Supplementary Material for Machine Learning for Variance Reduction in Online Experiments

Yongyi Guo
Department of Operations Research and Financial Engineering
Princeton University
Princeton, NJ 08544
yongyig@princeton.edu

Dominic Coey

Facebook
1 Hacker Way, Menlo Park, CA 94025
coey@fb.com

Wenting Li
Facebook
1 Hacker Way, Menlo Park, CA 94025
wentingli@fb.com

Mikael Konutgan

Facebook

1 Hacker Way, Menlo Park, CA 94025
kmikael@fb.com

Chris Schoener

Facebook
1 Hacker Way, Menlo Park, CA 94025
chrissc@fb.com

Matt Goldman

Facebook
1 Hacker Way, Menlo Park, CA 94025
mattgoldman@fb.com

In this supplementary material, we provide the proof of all theoretical results stated in the paper.

1 Proof of Proposition 1

For any (deterministic) $g \in \mathcal{G}$, we have

$$
P\left[Z(g) Z(g)^{\top}\right]=M_{1}(g) \otimes M_{2}
$$

where \otimes denotes the Kronecker product,

$$
M_{1}(g)=\left(\begin{array}{cc}
1 & E g(X) \\
E g(X) & E g(X)^{2}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
1 & p \\
p & p
\end{array}\right) .
$$

Therefore, any eigenvalue of $P\left[Z(g) Z(g)^{\top}\right]$ is the product of one eigenvalue of $M_{1}(g)$ and one eigenvalue of M_{2}. It's easy to verify from Assumption 1 that all eigenvalues of $M_{1}(g)$ and M_{2} are nonnegative and bounded. Thus, we only need to show $\inf _{g \in \mathcal{G}} \lambda_{\min }\left(M_{1}(g)\right)>0, \lambda_{\min }\left(M_{2}\right)>0$.
Through some calculations, one can find out that

$$
\begin{aligned}
\lambda_{\min }\left(M_{1}(g)\right) & =\frac{1}{2}\left\{\left(E g(X)^{2}+1\right)-\sqrt{\left(E g(X)^{2}+1\right)^{2}-4 \operatorname{Var}(g(X))}\right\} \\
& =\frac{2 \operatorname{Var}(g(X))}{\left(E g(X)^{2}+1\right)+\sqrt{\left(E g(X)^{2}+1\right)^{2}-4 \operatorname{Var}(g(X))}} \geq \frac{\operatorname{Var}(g(X))}{E g(X)^{2}+1}
\end{aligned}
$$

which leads to

$$
\inf _{g \in \mathcal{G}} \lambda_{\min }\left(M_{1}(g)\right) \geq \frac{\inf _{g \in \mathcal{G}} \operatorname{Var}(g(X))}{\sup _{g \in \mathcal{G}} \operatorname{Eg}(X)^{2}+1}>0
$$

On the other hand, $\lambda_{\min }\left(M_{2}\right)>0$ can be deduced from $p \in(0,1)$. By combining the above two inequalities, we conclude the proof.

2 Proof of Proposition 2

For compactness we may write the random variables $Z\left(\widehat{g}_{k}\right)$ as \widehat{Z}_{k} and $Z\left(g_{0}\right)$ as Z. Similarly for any observation i we write $Z_{i}\left(\widehat{g}_{k}\right)$ as $\widehat{Z}_{k, i}$ and $Z_{i}\left(g_{0}\right)$ as Z_{i}. We are only interested in convergence in probability, so we can assume that the inverse matrices in the definition of $\widehat{\beta}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)$ and $\widehat{\beta}\left(g_{0}\right)$ exist, as this happens with probability approaching 1 according to Lemma 2. We have $\widehat{\beta}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)=A+B$, where

$$
A=\underbrace{\left[\left[\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} \widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}\right]^{-1}-\left[\frac{1}{K} \sum_{k} P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]\right]^{-1}\right]}_{F_{0}} \cdot\left[\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} \widehat{Z}_{k, i} Y_{i}\right],
$$

and

$$
B=\left[\frac{1}{K} \sum_{k} P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]\right]^{-1} \underbrace{\left[\frac{1}{N} \sum_{k} \sum_{i \in I_{k}}\left[\widehat{Z}_{k, i} Y_{i}-P\left[\widehat{Z}_{k} Y\right]\right]\right]}_{G_{0}}
$$

Similarly, $\widehat{\beta}\left(g_{0}\right)-\beta\left(g_{0}\right)=C+D$, where

$$
C=\underbrace{\left[\left[\frac{1}{N} \sum_{i} Z_{i} Z_{i}^{\top}\right]^{-1}-\left[P\left[Z Z^{\top}\right]\right]^{-1}\right]}_{F_{1}}\left[\frac{1}{N} \sum_{i} Z_{i} Y_{i}\right]
$$

and

$$
D=\left[P\left[Z Z^{\top}\right]\right]^{-1} \underbrace{\left[\frac{1}{N} \sum_{i}\left[Z_{i} Y_{i}-P[Z Y]\right]\right]}_{G_{1}}
$$

