-1) \beta(a+b)+\frac{2 b \mu}{N}+\frac{c_{5} \zeta_{1}}{\tau \sqrt{Q_{\mathcal{H}}(2 \tau)}}
$$

Choosing

$$
\begin{gather*}
\zeta_{1} \sim 2 \tau Q_{\mathcal{H}}(2 \tau)^{\frac{3}{2}} \quad \zeta_{2} \sim 2 \tau Q_{\mathcal{H}}(2 \tau) \quad a \sim \frac{\left(4-Q_{\mathcal{H}}(2 \tau)\right) N^{1 /\left(1+\eta_{1}\right)}}{c^{\frac{1}{\eta_{1}}}} \tag{80}\\
b \sim \frac{Q_{\mathcal{H}}(2 \tau) N^{1 /\left(1+\eta_{1}\right)}}{c^{\frac{1}{\eta_{1}}}} \text { and } \mu \sim \frac{N^{\eta_{1} /\left(1+\eta_{1}\right)} c^{\frac{1}{\eta_{1}}}}{4} \tag{81}
\end{gather*}
$$

we have,

$$
\mathbb{E}\left[\sup _{\delta_{h} \in \Delta_{r}} \frac{1}{N} \sum_{i=1}^{N} \delta_{h}\left(X_{i}\right)\right] \leq \frac{Q_{\mathcal{H}}(2 \tau)}{32}
$$

Now we use Lemma B.3, with the following choice
$t=\frac{N Q_{\mathcal{H}}(2 \tau)}{32} \quad a=\frac{\left(4-\frac{Q_{\mathcal{H}}(2 \tau)}{16}\right) N^{1 /\left(1+\eta_{1}\right)}}{c^{\frac{1}{\eta_{1}}} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}}} \quad b=\frac{Q_{\mathcal{H}}(2 \tau)^{\frac{1}{\eta_{1}}} N^{1 /\left(1+\eta_{1}\right)}}{32 c^{\frac{1}{\eta_{1}}}} \quad \mu=\frac{N^{\eta_{1} /\left(1+\eta_{1}\right)} c^{\frac{1}{\eta_{1}}} Q_{\mathcal{H}}(2 \tau)^{\frac{\eta_{1}-1}{\eta_{1}}}}{4}$.

With probability at least $1-c_{6} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{7} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$ we have,

$$
\frac{1}{N} \sum_{i=1}^{N} \sup _{\delta_{h} \in \Delta_{r}} \delta_{h}\left(X_{i}\right) \leq \mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \sup _{\delta_{h} \in \Delta_{r}} \delta_{h}\left(X_{i}\right)\right]+\frac{t}{N} \leq \frac{Q_{\mathcal{H}}(2 \tau)}{16}
$$

Then $\forall h \in \mathcal{H} \cap r S\left(L_{2}\right)$,

$$
\begin{equation*}
\left|\left\{i:\left|h-h_{v}\right|\left(X_{i}\right) \leq \tau r\right\}\right| \geq\left(1-\frac{Q_{\mathcal{H}}(2 \tau)}{16}\right) N \tag{82}
\end{equation*}
$$

Recall that $h_{v} \in V_{r}$, and $\left|S_{h_{v}}\right| \geq N Q_{\mathcal{H}}(2 \tau) / 2$. Let

$$
\begin{equation*}
K_{h}=\left\{k:\left|h-h_{v}\right|\left(X_{k}\right) \leq \tau r\right\} \cap S_{h_{v}} . \tag{83}
\end{equation*}
$$

Then $\left|K_{h}\right| \geq 3 N Q_{\mathcal{H}}(2 \tau) / 8 \geq N Q_{\mathcal{H}}(2 \tau) / 4$. Also, $\forall k \in K_{h}$,

$$
\begin{equation*}
\left|h\left(X_{k}\right)\right| \geq\left|h_{v}\left(X_{k}\right)\right|-\left|\left(h-h_{v}\right)\left(X_{k}\right)\right| \geq 2 \tau r-\tau r=\tau r \tag{84}
\end{equation*}
$$

This also implies that $h\left(X_{k}\right)$ and $h_{v}\left(X_{k}\right)$ have same signs. Similarly, using (77) we get

$$
\begin{equation*}
\left|h\left(X_{k}\right)\right| \leq\left|h_{v}\left(X_{k}\right)\right|+\left|\left(h-h_{v}\right)\left(X_{k}\right)\right| \leq c_{9}\left(2 \tau+\frac{1}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right)\|h\|_{L_{2}} \tag{85}
\end{equation*}
$$

Combining (84) and (85) we have (76). This also implies that $h\left(X_{k}\right)$ and $v\left(X_{k}\right)$ have the same sign.
Lemma B. 8 ([Men18, Lemma 4.8]). Let $1 \leq k \leq m / 40$ and set $\mathscr{D} \subset\{-1,0,1\}^{m}$ of cardinality at most $\exp (k)$. For every $d=(d(i))_{i=1}^{m} \in \mathscr{D}$ put $S_{d}=\{i: d(i) \neq 0\}$ and assume that $\left|S_{d}\right| \geq 40 k$. If $\left\{\epsilon_{i}\right\}_{i=1}^{m}$ are independent, symmetric $\{-1,1\}$-valued random variables, then with probability at least $1-2 \exp (-k)$,

$$
\inf _{d \in \mathscr{D}}\left|\left\{i \in S_{d}: \operatorname{sgn}(d(i))=\epsilon_{i}\right\}\right| \geq k / 3
$$

Lemma B.9. Conditioned on the event \mathcal{A} as mentioned in Lemma B.7, with probability at least $1-2 \exp \left(-c_{2} Q_{\mathcal{H}}(2 \tau) N\right)$ we have: for every $h \in \mathcal{H}_{f^{*}}:=\mathcal{F}-f^{*}$ with $\|h\|_{L_{2}} \geq r$, there is a subset $\mathcal{S}_{1, h} \subset\{1,2, \cdots, N\}$ such that $\left|\mathcal{S}_{1, h}\right| \geq Q_{\mathcal{H}}(2 \tau) N / 24$. and for every $i \in \mathcal{S}_{1, h}$,

$$
\begin{equation*}
\tau\|h\|_{L_{2}} \leq\left|h\left(X_{i}\right)\right| \leq c_{9}\left(2 \tau+\frac{1}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right)\|h\|_{L_{2}}, \quad \operatorname{sgn}\left(h\left(X_{i}\right)\right)=\epsilon_{i} \tag{86}
\end{equation*}
$$

where $\left\{\epsilon_{i}\right\}_{i=1}^{N}$ are independent, symmetric $\{-1,1\}$-valued random variables.
Proof. For a $h \in \mathcal{H}$, let $\|h\|_{L_{2}}=r$ and let h_{v} be as in Lemma B.7. Recall from (76), that there is a subset $K_{h} \subset S_{h_{v}}$ containing at least $3 / 4$ of the coordinates of $S_{h_{v}}$ for which,

$$
\tau r \leq\left|h\left(X_{j}\right)\right| \leq c_{9}\left(2 \tau+\frac{1}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right) r
$$

and $h\left(X_{j}\right)$ and $h_{v}\left(X_{j}\right)$ have the same sign. Define

$$
d_{h_{v}}=\left\{\operatorname{sgn}\left(h_{v}\left(X_{i}\right)\right) \mathbb{1}_{S_{h_{v}}}\left(X_{i}\right)\right\}_{i=1}^{N}, \quad \mathcal{D}=\left\{d_{h_{v}}: h_{v} \in V_{r}\right\}
$$

Using Lemma B. 8 , on the set $\mathcal{D}=\left\{d_{h_{v}}: d_{h_{v}} \in V_{r}\right\}$ for $k=N Q_{\mathcal{H}}(2 \tau) / 1000$, and observing that every $d_{h_{v}} \in \mathcal{D}$, $\left|\left\{i: d_{h_{v}}(i) \neq 0\right\}\right| \geq N Q_{\mathcal{H}}(2 \tau) / 2 \geq 40 k$ (recall that $\left|S_{h_{v}}\right| \geq N Q_{\mathcal{H}}(2 \tau) / 2$), we get with probability at least $1-2 \exp \left(-c_{2} Q_{\mathcal{H}}(2 \tau) N\right)$, for every $h_{v} \in V_{r}, d_{h_{v}}(i)=\epsilon_{i}$ on at least $1 / 3$ of the coordinates of $S_{h_{v}}$. Then it follows that on at least $1 / 12$ of the coordinates of $S_{h_{v}}, h\left(X_{j}\right)=\epsilon_{j}$. Since $\mathcal{H}_{f^{*}}$ is assumed to be star-shaped the same result holds when $\|h\|_{L_{2}} \geq r$.
Proposition B.1. With probability at least $1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$, for every $f \in \mathcal{F}$ which satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq 2 \omega_{Q}$ we have

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(f-f^{*}\right)^{2}\left(X_{i}\right) \geq c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} \tag{87}
\end{equation*}
$$

where $t_{0}=c_{11}\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\left(\|\xi\|_{L_{2}}+\left\|f-f^{*}\right\|_{L_{2}}\right)$.

Proof. [Proof of Proposition B.1] Recall the decomposition of $P_{N} L_{f}$ (1). For every (X, Y) the midpoint $\tilde{\xi}$ belongs to the interval with end points $-\xi$ and $\left(f-f^{*}\right)(X)-\xi$ where $f \in \mathcal{F}$. So,

$$
\left|\tilde{\xi}_{i}\right| \leq\left|\xi_{i}\right|+\left|\left(f-f^{*}\right)\left(X_{i}\right)\right|
$$

Let $\left\|f-f^{*}\right\|_{L_{2}}>2 \omega_{Q}$. Now from Lemma B.9, with probability at least

$$
1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}
$$

we have a subset $\mathcal{S}_{1, h} \subset\{1,2, \cdots, N\}$ such that $\left|\mathcal{S}_{1, h}\right| \geq Q_{\mathcal{H}}(2 \tau) N / 24$, and for every $i \in \mathcal{S}_{1, h}$,

$$
\left|\left(f-f^{*}\right)\left(X_{i}\right)\right| \leq c_{9}\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\left\|f-f^{*}\right\|_{L_{2}}
$$

Using Markov's inequality,

$$
\mathbb{P}\left(\left|\xi_{i}\right|>10\|\xi\|_{L_{2}} / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right) \leq \frac{Q_{\mathcal{H}}(2 \tau)}{100}
$$

Now taking $U_{i}=\mathbb{1}\left(\left|\xi_{i}\right| \leq \frac{c_{9}\|\xi\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right)$, and using Lemma B.3, and choosing parameters as in (73) we get, with probability at least $1-c_{1} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{2} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$,

$$
\left|\left\{i:\left|\xi_{i}\right| \leq \frac{c_{9}\|\xi\|_{L_{2}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)}}\right\}\right| \geq N\left(1-Q_{\mathcal{H}}(2 \tau) / 50\right)
$$

This implies that with probability at least $1-c_{16} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{17} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$ we have,

$$
\left|\tilde{\xi}_{i}\right| \leq c_{11}\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\left(\|\xi\|_{L_{2}}+\left\|f-f^{*}\right\|_{L_{2}}\right) .
$$

Set $t_{0}=c_{11}\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\left(\|\xi\|_{L_{2}}+\left\|f-f^{*}\right\|_{L_{2}}\right)$. Using Lemma B.9, with probability at least $1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau) N^{\eta_{1} /\left(1+\eta_{1}\right)}}$,

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(f-f^{*}\right)^{2}\left(X_{i}\right) \geq c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} \tag{88}
\end{equation*}
$$

Using Proposition B.1, and proving the two-sided bounds for the second term on the RHS of (71) in (93) and (94), we have Proposition B.2.

Proposition B.2. Consider ERM with loss functions that satisfy Assumption 3.2. For $\tau_{0}<$ $c_{2} Q_{\mathcal{F}-\mathcal{F}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2}, t_{0}=\mathcal{O}\left(\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\left(\|\xi\|_{L_{2}}+\left\|f-f^{*}\right\|_{L_{2}}\right)\right)$, setting $\mu=$ $N^{\eta_{1} /\left(1+\eta_{1}\right)}$, for some constants $c, c^{\prime}>0$, we have, for any $N \geq 4$, the following:

1. Under conditions (a), (b), (c)-(i), and (d) of Assumption 2.1, for $0<\iota<\frac{1}{4}$,

$$
\begin{equation*}
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{N^{-\frac{1}{4}+\iota}, 2 \omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, Q_{\mathcal{H}}(2 \tau)^{3 / 2}, Q_{\mathcal{H}}(2 \tau)\right)\right\} \tag{89}
\end{equation*}
$$

with probability at least (for V is defined in (8) and some positive $c_{9}, c_{10}, \widetilde{C}_{3}$)

$$
1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\frac{\eta_{1}}{1+\eta_{1}}}-\widetilde{C}_{3} N \exp \left(-\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\eta} / C_{1}\right)}
$$

2. Under conditions (a), (b), and (c)-(ii) of Assumption 2.1, for $0<\iota<\left(1-1 / \eta_{2}\right) / 4$,

$$
\begin{equation*}
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{N^{-\frac{\left(1-1 / \eta_{2}\right)}{4}+\iota}, 2 \omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, Q_{\mathcal{H}}(2 \tau)^{3 / 2}, Q_{\mathcal{H}}(2 \tau)\right)\right\} \tag{90}
\end{equation*}
$$

with probability at least (for constants $c_{9}, c_{10}, \widetilde{C}_{4}>0$)

$$
\begin{equation*}
1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}}-\widetilde{C}_{4} \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}} . \tag{91}
\end{equation*}
$$

Proof. [Proof of Proposition B.2] We first prove part 1. We will denote the class $\mathcal{F}-f^{*}$ by \mathcal{H}. From Proposition B. 1 it follows that for every $f \in \mathcal{F}$ which satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq 2 \omega_{Q}$ with probability at least

$$
\mathscr{P}_{1, c}=1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)},}
$$

we have

$$
\frac{1}{N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(f-f^{*}\right)^{2}\left(X_{i}\right) \geq c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}
$$

So, with probability at least $\mathscr{P}_{1, c}$, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq 2 \omega_{Q}$,
$P_{N} \mathcal{L}_{f} \geq\left(\frac{1}{16 N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(f-f^{*}\right)\right]\right)+c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}$.