We can write $\left[\widehat{\beta}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\right]-\left[\widehat{\beta}\left(g_{0}\right)-\beta\left(g_{0}\right)\right]=A-C+B-D$. We show that $\sqrt{N}\|A-C\| \rightarrow_{p} 0$ and $\sqrt{N}\|B-D\| \rightarrow_{p} 0$. From the definitions of F_{0} and F_{1} above, we have $A-C=\left[F_{0}-F_{1}\right]\left[\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} \widehat{Z}_{k, i} Y_{i}\right]+F_{1}\left[\frac{1}{N} \sum_{k} \sum_{i \in I_{k}}\left(\widehat{Z}_{k, i}-Z_{i}\right) Y_{i}\right]$. If

1. $\left\|\sqrt{N}\left[F_{0}-F_{1}\right]\right\|=o_{p}(1)$
2. $\left\|\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} \widehat{Z}_{k, i} Y_{i}\right\|=O_{p}(1)$
3. $\left\|\sqrt{N} F_{1}\right\|=O_{p}(1)$
4. $\left\|\frac{1}{N} \sum_{k} \sum_{i \in I_{k}}\left(\widehat{Z}_{k, i}-Z_{i}\right) Y_{i}\right\|=o_{p}(1)$,
then $\sqrt{N}\|A-C\|=o_{p}(1)$ as desired. Similarly we write $B-D$ as $B-D=$ $\left[\left[\frac{1}{K} \sum_{k} P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]\right]^{-1}-\left[P\left[Z Z^{\top}\right]\right]^{-1}\right] G_{0}+\left[P\left[Z Z^{\top}\right]\right]^{-1}\left[G_{0}-G_{1}\right]$. If
5. $\left\|\left[\frac{1}{K} \sum_{k} P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]\right]^{-1}-\left[P\left[Z Z^{\top}\right]\right]^{-1}\right\|=o_{p}(1)$
6. $\left\|\sqrt{N} G_{0}\right\|=O_{p}(1)$
7. $\left\|P\left[Z Z^{\top}\right]^{-1}\right\|=O_{p}(1)$
8. $\left\|\sqrt{N}\left[G_{0}-G_{1}\right]\right\|=o_{p}(1)$
then $\sqrt{N}\|B-D\|=o_{p}(1)$ as desired. We complete the proof in 8 steps by showing statements $1-$ 8 above.

Step 1. We apply Lemma 3 by letting $M_{1 n}=\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} \widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}, B_{n}=M_{2 n}=$ $P\left[Z Z^{\top}\right], A_{n}=M_{3 n}=\frac{1}{K} \sum_{k} P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right], M_{4 n}=\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} Z_{i} Z_{i}^{\top}$. Consequently, Step 1 amounts to verifying the conditions of Lemma 3. In fact, these conditions are guaranteed by Lemma 1 as well as the following fact: For each $k=1, \ldots, K$,

$$
\begin{equation*}
\left\|\frac{1}{\sqrt{n}} \sum_{i \in I_{k}}\left[\widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}-P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]-Z_{i} Z_{i}^{\top}+P\left[Z Z^{\top}\right]\right]\right\| \rightarrow_{p} 0 \tag{1}
\end{equation*}
$$

We now prove (1). Define $W_{k, i}=\widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}-P\left[\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right]-Z_{i} Z_{i}^{\top}+P\left[Z Z^{\top}\right]$, and note that conditional on the data in I_{k}^{c}, the function \widehat{g}_{k} is non-random, and the $W_{k, i}$ are mean zero matrices, uncorrelated across observations in I_{k}. With slight abuse of notation, we use $E\left[\cdot \mid I_{k}^{c}\right]$ to denote expectations conditional on the observations with indices belonging to the set I_{k}^{c}. For any $k=1,2, \ldots, K$,

$$
\begin{align*}
E\left[\left.\left\|\frac{1}{\sqrt{n}} \sum_{i \in I_{k}} W_{k, i}\right\|^{2}\right|^{2} I_{k}^{c}\right] & =\frac{1}{n} E\left[\operatorname{tr}\left(\sum_{i, j \in I_{k}} W_{k, i}^{\top} W_{k, j}\right) \mid I_{k}^{c}\right] \tag{2}\\
& =\frac{1}{n} E\left[\sum_{i \in I_{k}} \operatorname{tr}\left(W_{k, i}^{\top} W_{k, i}\right) \mid I_{k}^{c}\right] \tag{3}\\
& \leq \frac{1}{n} E\left[\left.\sum_{i \in I_{k}}\left\|\left(\widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}-Z_{i} Z_{i}^{\top}\right)\right\|^{2}\right|_{k} ^{c}\right] \tag{4}\\
& =P\left[\left\|\widehat{Z}_{k} \widehat{Z}_{k}^{\top}-Z Z^{\top}\right\|^{2}\right] . \tag{5}
\end{align*}
$$