When $\left\|f-f^{*}\right\|_{L_{2}} \geq \mathscr{A}(N)>2\left(N \tau_{0}\right)^{-1 / 2}$, we have $\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \leq 2\left(N \tau_{0} \| f-\right.$ $\left.f^{*} \|_{L_{2}}^{2}\right)^{(1-\eta) / 2} /(1-\eta)$. Under Conditions (1), (3), and (4) of Assumption 2.1, using Lemma 2.1, we get

$$
\begin{align*}
& \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
\leq & N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}(1+N V)}\right) \\
+ & \exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta(1-\eta)}}{C_{4}\left(\log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{\eta}}\right)\right) \\
\leq & N \exp \left(-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{2}(1+N V)}\right) \\
+ & \exp \left(-\frac{N \tau_{0}^{2}\left\|f-f^{*}\right\|_{L_{2}}^{4}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) \\
\leq & N \exp \left(-\frac{\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{\eta}}{C_{1}}\right)+\exp \left(-\frac{N^{2} \tau_{0}^{2} \mathscr{A}(N)^{4}}{C_{2}(1+N V)}\right) \\
+ & \exp \left(-\frac{N \tau_{0}^{2} \mathscr{A}(N)^{4}}{C_{3}} \exp \left(\frac{(1-\eta)^{\eta}\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) \mathscr{P}_{2, c} \tag{93}
\end{align*}
$$

where

$$
V \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \mathbb{E}\left[B_{i}\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]
$$

$\left\{B_{i}\right\}$ is some sequence such that $B_{i} \in[0,1]$ and $\mathbb{E}\left[B_{i}\right] \leq \beta(i)$, and C_{1}, C_{2}, C_{3} are constants which depend on $c, \eta, \eta_{1}, \eta_{2}$. Observe that,

$$
\begin{aligned}
V & \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \mathbb{E}\left[B_{i}\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right] \\
& \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sum_{i \geq 0} \sqrt{\mathbb{E}\left[B_{i}^{2}\right] \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \\
& \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \sqrt{\mathbb{E}\left[B_{i}\right]} \\
& \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \sqrt{\beta(i)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{2}\right]+4 \sqrt{\mathbb{E}\left[\left(\ell^{\prime}\left(\xi_{1}\right)\left(f-f^{*}\right)\left(X_{1}\right)\right)^{4}\right]} \sum_{i \geq 0} \exp \left(-c i^{\eta_{1}} / 2\right) \\
& \leq 2^{\frac{2}{\eta_{2}}}+C 4^{1+\frac{2}{\eta_{2}}}
\end{aligned}
$$

Combining (92), and (93), with probability at least $\mathscr{P}_{1, c}-\mathscr{P}_{2, c}$, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \max \left(2 \omega_{Q}, \mathscr{A}(N)\right)$, we get

$$
P_{N} L_{f} \geq-2 \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}+c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2}
$$

Choosing $\tau_{0}<c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2} / 4$, we have, $P_{N} L_{f}>0$. But the empirical minimizer \hat{f} satisfies $P_{N} L_{\hat{f}} \leq 0$. This implies, together with choosing $\mathscr{A}(N)=N^{-1 / 4+\iota}$, that with probability at least $\mathscr{P}=\mathscr{P}_{1, c}-\mathscr{P}_{2, c}$,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(2 \omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, Q_{\mathcal{H}}(2 \tau)^{\frac{3}{2}}, Q_{\mathcal{H}}(2 \tau)\right), \mathscr{A}(N)\right)
$$

where

$$
\begin{aligned}
& \mathscr{P}=1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}} \\
&-N \exp \left(-\frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\eta}}{C_{1}}\right)-\exp \left(-\frac{N^{1+4 \iota} \tau_{0}^{2}}{C_{2}(1+N V)}\right)-\exp \left(-\frac{N^{4 \iota} \tau_{0}^{2}}{C_{3}} \exp \left((1-\eta)^{\eta} \frac{\left(N^{\frac{1}{2}+2 \iota} \tau_{0}\right)^{\frac{\eta(1-\eta)}{2}}}{C_{4} 2^{\eta}}\right)\right) .
\end{aligned}
$$

We now prove part 2. When $\left\|f-f^{*}\right\|_{L_{2}} \geq \mathscr{A}(N)$, using Lemma 2.2 we have

$$
\begin{align*}
& \mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(f-f^{*}\right)\right]\right| \geq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right) \\
\leq & \frac{2^{\eta_{2}+3}}{\left(d_{2} \log N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{-\left(1+d_{1}\left(\eta_{2}-1\right)\right)}+8 N\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{-\left(1+d_{2} c^{\prime}\right)} \\
& +2 e^{-\frac{\left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)^{2-2 d_{1}\left(d_{2} \log \left(N \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}\right)\right)^{1 / \eta_{1}}} 9 N}{9 N}} \\
\leq & \frac{2^{\eta_{2}+3}}{\left(d_{2} \log \left(N \tau_{0} \mathscr{A}(N)^{2}\right)\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{-\left(1+d_{1}\left(\eta_{2}-1\right)\right)}+8 N\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{-\left(1+d_{2} c^{\prime}\right)} \\
& +2 e^{-\frac{\left(N \tau_{0} \mathscr{A}(N)^{2}\right)^{2-2 d_{1}\left(d_{2} \log \left(N \tau_{0} \mathscr{A}(N)^{2}\right)\right)^{1 / \eta_{1}}} 9}{9 N}} \equiv \mathscr{P}_{2, c} \tag{94}
\end{align*}
$$

We will choose d_{1} suitably to allow $\mathscr{A}(N)$ to decrease with N as fast as possible while ensuring $\lim _{N \rightarrow \infty} \mathscr{P}_{2, c} \rightarrow 0$. Combining (66), and (69), with probability at least $\mathscr{P}_{1, c}-\mathscr{P}_{2, c}$, for every $f \in \mathcal{F}$ that satisfies $\left\|f-f^{*}\right\|_{L_{2}} \geq \max \left(2 \omega_{Q}, \mathscr{A}(N)\right)$, we get

$$
P_{N} L_{f} \geq-2 \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}+c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2}\left\|f-f^{*}\right\|_{L_{2}}^{2} .
$$

Choosing $\tau_{0}<c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{2}\right) \tau^{2} / 4$, we have, $P_{N} L_{f}>0$. But the empirical minimizer \hat{f} satisfies $P_{N} L_{\hat{f}} \leq 0$. This implies, together with choosing $\mathscr{A}(N)=N^{-\left(1-1 / \eta_{2}\right) / 4+\iota}, d_{1}=1 /(1+$ $\left.\eta_{2}\right), d_{2}=\left(\eta_{2}-1\right) /\left(\eta_{2}+1\right)$, and $\iota<\left(1-1 / \eta_{2}\right) / 4$, that with probability at least $\mathscr{P}_{c}=\mathscr{P}_{1, c}-\mathscr{P}_{2, c}$,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(2 \omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, \zeta_{1}, \zeta_{2}\right), N^{-\left(1-1 / \eta_{2}\right) / 4+\iota}\right)
$$

where

$$
\begin{aligned}
\mathscr{P}_{c} & =1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}}-\frac{2^{\eta_{2}+3} \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}}}{\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right) / 2\right)^{\frac{1-\eta_{2}}{\eta_{1}}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}} \\
& -8 \tau_{0}^{-\frac{2 \eta_{2}}{1+\eta_{2}}} N^{-\frac{4 \iota \eta_{2}}{1+\eta_{2}}}-2 e^{-\frac{\tau_{0}^{\frac{2 \eta_{2}}{1+\eta_{2}}}\left(\log \left(\tau_{0} N^{\frac{1}{2}+\frac{1}{2 \eta_{2}}+2 \iota}\right)^{2}\right)^{1 / \eta_{1}}}{9} N^{\frac{4 \iota \eta_{2}}{1+\eta_{2}}}} .
\end{aligned}
$$

Note that Proposition B. 2 is exactly same as Theorem 3.2 except for the fact one needs ℓ to be strongly convex in $\left[-t_{0}, t_{0}\right]$ instead of $\left[-t_{2}, t_{2}\right]$ where t_{2} is of the order $\mathcal{O}\left(\left(2 \tau+1 / \sqrt{Q_{\mathcal{H}}(2 \tau)}\right)\|\xi\|_{L_{2}}\right)$. So now we will show that empirical minimizer $\hat{f} \in \mathcal{F}$ satisfies $\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)$ with high probability. One has the following result from [Men18]:

$$
\begin{equation*}
\left\{h-f^{*}: h \in \mathcal{F},\left\|h-f^{*}\right\|_{L_{2}} \geq R\right\} \subset\left\{\lambda\left(f-f^{*}\right): \lambda \geq 1, f \in \mathcal{F},\left\|f-f^{*}\right\|_{L_{2}}=R\right\} \tag{95}
\end{equation*}
$$

Lemma B. 10 ([Men18, Lemma 5.6]). When (87) is true, if $\left\|f-f^{*}\right\|_{L_{2}} \geq \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)$, and $\lambda \geq 1$, then

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(\lambda\left(f-f^{*}\right)\right)^{2}\left(X_{i}\right) \geq\lfloor\lambda\rfloor c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2} \max \left(\|\xi\|_{L_{2}}^{2}, 4 \omega_{Q}^{2}\right) \tag{96}
\end{equation*}
$$

Lemma B.11. With probability at least $1-\mathscr{P}_{2, c}$ with $\tau_{0}=c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2} / 4$, we have

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)
$$

Proof. From (93), with probability at least $1-\mathscr{P}_{2, c}$ we have,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(f-f^{*}\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(f-f^{*}\right)\right]\right| \leq \tau_{0}\left\|f-f^{*}\right\|_{L_{2}}^{2}
$$

To make the dependency of $\mathscr{P}_{2, c}$ on τ_{0} explicit, we use the notation $\mathscr{P}_{2, c, \tau_{0}}$ to denote $\mathscr{P}_{2, c}$ for this proof. If $\left\|f-f^{*}\right\|_{L_{2}} \leq \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)$, choosing $\tau_{0}=c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2} / 4$, with probability at least $1-\mathscr{P}_{2, c, c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2} / 4}$, for the same $\lambda \geq 1$ as in Lemma B.10, we have,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(\lambda\left(f-f^{*}\right)\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(\lambda\left(f-f^{*}\right)\right)\right]\right| \leq \frac{c_{16} \lambda Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2}}{4} \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)^{2}
$$

If $\left\|f-f^{*}\right\|_{L_{2}}=\max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)$, and $\lambda \geq 1$, we also have

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N} \ell^{\prime \prime}\left(\widetilde{\xi}_{i}\right)\left(\lambda\left(f-f^{*}\right)\right)^{2}\left(X_{i}\right)-\left|\frac{1}{N} \sum_{i=1}^{N} l^{\prime}\left(\xi_{i}\right)\left(\lambda\left(f-f^{*}\right)\right)\left(X_{i}\right)-\mathbb{E}\left[l^{\prime}(\xi)\left(\lambda\left(f-f^{*}\right)\right)\right]\right| \\
\geq & \lfloor\lambda\rfloor c_{16} Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2} \max \left(\|\xi\|_{L_{2}}^{2}, 4 \omega_{Q}^{2}\right)-\frac{c_{16} \lambda Q_{\mathcal{H}}(2 \tau) \rho\left(0, t_{0}\right) \tau^{2}}{4} \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)^{2}
\end{aligned}
$$

$$
>0
$$

So by (95), and Lemma B.10, the empirical minimizer \hat{f} satisfies,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\|\xi\|_{L_{2}}, 2 \omega_{Q}\right)
$$

Proof. [Proof of Theorem 3.2] Combining Lemma B. 11 with the two parts of Proposition B. 2 gives us Theorem 3.2.
Corollary B.2. For the convex ERM procedure, under Assumptions 2.1, with condition (b) replaced by Assumption 3.1 with $p=8$, for some $0<\iota<\frac{1}{2}$ and r, μ and τ_{0} same as in Theorem 3.2, for sufficiently large N, we have

$$
\begin{equation*}
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(N^{-\frac{1}{2}+\iota}, 2 \omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, Q_{\mathcal{H}}(2 \tau)^{\frac{3}{2}}, Q_{\mathcal{H}}(2 \tau)\right)\right) \tag{97}
\end{equation*}
$$

with probability at least (for some constants $c_{9}, c_{10}, \tilde{C}_{2}>0$)

$$
1-c_{9} Q_{\mathcal{H}}(2 \tau)^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} Q_{\mathcal{H}}(2 \tau)^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}}-\tilde{C}_{2} N \exp \left(-\left(N^{2 \iota} \tau_{0}\right)^{\eta} / M_{1}\right)
$$

Proof. [Proof of Corollary B.2] The proof is same as Corollary 3.1 and hence we omit it here.

C Details of Section 4.1

C.0.1 Verification of Assumption 2.1 for Example 4.1

[WZLL20] showed that the time series given by (19) is stable, strict sense stationary, with $X_{i} \sim$ $\operatorname{sw}\left(\eta_{X}\right)$, for some $1>\eta_{X}>0$. As shown in [WLT20], $\left\{\left(X_{i}, Y_{i}\right)\right\}$ is a strictly stationary sequence; thus, we obtain that is also a β-mixing sequence with exponentially decaying coefficients as in condition (a) of Assumption 2.1. Now we verify the small-ball condition (b) of Assumption 2.1. Let, for any $\theta=\left(\theta_{1}, \cdots, \theta_{d}\right) \neq 0, d_{1}$ denote the set of non-zero coordinates of θ. W.l.o.g lets assume $T=1,2, \cdots, d_{1}$. Let $\mathbb{E}\left[X_{i}^{2}\right]=\sigma_{i}^{2}$ and $\sigma_{0}=\min _{1 \leq i \leq d_{1}} \sigma_{i}$. Then $\mathbb{E}\left[\left(\theta^{\top} X\right)^{2}\right]=\sum_{i=1}^{d_{1}} \theta_{i}^{2} \sigma_{i}^{2} \geq$ $\sigma_{0}^{2}\|\theta\|_{2}^{2}$. Since $X_{i} \sim S W\left(\eta_{X}\right)$, we have $\left\|\theta_{i} X_{i}\right\|_{8} \leq K_{1}\left|\theta_{i}\right| 8^{\eta_{X}}$. So,

$$
\begin{equation*}
\left\|\theta^{\top} X\right\|_{8} \leq K_{1}\|\theta\|_{1} 8^{\eta_{X}} \leq \frac{K_{1}\|\theta\|_{1} 8^{\eta_{X}}}{\sigma_{0}\|\theta\|_{2}}\left\|\theta^{\top} X\right\|_{2} \leq \frac{K_{1} \sqrt{d_{1}} 8^{\eta_{X}}}{\sigma_{0}}\left\|\theta^{\top} X\right\|_{2} \tag{98}
\end{equation*}
$$