If the RHS of (5) is $o_{p}(1)$, we can use Lemma 6.1 of [1] to conclude that $\left\|\frac{1}{\sqrt{n}} \sum_{i \in I_{k}} W_{k, i}\right\|$ is $o_{p}(1)$ as required. Some calculations give

$$
\begin{equation*}
\left\|\widehat{Z}_{k} \widehat{Z}_{k}^{\top}-Z Z^{\top}\right\|^{2} \leq 12\left[\left(\widehat{g}_{k}(X)-g_{0}(X)\right)^{2}+\left(\widehat{g}_{k}(X)^{2}-g_{0}(X)^{2}\right)^{2}\right] \tag{6}
\end{equation*}
$$

Then $P\left[\left(\widehat{g}_{k}-g_{0}\right)^{2}\right] \leq \sqrt{P\left[\left(\widehat{g}_{k}-g_{0}\right)^{4}\right]} \rightarrow_{p} 0$. Also

$$
\begin{align*}
P\left[\left(\widehat{g}_{k}^{2}-g_{0}^{2}\right)^{2}\right] & =P\left[\left(\widehat{g}_{k}-g_{0}\right)^{2}\left(\widehat{g}_{k}+g_{0}\right)^{2}\right] \tag{7}\\
& \leq \sqrt{P\left[\left(\widehat{g}_{k}-g_{0}\right)^{4}\right]} \sqrt{P\left[\left(\widehat{g}_{k}+g_{0}\right)^{4}\right]} \tag{8}\\
& \leq \sqrt{P\left[\left(\widehat{g}_{k}-g_{0}\right)^{4}\right]} \sqrt{\sup _{g \in \mathcal{G}} P\left[g^{4}\right]} \tag{9}\\
& \rightarrow_{p} 0, \tag{10}
\end{align*}
$$

where the second-to-last line follows because $\widehat{g}_{k}+g_{0} \in \mathcal{G}$ as \mathcal{G} is a vector space. We conclude from (6) that the RHS of (5) is $o_{p}(1)$.

Step 2. By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left\|\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} Z_{i}\left(\widehat{g}_{k}\right) Y_{i}\right\| \leq \sqrt{\frac{1}{N} \sum_{k} \sum_{i \in I_{k}}\left\|Z_{i}\left(\widehat{g}_{k}\right)\right\|^{2}} \sqrt{\frac{1}{N} \sum_{k} \sum_{i \in I_{k}} Y_{i}^{2}} \tag{11}
\end{equation*}
$$

As $E\left[Y^{2}\right]<\infty$, the second term on the RHS is $O_{p}(1)$ by Markov's inequality. Also for $i \in I_{k}$, $E\left[\left\|Z_{i}\left(\widehat{g}_{k}\right)\right\|^{2}\right]=E\left[1+T_{i}+\widehat{g}_{k}\left(X_{i}\right)^{2}+T_{i} \widehat{g}_{k}\left(X_{i}\right)^{2}\right] \leq \sup _{g \in \mathcal{G}} E\left[2\left[1+g\left(X_{i}\right)^{2}\right]\right]<\infty$, and by Markov's inequality the first term on the RHS is also $O_{p}(1)$.

Step 3. By the central limit theorem, $\sqrt{N}\left[\sum_{i} \frac{Z_{i} Z_{i}^{\top}}{N}-P\left[Z Z^{\top}\right]\right]$ is asymptotically normal. By the delta method and invertibility of $P\left[Z Z^{\top}\right], \sqrt{N}\left[\left[\sum_{i} \frac{Z_{i} Z_{i}^{\top}}{N}\right]^{-1}-P\left[Z Z^{\top}\right]^{-1}\right]$ is also, and hence its norm is $O_{p}(1)$.

Step 4. We show that for any $k, \frac{1}{n} \sum_{i \in I_{k}}\left(\widehat{g}_{k}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right) Y_{i}=o_{p}(1)$, from which the result follows. By Cauchy-Schwarz,

$$
\frac{1}{n} \sum_{i \in I_{k}}\left(\widehat{g}_{k}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right) Y_{i} \leq \sqrt{\frac{1}{n} \sum_{i \in I_{k}}\left(\widehat{g}_{k}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right)^{2}} \sqrt{\frac{1}{n} \sum_{i \in I_{k}} Y_{i}^{2}}
$$

As Y has finite second moment by assumption, it remains to show the first term on the RHS is $o_{p}(1)$. We have

$$
\begin{equation*}
\frac{1}{n} \sum_{i \in I_{k}}\left(\widehat{g}_{k}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i \in I_{k}}\left[\left(\widehat{g}_{k}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right)^{2}-P\left[\left(\widehat{g}_{k}-g_{0}\right)^{2}\right]\right]+P\left[\left(\widehat{g}_{k}-g_{0}\right)^{2}\right] \tag{12}
\end{equation*}
$$

From Lemma 6.1 in [1], the first term on the RHS in (12) is $o_{p}(1)$ and by the convergence assumption on \widehat{g}_{k}, the second term is too.

Step 5. By the continuous mapping theorem it suffices to show that $\left\|\frac{1}{K} \sum_{k}\left[P\left[Z\left(\widehat{g}_{k}\right) Z\left(\widehat{g}_{k}\right)^{\top}\right]-P\left[Z\left(g_{0}\right) Z\left(g_{0}\right)^{\top}\right]\right]\right\|=o_{p}(1)$. From the argument in Step 1, both $P\left[\left[\widehat{g}_{k}-g_{0}\right]^{2}\right]$ and $P\left[\left[\widehat{g}_{k}^{2}-g_{0}^{2}\right]^{2}\right]$ are $o_{p}(1)$ for all k, and hence $P\left[\widehat{g}_{k}-g_{0}\right]$ and $P\left[\widehat{g}_{k}^{2}-g_{0}^{2}\right]$ are both $o_{p}(1)$ for all k. The other entries in the matrix are straightforwardly $o_{p}(1)$.

Step 6. This follows from Step 8 and the fact that by Chebyshev's inequality, $\left\|\frac{1}{\sqrt{N}} \sum_{i}\left[Z_{i} Y_{i}-P[Z Y]\right]\right\|=O_{p}(1)$.

Step 7. $P\left[Z Z^{\top}\right]$ is invertible by assumption.
Step 8. The reasoning here is similar to Step 1. For any k and $i \in I_{k}$, define $W_{k, i}=\widehat{Z}_{k, i} Y_{i}-$ $P\left[\widehat{Z}_{k} Y\right]-Z_{i} Y_{i}+P[Z Y]$, and note that conditional on the data in I_{k}^{c}, the $W_{k, i}$ are mean zero matrices, uncorrelated across observations in I_{k}. Then

$$
E\left[\left.\left\|\frac{1}{\sqrt{n}} \sum_{i \in I_{k}} W_{k, i}\right\|^{2}\right|^{2} I_{k}^{c}\right] \leq \frac{1}{n} E\left[\sum_{i \in I_{k}}\left\|\left(\widehat{Z}_{k, i} Y_{i}-Z_{i} Y_{i}\right)\right\|^{2} \mid I_{k}^{c}\right]=P\left[\left\|\widehat{Z}_{k} Y-Z Y\right\|^{2}\right]
$$

Because $P\left[\left(\widehat{g}_{k}(X)-g_{0}(X)\right)^{2} Y^{2}\right] \leq \sqrt{P\left[\left(\widehat{g}_{k}-g_{0}\right)^{4}\right]} \sqrt{P\left[Y^{4}\right]} \rightarrow_{p} 0$, the RHS of (2) is $o_{p}(1)$. We use Lemma 6.1 of [1] to conclude that $\left\|\frac{1}{\sqrt{n}} \sum_{i \in I_{k}} W_{k, i}\right\|$ is also $o_{p}(1)$, from which the result follows.

3 Proof of Theorem 1

We have

$$
\begin{align*}
\widehat{\alpha}_{1}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\widehat{\alpha}_{1}\left(g_{0}\right)= & {\left[\widehat{\alpha}_{1}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{1}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right) \frac{1}{K} \sum_{k=1}^{K} P \widehat{g}_{k}\right] } \tag{13}\\
& -\left[\widehat{\alpha}_{1}\left(g_{0}\right)-\beta_{1}\left(g_{0}\right)-\beta_{3}\left(g_{0}\right) P g_{0}\right] \tag{14}\\
= & A+B \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
A=\left[\widehat{\beta_{1}}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{1}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\right]-\left[\widehat{\beta_{1}}\left(g_{0}\right)-\beta_{1}\left(g_{0}\right)\right] \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
B= & \underbrace{\left[\widehat{\beta_{3}}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right) \frac{1}{N} \sum_{i} \widehat{g}_{k(i)}\left(X_{i}\right)-\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right) \frac{1}{K} \sum_{k=1}^{K} P \widehat{g}_{k}\right]}_{C} \tag{17}\\
& -\underbrace{\left[\widehat{\beta_{3}}\left(g_{0}\right) \frac{1}{N} \sum_{i} g_{0}\left(X_{i}\right)-\beta_{3}\left(g_{0}\right) P g_{0}\right]}_{D} .
\end{align*}
$$

Proposition 1 has established that $A=o_{p}(1 / \sqrt{N})$. Moreover

$$
C=\underbrace{\left(\widehat{\beta_{3}}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\right) \frac{1}{N} \sum_{i} \widehat{g}_{k(i)}\left(X_{i}\right)}_{C_{1}}+\underbrace{\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\left(\frac{1}{N} \sum_{i}\left[\widehat{g}_{k(i)}\left(X_{i}\right)-P\left(\mathscr{g}_{k} \mathcal{C}_{k}\right)\right]\right)}_{C_{2}}
$$

and

$$
\begin{equation*}
D=\underbrace{\left(\widehat{\beta_{3}}\left(g_{0}\right)-\beta_{3}\left(g_{0}\right)\right) \frac{1}{N} \sum_{i} g_{0}\left(X_{i}\right)}_{D_{1}}+\underbrace{\left(\beta_{3}\left(g_{0}\right) \frac{1}{N} \sum_{i}\left[g_{0}\left(X_{i}\right)-P g_{0}\right]\right)}_{D_{2}} \tag{19}
\end{equation*}
$$