Then using Lemma 4.1 of [Men15], for any $0<u<1$, we have $\mathbb{P}\left(\left|\theta^{\top} X\right| \geq u\left\|\theta^{\top} X\right\|_{L_{2}}\right) \geq$ $\left(\left(1-u^{2}\right) /\left(K_{1}^{2} 8^{2 / \eta_{X}+1}\right)\right)^{4 / 3}$. So condition (b) of Assumption 2.1 is true here. This also implies that Assumption 3.1 is true in this case for $p=8$. As an immediate consequence of [VGNA20, Proposition 2.3], we have that condition (c)-(i) in Assumption 2.1 is valid here with $\eta_{2}=\max \left(\eta_{X}, \eta_{\xi}\right)<1$. Since $1 / \eta_{2}>1$, condition (d) holds true.
Proposition C.1. Consider the learning problem described above. Then with probability at least

$$
1-\widetilde{C}_{1} N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}} \exp \left(-N^{(1-r) \eta_{1}}\right)-\widetilde{C}_{2} N \exp \left(-\left(N^{2 \iota} \tau_{0}\right)^{\eta} / M_{1}\right)
$$

we have

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{\frac{2 c_{3} R \log (e d)^{\frac{1}{\eta}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)} c^{\frac{1}{2 \eta_{1}}}} N^{-\frac{1}{2}+\iota}, N^{-\frac{1}{2}+\iota}\right\}
$$

The proof of Proposition C. 1 could be found in the Appendix C.0.1.
Remark 6. In a related setting (i.e., assuming θ^{*} is exactly s-sparse) [WLT20, Corollary 9] presents parameter estimation error which is of the same order as $\left\|\hat{f}-f^{*}\right\|_{L_{2}}$ (indeed, for simplicity R could be thought of being at the same order as s) since we assume X has finite variance. So with slightly better probability guarantee, we recover the same rate (ι can be arbitrarily close to 0) as [WLT20, Corollary 9] in the above proposition.
Lemma C. 1 (Lemma 6.4 of [Men15]). If $W=\left(w_{i}\right)_{i=1}^{d}$ is a random vector on \mathbb{R}^{d}, then for every integer $1 \leq k \leq d$,

$$
\mathbb{E}\left[\sup _{t \in \sqrt{k} B_{1}^{d} \cap B_{2}^{d}}\langle W, t\rangle\right] \leq 2 \mathbb{E}\left[\left(\sum_{i=1}^{k} w_{i}^{* 2}\right)^{\frac{1}{2}}\right]
$$

where $\left(w_{i}^{*}\right)_{i=1}^{d}$ is a monotone non-increasing reaarangement of $\left(\left|w_{i}\right|\right)_{i=1}^{d}$.
Lemma C.2. Let $w_{1}, w_{2}, \cdots, w_{d}$ are independent copies of a mean-zero, variance 1 random variable $w \sim \operatorname{SW}(\eta)$. Then for all $p \geq 1 \wedge \eta,\|w\|_{L_{p}} \leq K_{1} p^{\frac{1}{\eta}}$ for some constant $K_{1}>0$. Then for every $1 \leq k \leq d$,

$$
\mathbb{E}\left[\left(\sum_{i=1}^{k} w_{i}^{* 2}\right)^{\frac{1}{2}}\right] \leq \sqrt{2 k} K_{1}(\log (e d))^{1 / \eta}
$$

Proof. [Proof of Lemma C.2] For $1 \leq j \leq d$, and $p \geq 2$,

$$
\mathbb{P}\left(w_{j}^{*} \geq t\right) \leq\binom{ d}{j} \mathbb{P}^{j}(|w|>t) \leq\binom{ d}{j}\left(\frac{\|z\|_{L_{p}}}{t}\right)^{j p}
$$

Setting $t=u K_{1}(\log (e d / j))^{1 / \eta}$ and $p=\log (e d / j)$, we get

$$
\begin{equation*}
\mathbb{P}\left(w_{j}^{*} \geq u K_{3}\right) \leq\left(\frac{1}{u}\right)^{j \log (e d / j)} \tag{99}
\end{equation*}
$$

where $K_{3}=K_{1}(\log (e d / j))^{1 / \eta}$. Using (99) we will bound $\mathbb{E}\left[w_{j}^{* 2}\right]$. For some v,

$$
\begin{aligned}
\mathbb{E}\left[w_{j}^{* 2}\right] & =\int_{0}^{\infty} \mathbb{P}\left(w_{j}^{* 2}>u\right) d u \\
& =\int_{0}^{v} \mathbb{P}\left(w_{j}^{* 2}>u\right) d u+\int_{v}^{\infty} \mathbb{P}\left(w_{j}^{* 2}>u\right) d u \\
& \leq v+\int_{0}^{\infty} \mathbb{P}\left(w_{j}^{* 2}>u+v\right) d u \\
& \leq v+\int_{0}^{\infty}\left(\frac{K_{3}}{\sqrt{u+v}}\right)^{j \log (e d / j)} d u \\
& =v-K_{5}\left[\frac{(u+v)^{1-j \log (e d / j) / 2}}{j \log (e d / j) / 2-1}\right]_{0}^{\infty} \quad\left[\text { where } K_{5}=K_{3}^{j \log (e d / j)}\right] \\
& =v+K_{5}\left[\frac{v^{1-j \log (e d / j) / 2}}{j \log (e d / j) / 2-1}\right] .
\end{aligned}
$$

To minimize the upper bound on $\mathbb{E}\left[w_{j}^{* 2}\right]$ we choose

$$
v=K_{5}^{\frac{2}{j \log (e d / j)}}=K_{3}^{2}=K_{1}^{2}(\log (e d / j))^{2 / \eta} .
$$

and get

$$
\mathbb{E}\left[w_{j}^{* 2}\right] \leq 2 K_{1}^{2}(\log (e d / j))^{2 / \eta}
$$

For any $1 \leq k \leq d$, using Jensen's inequality,
$\mathbb{E}\left[\left(\sum_{i=1}^{k} w_{i}^{* 2}\right)^{\frac{1}{2}}\right] \leq\left(\sum_{i=1}^{k} \mathbb{E}\left[w_{i}^{* 2}\right]\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{k} 2 K_{1}^{2}(\log (e d / i))^{2 / \eta}\right)^{\frac{1}{2}} \leq \sqrt{2 k} K_{1}(\log (e d))^{1 / \eta}$.

Proof. [Proof of Proposition C.1] In order to provide a bound on $\left\|\hat{f}-f^{*}\right\|_{L_{2}}$, we need to compute the order of $\omega_{\mu}\left(\mathcal{F}_{R}-\mathcal{F}_{R}, \tau Q_{\mathcal{H}_{R}}(2 \tau) / 16\right)$. Based on Lemma C. 1 and C. 2 it is easy to see that, in a similar way to [Men15],

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}_{R} \cap s \mathcal{D}_{f^{*}}}\left|\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i}\left(f-f^{*}\right)\left(X_{i}\right)\right|\right] \leq \begin{cases}c_{1} K_{1} R(\log e d)^{\frac{1}{\eta}} & (R / s)^{2}>d / 4 \\ c_{2} K_{1} s \sqrt{d} & u \leq(R / s)^{2} \leq d / 4\end{cases}
$$

where c_{1}, c_{2} are constants. Hence, following similar steps as in the proof of [Men15, Lemma 4.6], we have

$$
\omega_{\mu}\left(\mathcal{F}_{R}-\mathcal{F}_{R}, \tau Q_{\mathcal{H}_{R}}(2 \tau) / 16\right) \leq \begin{cases}\frac{c_{3} R}{\sqrt{\mu}} \log (e d)^{\frac{1}{\eta}} & \text { if } \mu \leq c_{1} d \tag{100}\\ 0 & \text { if } \mu>c_{1} d\end{cases}
$$