We show $C_{1}-D_{1}$ and $C_{2}-D_{2}$ are $o_{p}(1 / \sqrt{N})$ to conclude. In fact

$$
\begin{align*}
C_{1}-D_{1}= & \left(\widehat{\beta_{3}}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\widehat{\beta_{3}}\left(g_{0}\right)+\beta_{3}\left(g_{0}\right)\right) \frac{1}{N} \sum_{i} \widehat{g}_{k(i)}\left(X_{i}\right) \\
& +\left(\widehat{\beta_{3}}\left(g_{0}\right)-\beta_{3}\left(g_{0}\right)\right) \frac{1}{N} \sum_{i}\left[\widehat{g}_{k(i)}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right]=o_{p}(1 / \sqrt{N}) . \tag{20}
\end{align*}
$$

This is because

- $\widehat{\beta_{3}}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\widehat{\beta_{3}}\left(g_{0}\right)+\beta_{3}\left(g_{0}\right)=o_{p}(1 / \sqrt{N})$ from Proposition 1 ;
- $\left.\frac{1}{N} \sum_{i} \widehat{g}_{k(i)}\left(X_{i}\right)=\frac{1}{N} \sum_{i} g_{0}\left(X_{i}\right)+\frac{1}{N} \sum_{i}\left(\widehat{g}_{k(i)}\left(X_{i}\right)\right)-g_{0}\left(X_{i}\right)\right)=O_{p}(1)$ from the LLN and the same logic bounding (12) above;
- $\widehat{\beta_{3}}\left(g_{0}\right)-\beta_{3}\left(g_{0}\right)=O_{p}(1 / \sqrt{N})$ from the CLT and the fact that $P\left(Z\left(g_{0}\right) Z\left(g_{0}\right) \top\right)$ has all eigenvalues bounded away from 0 ;
- $\frac{1}{N} \sum_{i}\left(\widehat{g}_{k(i)}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right)=o_{p}(1)$ again from bounding argument applied to 12 .

Similarly,

$$
\begin{align*}
C_{2}-D_{2} & =\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\left(\frac{1}{N} \sum_{i}\left[\left[\widehat{g}_{k(i)}\left(X_{i}\right)-P \widehat{g}_{k(i)}\right]-\left[g_{0}\left(X_{i}\right)-P g_{0}\right]\right]\right) \\
& +\left(\left(\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(g_{0}\right)\right) \frac{1}{N} \sum_{i}\left[g_{0}\left(X_{i}\right)-P g_{0}\right]\right)=o_{p}(1 / \sqrt{N}) \tag{21}
\end{align*}
$$

which results from the following facts:

- $\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)=\beta_{3}\left(g_{0}\right)+\left(\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(g_{0}\right)\right)=O_{p}(1)$;
- $\frac{1}{N} \sum_{i}\left[\left[\widehat{g}_{k(i)}\left(X_{i}\right)-P \widehat{g}_{k(i)}\right]-\left[g_{0}\left(X_{i}\right)-P g_{0}\right]\right]=o_{p}(1 / \sqrt{N})$ from the same reasoning applied to bound (1);
- $\beta_{3}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta_{3}\left(g_{0}\right)=o_{p}(1)$ due to convergence of \widehat{g}_{k} to g_{0}, continuity of $\beta_{3}(\cdot)$, and the continuous mapping theorem;
- $\frac{1}{N} \sum_{i}\left[g_{0}\left(X_{i}\right)-P g_{0}\right]=O_{p}(1 / \sqrt{N})$ from the CLT.

Combining the above arguments, we conclude that $B=o_{p}(1 / \sqrt{N})$.

4 Proof of Proposition 4

We first show that $\widehat{\operatorname{Var}}\left(\widehat{g}_{k(i)}\left(X_{i}\right)\right) \rightarrow_{p} \sigma_{g}^{2}$. We have

$$
\begin{equation*}
\widehat{\operatorname{Var}}\left(\widehat{g}_{k(i)}\left(X_{i}\right)\right)=\frac{1}{K} \sum_{k} \frac{1}{n} \sum_{i \in I_{k}} \widehat{g}_{k}\left(X_{i}\right)^{2}-\left[\frac{1}{K} \sum_{k} \frac{1}{n} \sum_{i \in I_{k}} \widehat{g}_{k}\left(X_{i}\right)\right]^{2} . \tag{22}
\end{equation*}
$$