From (100), choosing $r=1-2 \iota$ by Theorem 3.1, for sufficiently large N, we have with probability at least

$$
1-\tilde{C}_{1} \frac{N^{1-2 \iota} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4} \exp \left(-N^{2 \iota \eta_{1}}\right)-\tilde{C}_{2} N \exp \left(-\frac{\left(N^{2 \iota} \tau_{0}\right)^{\eta}}{M_{1}}\right)
$$

we have

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(\frac{2 c_{3} R \log (e d)^{\frac{1}{\eta}}}{\sqrt{Q_{\mathcal{H}}(2 \tau)} c^{\frac{1}{2 \eta_{1}}}} N^{-\frac{1}{2}+\iota}, N^{-\frac{1}{2}+\iota}\right)
$$

D Proofs of Section 4.2

Lemma D.1. Let $\left\{X_{i}^{\prime}\right\}_{i=1}^{\mu}$ be an iid sample with independent coordinates $X_{i, j}^{\prime} \sim L\left(\eta_{3}, d_{j}\right)$ and let w be a random vector with coordinates

$$
\begin{equation*}
w_{j}=\frac{1}{\sqrt{\mu}} \sum_{i=1}^{\mu} X_{i, j}^{\prime} \quad j=1,2, \cdots, d \tag{101}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathbb{P}\left(\left|w_{j}\right| \geq t\right) \leq C_{3}\left(d_{j}^{\eta_{3}-2 p-1} \mu^{1-\frac{\eta_{3}}{2}} t^{\eta_{3}-2 p}+d_{j}^{-2} t^{-p}\right) \tag{102}
\end{equation*}
$$

for some constant $C_{3}>0$.
Proof. [Proof of Lemma D.1] Using the symmetry of the distribution of w_{j} we can write,

$$
\begin{equation*}
\mathbb{P}\left(\left|w_{j}\right| \geq t\right) \leq 2 \mathbb{P}\left(w_{j} \geq t\right) \tag{103}
\end{equation*}
$$

Setting $p=\eta_{3}-0.5 \iota$, using Theorem 2.1 of [Che07] we get for any $t>0$

$$
\begin{equation*}
\mathbb{P}\left(w_{j} \geq t\right) \leq C_{p} t^{-p} \max \left(r_{\mu, p}(t),\left(r_{\mu, 2}(t)\right)^{\frac{p}{2}}\right)+\exp \left(-\frac{d_{j}^{2} t^{2}}{16 \sigma_{X, 2}^{2}}\right) \tag{104}
\end{equation*}
$$

where

$$
C_{1, p}=2^{2 p+1} \max \left(p^{p}, p^{p / 2+1} e^{p} \int_{0}^{\infty} x^{p / 2-1}(1-x)^{-p} d x\right)
$$

and for any $k \in\{p, 2\}$,

$$
r_{\mu, k}(t)=\sum_{i=1}^{\mu} \mathbb{E}\left[\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right|^{k} \mathbb{1}\left(\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right| \geq \frac{3 \sigma_{X, 2}^{2}}{t d_{j}^{2}}\right)\right] .
$$

Now,

$$
\begin{align*}
\mathbb{E}\left[\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right|^{p} \mathbb{1}\left(\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right| \geq \frac{3 \sigma_{X, 2}^{2}}{t d_{j}^{2}}\right)\right] & =\int_{-\infty}^{\infty}\left|\frac{x}{\sqrt{\mu}}\right|^{p} \mathbb{1}\left(\left|\frac{x}{\sqrt{\mu}}\right| \geq \frac{3 \sigma_{X, 2}^{2}}{t d_{j}^{2}}\right) \frac{\eta_{3}\left(|x| d_{j}\right)^{\eta_{3}-1}}{2\left(1+\left(|x| d_{j}\right)^{\eta_{3}}\right)^{2}} d x \\
& =\int_{\frac{3 \sigma_{X, 2}^{2} \sqrt{\mu}}{t d_{j}^{2}}}^{\infty}\left(\frac{x}{\sqrt{\mu}}\right)^{p} \frac{\eta_{3}\left(x d_{j}\right)^{\eta_{3}-1}}{\left(1+\left(x d_{j}\right)^{\eta_{3}}\right)^{2}} d x \\
& \leq \frac{\eta_{3}}{d_{j}^{2 p-\eta_{3}+1} \mu^{\frac{\eta_{3}}{2}}\left(\eta_{3}-p\right)}\left(\frac{3 \sigma_{X, 2}^{2}}{t}\right)^{p-\eta_{3}} \\
& \leq C_{2} d_{j}^{\eta_{3}-2 p-1} \mu^{-\frac{\eta_{3}}{2}} t^{\eta_{3}-p} \tag{105}
\end{align*}
$$

where C_{2} is a constant which depends on η_{3} and p. Then

$$
r_{\mu, p}(t) \leq C_{2} d_{j}^{\eta_{3}-2 p-1} \mu^{1-\frac{\eta_{3}}{2}} t^{\eta_{3}-p}
$$

The term $r_{\mu, 2}(t)$ can similarly be bounded as follows:

$$
\begin{equation*}
r_{\mu, 2}(t)=\sum_{i=1}^{\mu} \mathbb{E}\left[\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right|^{2} \mathbb{1}\left(\left|\frac{X_{i, j}^{\prime}}{\sqrt{\mu}}\right| \geq \frac{3 \sigma_{X, 2}}{t d_{j}^{2}}\right)\right] \leq \frac{\sigma_{X, 2}^{2}}{d_{j}^{2}} \tag{106}
\end{equation*}
$$

Using (105), and (106), from (104) we get

$$
\mathbb{P}\left(\left|w_{j}\right| \geq t\right) \leq C_{3}\left(d_{j}^{\eta_{3}-2 p-1} \mu^{1-\frac{\eta_{3}}{2}} t^{\eta_{3}-2 p}+d_{j}^{-2} t^{-p}\right)
$$

for some constant $C_{3}>0$.

Lemma D.2. Let $w_{1}, w_{2}, \cdots, w_{d}$ are independent copies of a random variable such that (102) is true for all $j=1,2, \cdots, d$, i.e.,

$$
\mathbb{P}\left(\left|w_{j}\right| \geq t\right) \leq C_{3}\left(d^{\eta_{3}-2 p-1} \mu^{1-\frac{\eta_{3}}{2}} t^{\eta_{3}-2 p}+d^{-2} t^{-p}\right) \quad j=1,2, \cdots, d
$$

for $\eta_{3}>2+2 \iota$, and $p=\eta_{3}-0.5 \iota$. Let $\left\{w_{j}^{*}\right\}_{j=1}^{d}$ be the non-increasing arrangement of $\left\{\left|w_{j}\right|\right\}_{j=1}^{d}$. Then for every $1 \leq k \leq d$,

$$
\mathbb{E}\left[\left(\sum_{i=1}^{k} w_{i}^{* 2}\right)^{\frac{1}{2}}\right] \leq C_{6} \sqrt{k}\left(d^{\eta_{3} /(2 p)-1 / 2+1 / p} d_{1}^{\eta_{3} / 2-p-\eta_{3} / p+3 / 2-2 / p} \mu^{1 / 2-\eta_{3} / 4}+d^{1 / p} d_{1}^{-2 / p}\right)
$$