By the same logic as in Step 1 of the proof of Proposition 1, for each $k=1,2, \ldots, K$,

$$
E\left[\left.\left\|\frac{1}{n} \sum_{i \in I_{k}}\left[\widehat{g}_{k}\left(X_{i}\right)^{2}-P \widehat{g}_{k}^{2}\right]\right\|^{2} \right\rvert\, I_{k}^{c}\right] \rightarrow_{p} 0
$$

and so $\frac{1}{n} \sum_{i \in I_{k}} \widehat{g}_{k}\left(X_{i}\right)^{2}-P \widehat{g}_{k}^{2} \rightarrow_{p} 0$. Since $P \widehat{g}_{k}^{2} \rightarrow_{p} P g_{0}^{2}$, it follows that $\frac{1}{n} \sum_{i \in I_{k}} \widehat{g}_{k}\left(X_{i}\right)^{2} \rightarrow_{p}$ $P g_{0}^{2}$. Similarly $\frac{1}{n} \sum_{i \in I_{k}} \widehat{g}_{k}\left(X_{i}\right) \rightarrow_{p} P g_{0}$. Hence $\widehat{\operatorname{Var}}\left(\widehat{g}_{k(i)}\left(X_{i}\right)\right) \rightarrow_{p} \sigma_{g}^{2}$. Also, by Proposition 1,

$$
\begin{equation*}
\left\|\widehat{\beta}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)\right\| \rightarrow_{p} 0 \tag{23}
\end{equation*}
$$

and by continuity of $\beta(\cdot)$ and the continuous mapping theorem,

$$
\begin{equation*}
\left\|\beta\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta\left(g_{0}\right)\right\| \rightarrow_{p} 0 . \tag{24}
\end{equation*}
$$

Consequently $\left\|\widehat{\beta}\left(\left\{\widehat{g}_{k}\right\}_{k=1}^{K}\right)-\beta\left(g_{0}\right)\right\| \rightarrow_{p} 0$. By the continuous mapping theorem, we conclude that $\widehat{\sigma}^{2} \rightarrow_{p} \sigma^{2}$.

5 Proof of auxiliary lemmas

Lemma 1. Given Assumption 1,

$$
\left\|\frac{1}{N} \sum_{k} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-\frac{1}{K} \sum_{k} P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\|=O_{p}(1 / \sqrt{n}) .
$$

Proof. Since the number of splits K is bounded, we only need to verify for any $k \in\{1,2, \ldots, K\}$,

$$
\left\|\frac{1}{n} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\|=O_{p}(1 / \sqrt{n})
$$

Below we'll prove

$$
\begin{equation*}
\frac{1}{n} \sum_{j \in I_{k}} T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right)-E\left[T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right) \mid I_{k}^{c}\right]=O_{p}(1 / \sqrt{n}) \tag{25}
\end{equation*}
$$

The other terms can be derived in the similar manner.
First, since $P\left(\widehat{g}_{k}-g_{0}\right)^{4} \rightarrow_{p} 0$ as $n \rightarrow \infty$, we know that for any subsequence $\left\{n_{l}\right\}$ of \mathbb{N}, it further has a subsequence $\left\{n_{l}^{\prime}\right\}$, such that $P\left(\widehat{g}_{k}-g_{0}\right)^{4} \rightarrow 0$ a.s. as $l \rightarrow \infty$. Our next step is to prove

$$
\begin{equation*}
\frac{1}{\sqrt{n_{l}^{\prime}}} \sum_{j \in I_{k}} T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right)-E\left[T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right) \mid I_{k}^{c}\right]=O_{p}(1) \tag{26}
\end{equation*}
$$

as $l \rightarrow \infty$.
For notational simplicity, define $V_{k, j}:=T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right)-E\left[T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right) \mid I_{k}^{c}\right]$. Since $\left\{V_{k, j}\right\}_{j \in I_{k}}$ are independent conditioned on I_{k}^{c}, for any $t \in \mathbb{R}$ we have

$$
\begin{aligned}
& E \exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot \sum_{j \in I_{k}} V_{k, j}\right)=E E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot \sum_{j \in I_{k}} V_{k, j}\right) \mid I_{k}^{c}\right] \\
& =E\left\{E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right) \mid I_{k}^{c}\right]\right\}^{n_{l}^{\prime}} .
\end{aligned}
$$

Furthermore,

$$
\begin{align*}
& \lim _{l \rightarrow \infty} E \exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot \sum_{j \in I_{k}} V_{k, j}\right)=\lim _{l \rightarrow \infty} E\left\{E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right) \mid I_{k}^{c}\right]\right\}^{n_{l}^{\prime}} \\
& =E \lim _{l \rightarrow \infty}\left\{E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right) \mid I_{k}^{c}\right]\right\}^{n_{l}^{\prime}} \tag{27}
\end{align*}
$$

Our goal is now to derive the limit in the last term so that we can infer the limiting distribution of $1 / \sqrt{n_{l}^{\prime}} \cdot \sum_{j \in I_{k}} V_{k, j}$.