for some constant $C_{6}>0$ which depends on η_{3} and p.
Proof. [Proof of Lemma D.2] First note that we have
$\mathbb{P}\left(w_{1}^{* 2} \geq t\right)=\mathbb{P}\left(w_{1}^{*} \geq \sqrt{t}\right) \leq \sum_{j=1}^{d} \mathbb{P}\left(\left|w_{j}\right| \geq \sqrt{t}\right) \leq C_{3}\left(d d_{1}^{\eta_{3}-2 p-1} \mu^{1-\eta_{3} / 2} t^{\eta_{3} / 2-p}+d d_{1}^{-2} t^{-p / 2}\right)$.
Now, using (102), for any $v>0$ (to be chosen later), we have

$$
\begin{aligned}
\mathbb{E}\left[w_{1}^{* 2}\right] & =\int_{0}^{\infty} \mathbb{P}\left(w_{1}^{* 2} \geq t\right) d t \\
& \leq v+\int_{0}^{\infty} \mathbb{P}\left(w_{1}^{* 2} \geq t+v\right) d t \\
& \leq v+\int_{0}^{\infty} C_{3}\left(d d_{1}^{\eta_{3}-2 p-1} \mu^{1-\eta_{3} / 2}(t+v)^{\eta_{3} / 2-p}+d d_{1}^{-2}(t+v)^{-p / 2}\right) d t \\
& \leq v+C_{4}\left(d d_{1}^{\eta_{3}-2 p-1} \mu^{1-\eta_{3} / 2} v^{\eta_{3} / 2-p+1}+d d_{1}^{-2} v^{1-p / 2}\right)
\end{aligned}
$$

where $C_{4}=C_{3} \max \left(1 /\left(p-1-\eta_{3} / 2\right), 1 /(p / 2-1)\right)$. Choosing $v=d^{2 / p} d_{1}^{-4 / p}$, we get

$$
\mathbb{E}\left[w_{1}^{* 2}\right] \leq C_{5}\left(d^{\eta_{3} / p-1+2 / p} d_{1}^{\eta_{3}-2 p-2 \eta_{3} / p+3-4 / p} \mu^{1-\eta_{3} / 2}+d^{2 / p} d_{1}^{-4 / p}\right)
$$

where $C_{5}=C_{4}+1$. Using Jensen's inequality, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(\sum_{j=1}^{k} w_{j}^{* 2}\right)^{\frac{1}{2}}\right] & \leq\left(\sum_{j=1}^{k} \mathbb{E}\left[w_{j}^{* 2}\right]\right)^{\frac{1}{2}} \leq\left(k \mathbb{E}\left[w_{1}^{* 2}\right]\right)^{\frac{1}{2}} \\
& \leq C_{6} \sqrt{k}\left(d^{\eta_{3} /(2 p)-1 / 2+1 / p} d_{1}^{\eta_{3} / 2-p-\eta_{3} / p+3 / 2-2 / p} \mu^{1 / 2-\eta_{3} / 4}+d^{1 / p} d_{1}^{-2 / p}\right)
\end{aligned}
$$

where $C_{6}=\sqrt{C_{5}}$, thereby completing the proof.

Proof. [Proof of Proposition 4.1] We start by obtaining a bound on the term $\omega_{\mu}\left(\mathcal{F}_{R}-\right.$ $\left.\mathcal{F}_{R}, \tau Q_{\mathcal{H}_{R}}(2 \tau) / 16\right)$. Let w be a random vector with coordinates

$$
\begin{equation*}
w_{j}=\frac{1}{\sqrt{\mu}} \sum_{i=1}^{\mu} X_{i, j}^{\prime} \quad j=1,2, \cdots, d \tag{107}
\end{equation*}
$$

Let $\left\{w_{j}^{*}\right\}_{j=1}^{d}$ be the non-increasing arrangement of $\left\{\left|w_{j}\right|\right\}_{j=1}^{d}$. Then, we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{f \in \mathcal{F}_{R} \cap s \mathcal{D}_{f^{*}}}\left|\frac{1}{\sqrt{\mu}} \sum_{i=1}^{\mu} \epsilon_{i}\left(f-f^{*}\right)\left(X_{i}^{\prime}\right)\right|\right] \leq \mathbb{E}\left[\sup _{t \in B_{1}^{d}(2 R) \cap B_{2}^{d}(s)}\left\langle\frac{1}{\sqrt{\mu}} \sum_{i=1}^{\mu} X_{i}^{\prime}, t\right\rangle\right] \\
= & \mathbb{E}\left[\sup _{t \in B_{1}^{d}(2 R) \cap B_{2}^{d}(s)}\langle w, t\rangle\right]=s \mathbb{E}\left[\sup _{t \in B_{1}^{d}(2 R / s) \cap B_{2}^{d}(1)} w^{\top} t\right] \leq 2 s \mathbb{E}\left[\left(\sum_{j=1}^{(2 R / s)^{2}} w_{j}^{* 2}\right)^{\frac{1}{2}}\right] .
\end{aligned}
$$

If $(2 R / s)^{2}<d$, using Lemma D. 2 we get
$\mathbb{E}\left[\sup _{t \in B_{1}^{d}(2 R) \cap B_{2}^{d}(s)} w^{\top} t\right] \leq 4 C_{6} R\left(d^{\eta_{3} /(2 p)-1 / 2+1 / p} d_{1}^{\eta_{3} / 2-p-\eta_{3} / p+3 / 2-2 / p} \mu^{1 / 2-\eta_{3} / 4}+d^{1 / p} d_{1}^{-2 / p}\right)$

$$
\leq C_{7} R d^{1 / p+\iota / 8}
$$

when $d_{1} \geq C_{6}^{\prime}$ for some constants $C_{6}^{\prime}, C_{7}>0$.
If $(2 R / s)^{2} \geq d$,

$$
\mathbb{E}\left[\sup _{t \in B_{1}^{d}(2 R) \cap B_{2}^{d}(s)} w^{\top} t\right] \leq 2 s \sigma_{X, 2} \sqrt{d} .
$$

So when $(2 R / s)^{2} \geq d$,

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}_{R} \cap s \mathcal{D}_{f^{*}}}\left|\frac{1}{\mu} \sum_{i=1}^{\mu} \epsilon_{i}\left(f-f^{*}\right)\left(X_{i}^{\prime}\right)\right|\right] \leq \gamma s
$$

for all $s>0$. When $\mu \leq C_{8} d^{1+2 / p+\iota / 4}$, we have $(2 R / s) \leq \sqrt{d}$ for

$$
s \geq \frac{C_{7} R d^{1 / p+\iota / 8}}{\gamma \sqrt{\mu}}
$$

When $\mu>C_{8} d^{1+2 / p+\iota / 4}$, we have $(2 R / s) \geq \sqrt{d}$ for

$$
s \leq \frac{C_{7} R d^{1 / p+\iota / 8}}{\gamma \sqrt{\mu}}
$$

Combining the above facts, and choosing $\mu=\frac{N^{r} Q_{\mathcal{H}}(2 \tau) c^{\frac{1}{\eta_{1}}}}{4}$, and $r=1-2 \iota$ we get

$$
\omega_{\mu}\left(\mathcal{F}_{R}-\mathcal{F}_{R}, \tau Q_{\mathcal{H}_{R}}(2 \tau) / 16\right) \leq \begin{cases}\frac{C_{9} R}{\tau Q_{\mathcal{H}}(2 \tau)^{3 / 2}} d^{1 / p+\iota / 8} N^{-1 / 2+\iota} & \text { if } \mu \leq C_{8} d^{1+2 / p} \\ 0 & \text { if } \mu>C_{8} d^{1+2 / p}\end{cases}
$$

where $C_{9}=32 C_{7} / c^{1 /\left(2 \eta_{1}\right)}$. Then using part 2 of Theorem 3.1, we get,

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left\{N^{-\frac{1}{4}\left(1-\frac{1}{\eta_{2}}\right)+\iota}, \frac{C_{9} R}{\tau Q_{\mathcal{H}_{R}}(2 \tau)^{3 / 2}} d^{1 / p+\iota / 8} N^{-1 / 2+\iota}\right\}
$$

with probability given by at least (14).