First, we conduct the Taylor expansion

$$
\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right)=1+i t \cdot \sqrt{n_{l}^{\prime}} \cdot V_{k, j}-\frac{t^{2}}{2 n_{l}^{\prime}} V_{k, j}^{2}+R_{k, j}
$$

Here

$$
R_{k, j}=\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right)-\left[1+i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}-\frac{t^{2}}{2 n_{l}^{\prime}} V_{k, j}^{2}\right]
$$

Thus

$$
\begin{align*}
& E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right) \mid I_{k}^{c}\right]=1+i t / \sqrt{n_{l}^{\prime}} \cdot E\left[V_{k, j} \mid I_{k}^{c}\right]- \\
& \frac{t^{2}}{2 n_{l}^{\prime}} E\left[V_{k, j}^{2} \mid I_{k}^{c}\right]+E\left[R_{k, j} \mid I_{k}^{c}\right]=1-\frac{t^{2}}{2 n_{l}^{\prime}} E\left[V_{k, j}^{2} \mid I_{k}^{c}\right]+E\left[R_{k, j} \mid I_{k}^{c}\right] \tag{28}
\end{align*}
$$

First, with probability 1 ,

$$
\begin{align*}
\lim _{l \rightarrow \infty} E\left[V_{k, j}^{2} \mid I_{k}^{c}\right] & =\lim _{l \rightarrow \infty}\left\{E\left[T_{j}^{4} \widehat{g}_{k}^{4}\left(X_{j}\right) \mid I_{k}^{c}\right]-E\left[T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right) \mid I_{k}^{c}\right]^{2}\right\} \\
& =p \cdot P g_{0}^{4}-p^{2} \cdot\left(P g_{0}^{2}\right)^{2} \tag{29}
\end{align*}
$$

Next, we bound $\left|E\left[R_{k, j} \mid I_{k}^{c}\right]\right|$. In fact,

$$
R_{k, j} \leq \begin{cases}\frac{2 t^{3}}{n_{l}^{\prime 3 / 2}} V_{k, j}^{3} & \text { when }\left|V_{k, j}\right| \leq \frac{\sqrt{n_{l}^{\prime}}}{2 t} \\ 2+\frac{t}{\sqrt{n_{l}^{\prime}}}\left|V_{k, j}\right|+\frac{t^{2}}{2 n_{l}^{\prime}}\left|V_{k, j}\right|^{2} & \text { otherwise }\end{cases}
$$

This means

$$
\left|E\left[R_{k, j} \mid I_{k}^{c}\right]\right| \leq E\left[R_{k, j}^{(1)} \mid I_{k}^{c}\right]+E\left[R_{k, j}^{(2)} \mid I_{k}^{c}\right]
$$

where $R_{k, j}^{(1)}=\frac{2 t^{3}}{n_{l}^{\prime 3 / 2}}\left|V_{k, j}\right|^{3} 1_{\left\{\left|V_{k, j}\right| \leq \sqrt{n_{l}^{\prime}} /(2 t)\right\}}$,
$R_{k, j}^{(2)}=\left(2+\frac{t}{\sqrt{n_{l}^{\prime}}}\left|V_{k, j}\right|+\frac{t^{2}}{2 n_{l}^{\prime}}\left|V_{k, j}\right|^{2}\right) 1_{\left\{\left|V_{k, j}\right|>\sqrt{n_{l}^{\prime}} /(2 t)\right\}}$.
On the one hand,

$$
\begin{aligned}
& E\left[R_{k, j}^{(1)} \mid I_{k}^{c}\right] \leq \frac{2 t^{3}}{n_{l}^{\prime 3 / 2}} E\left[\left|V_{k, j}\right|^{2+\delta / 2} \cdot\left(\sqrt{n_{l}^{\prime}} / 2 t\right)^{1-\delta / 2} \mid I_{k}^{c}\right] \\
& =\frac{2^{\delta / 2} t^{2+\delta / 2}}{n_{l}^{\prime 1+\delta / 4}} E\left[\left|T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right)-E T_{j}^{2} \widehat{g}_{k}^{2}\left(X_{j}\right)\right|^{2+\delta / 2} \mid I_{k}^{c}\right] \leq \frac{2^{2+\delta} t^{2+\delta / 2}}{n_{l}^{\prime 1+\delta / 4}} P\left|\widehat{g}_{k}\right|^{4+\delta}
\end{aligned}
$$

On the other hand, by Markov's inequality,

$$
\begin{aligned}
& E\left[R_{k, j}^{(2)} \mid I_{k}^{c}\right] \leq 2 E\left[\left(2 t / \sqrt{n_{l}^{\prime}}\right)^{2+\delta / 2}\left|V_{k, j}\right|^{2+\delta / 2} \mid I_{k}^{c}\right]+t / \sqrt{n_{l}^{\prime}} . \\
& E\left[\left|V_{k, j}\right| \cdot\left(2 t / \sqrt{n_{l}^{\prime}}\right)^{1+\delta / 2}\left|V_{k, j}\right|^{1+\delta / 2} \mid I_{k}^{c}\right]+\frac{t^{2}}{2 n_{l}^{\prime}} \\
& \quad E\left[\left|V_{k, j}\right|^{2} \cdot\left(2 t / \sqrt{n_{l}^{\prime}}\right)^{\delta / 2}\left|V_{k, j}\right|^{\delta / 2} \mid I_{k}^{c}\right] \leq \frac{2^{6+\delta} t^{2+\delta / 2}}{n_{l}^{\prime 1+\delta / 4}} P\left|\widehat{g}_{k}\right|^{4+\delta}
\end{aligned}
$$