E Proofs of Section 4.3

Proof. [Proof of Proposition 4.2] Since we assumed X to be Gaussian, \mathcal{F}_{R} is a L_{g}-subGaussian function class for some constant $L_{g}>0$. So as shown in Section 6.5.2, we have,

$$
\omega_{Q}\left(\mathcal{F}-\mathcal{F}, N, \zeta_{1}, \zeta_{2}\right) \leq \begin{cases}\frac{c_{3}\left(L_{g}\right) R}{\sqrt{N}} \sqrt{\log (e d / N)} & \text { if } N \leq c_{1}\left(L_{g}\right) d \\ \frac{c_{4}\left(L_{g}\right) R}{\sqrt{d}} & \text { if } c_{1}\left(L_{g}\right) d<N \leq c_{2}\left(L_{g}\right) d \\ 0 & \text { if } N>c_{2}\left(L_{g}\right) d\end{cases}
$$

where $c_{i}\left(L_{g}\right), i=1,2,3,4$ are constants dependent on only L_{g}. Then using Corollary B.2, we have

$$
\left\|\hat{f}-f^{*}\right\|_{L_{2}} \leq \max \left(N^{-\frac{1}{2}+\iota}, 2 \frac{c_{3}\left(L_{g}\right) R}{\sqrt{N}} \sqrt{\log (e d / N)}\right)
$$

with probability at least (for some constants $c_{9}, c_{10}, \tilde{C}_{2}>0$)

$$
1-c_{9} \epsilon^{1-\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)} e^{-c_{10} \epsilon^{1+\frac{1}{\eta_{1}}} N^{\eta_{1} /\left(1+\eta_{1}\right)}}-\tilde{C}_{2} N \exp \left(-\left(N^{2 \iota} \tau_{0}\right)^{\eta} / M_{1}\right)
$$

F A Note on Condition (c) in Assumption 2.1 and $\alpha_{N}^{*}(\gamma, \delta)$ in [Men15]

In this section, we discuss the relationship between Condition (c)-(i) of our Assumption 2.1 and the multiplier process based assumption in [Men15, Equation 2.2 and $\alpha_{N}^{*}(\gamma, \delta)$]. For simplicity, we consider the following simple model. Let $\left\{X_{i}\right\}_{i \in \mathbb{Z}^{+}}$is an iid sequence of symmetric, zero-mean, random vectors. Let $\left\{Y_{i}\right\}_{i \in \mathbb{Z}^{+}}, Y_{i} \in \mathbb{R}$ denote the sequence given by $Y_{i}=\theta^{* \top} X_{i}+\xi_{i}$, where $\theta^{*} \in B_{1}^{1}(R)$ and $\left\{\xi_{i}\right\}_{i=1}^{N}$ is an iid sequence and independent of $X_{i}, \forall i$, and $\xi_{i} \sim N\left(0, \sigma_{1}^{2}\right)$. The function class \mathcal{F} we consider is $\mathcal{F}:=\mathcal{F}_{R}=\left\{\langle\theta, \cdot\rangle: \theta \in B_{1}^{d}(R)\right\}$. Now let us assume $\frac{1}{N} \sum_{i=1}^{N} X_{i} \xi_{i}$ is heavy-tailed random vector, with the tail lower bounded by $N \exp (-M(N t))$, for some positive increasing function of $t, M(t)$, i.e., $\mathbb{P}\left(\left|N^{-1} \sum_{i=1}^{N} X_{i} \xi_{i}\right|>t\right) \geq M_{3} N \exp (-M(N t))$ for some $M_{3}>0$. Specifically setting $M(t)=t^{\eta}, \eta>0$, and $M(t)=\eta_{2} \log t, \eta_{2}>2$ one recovers (9) and (10). Now, recall from [Men15] that,

$$
\begin{equation*}
\alpha_{N}^{*}(\gamma, \delta):=\inf \left\{s>0: \mathbb{P}\left(\sup _{\theta \in B_{1}^{1}(2 R) \cap B_{2}^{1}(s)}\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i} X_{i} \theta\right| \leq \gamma s^{2}\right) \geq 1-\delta\right\} \tag{108}
\end{equation*}
$$

Note that, for $s>0$,

$$
\sup _{\theta \in B_{1}^{1}(2 R) \cap B_{2}^{1}(s)}\left|N^{-1} \sum_{i=1}^{N} \xi_{i} X_{i} \theta\right|=\left|N^{-1} \sum_{i=1}^{N} \xi_{i} X_{i}\right| \min (2 R, s) .
$$

We also have,

$$
\mathbb{P}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \xi_{i} X_{i}\right| \leq \gamma s^{2} / \min (2 R, s)\right) \leq 1-M_{3} N \exp \left(-M\left(\gamma N s^{2} / \min (2 R, s)\right)\right)
$$

Then, from (108), when $s=\alpha_{N}^{*}(\gamma, \delta)$,

$$
\delta \geq N M_{3} \exp \left(-M\left(\gamma N \alpha_{N}^{*}(\gamma, \delta)^{2} / \min \left(2 R, \alpha_{N}^{*}(\gamma, \delta)\right)\right)\right)
$$

Hence, if we want a non-trivial bound on the generalization error, we need $\alpha_{N}^{*}(\gamma, \delta)^{2} \leq N^{-m_{0}}$ for some $m_{0}>0$. Set $2 R>N^{-m_{0} / 2}$. When $M(t) \sim t^{\gamma_{2}}, \gamma_{2}>0, \frac{1}{N} \sum_{i=1}^{N} \xi_{i} X_{i}$ has a sub-weibull tail. If it has a polynomially decaying tail, i.e., $M(t)=M_{4} \log t$ for some constant $M_{4}>0$, then

$$
\delta \geq N M_{3} \exp \left(-M_{4} \log \left(\gamma N^{1-m_{0} / 2}\right)\right)=M_{3} \gamma^{-M_{4}} N^{1-\left(1-\frac{m_{0}}{2}\right) M_{4}}
$$

This implies that if $\frac{1}{N} \sum_{i=1}^{N} \xi_{i} X_{i}$ has a polynomially decaying tail, one gets a polynomial probability statement on the rate using complexity measure $\alpha_{N}^{*}(\gamma, \delta)$. Note that, since we are considering iid setting, choosing $m_{0}<1$ would allow $\alpha_{N}^{*}(\gamma, \delta)$ to be of the order of $N^{-1 / 2+\iota}$ where $\iota>0$ is a small number. Recall that the rates we obtain in Theorem 3.1, and 3.2 are for β-mixing case. Indeed the worse rates are due to the presence of the third terms on the RHS of (9), and (10) - one needs to choose $\mathcal{A}(N)$ (used in the proofs of Theorem 3.1, and 3.2) suitably so that the third terms on the RHS of (9), and (10) decay to 0 as $N \rightarrow \infty$.