Combining the above two bounds, we deduce that

$$
\left|E\left[R_{k, j} \mid I_{k}^{c}\right]\right| \leq \frac{2^{7+\delta} t^{2+\delta / 2}}{n_{l}^{\prime 1+\delta / 4}} P\left|\widehat{g}_{k}\right|^{4+\delta}
$$

Thus with probability $1, E\left[R_{k, j} \mid I_{k}^{c}\right]=o\left(1 / n_{l}^{\prime}\right)$.
Combining the above bound, (28) and $\sqrt{29}$, we obtain that with probability 1 ,

$$
\begin{aligned}
& \lim _{l \rightarrow \infty} n_{l}^{\prime} \log E\left[\exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot V_{k, j}\right) \mid I_{k}^{c}\right] \\
= & \lim _{l \rightarrow \infty} n_{l}^{\prime} \log \left(1-\frac{t^{2}}{2 n_{l}^{\prime}} E\left[V_{k, j}^{2} \mid I_{k}^{c}\right]+E\left[R_{k, j} \mid I_{k}^{c}\right]\right) \\
= & -\frac{t^{2}}{2 n_{l}^{\prime}}\left[p \cdot P g_{0}^{4}-p^{2} \cdot\left(P g_{0}^{2}\right)^{2}\right] .
\end{aligned}
$$

Finally we plug the above into (27) and conclude that

$$
\lim _{l \rightarrow \infty} E \exp \left(i t / \sqrt{n_{l}^{\prime}} \cdot \sum_{j \in I_{k}} V_{k, j}\right)=\exp \left\{-\frac{t^{2}}{2 n_{l}^{\prime}}\left[p \cdot P g_{0}^{4}-p^{2} \cdot\left(P g_{0}^{2}\right)^{2}\right]\right\}
$$

This implies that $\frac{1}{\sqrt{n_{l}^{\prime}}} \sum_{j \in I_{k}} V_{k, j}$ converges in distribution to a centered normal random variable with variance $p \cdot P g_{0}^{4}-p^{2} \cdot\left(P g_{0}^{2}\right)^{2}$, and (26) follows.
Finally, since for any subsequence $\left\{n_{l}\right\}$ of \mathbb{N}, it further has a subsequence $\left\{n_{l}^{\prime}\right\}$ such that 26) holds, it can only be the case that 25 is true.

Lemma 2. The following hold with probability tending to 1 :

$$
\begin{gather*}
\lambda_{\min }\left(\frac{1}{n} \sum_{i \in I_{k}} \widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}\right) \geq \frac{1}{2} \inf _{g \in \mathcal{G}} \lambda_{\min }\left(P\left[Z(g) Z(g)^{\top}\right]\right) \quad \forall k \in\{1,2, \ldots, K\} \tag{30}\\
\lambda_{\min }\left(\frac{1}{N} \sum_{i=1}^{N} \widehat{Z}_{i} \widehat{Z}_{i}^{\top}\right) \geq \frac{1}{2} \inf _{g \in \mathcal{G}} \lambda_{\min }\left(P\left[Z(g) Z(g)^{\top}\right]\right) . \tag{31}
\end{gather*}
$$

Proof. According to Weyl's inequality,

$$
\begin{aligned}
& \lambda_{\min }\left(\frac{1}{n} \sum_{i \in I_{k}} \widehat{Z}_{k, i} \widehat{Z}_{k, i}^{\top}\right) \geq \lambda_{\min }\left(P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right)-\left\|\frac{1}{n} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\| \\
& \quad \geq \inf _{g \in \mathcal{G}} \lambda_{\min }\left(P\left[Z(g) Z(g)^{\top}\right]\right)-\left\|\frac{1}{n} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\|
\end{aligned}
$$

On the other hand, from the proof of Lemma 1 we know

$$
\left\|\frac{1}{n} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\|=O_{p}(1 / \sqrt{n})
$$

This implies that

$$
\lim _{n \rightarrow \infty} P\left(\left\|\frac{1}{n} \sum_{j \in I_{k}} \widehat{Z}_{k, j} \widehat{Z}_{k, j}^{\top}-P\left(\widehat{Z}_{k} \widehat{Z}_{k}^{\top}\right)\right\| \geq \frac{1}{2} \inf _{g \in \mathcal{G}} \lambda_{\min }\left(P\left[Z(g) Z(g)^{\top}\right]\right)\right)=0 .
$$

Combining the above, we obtain (30) can be proved in a similar way.

Lemma 3. Let $\left\{M_{1 n}\right\},\left\{M_{2 n}\right\},\left\{M_{3 n}\right\},\left\{M_{4 n}\right\},\left\{A_{n}\right\},\left\{B_{n}\right\}$ be sequences of random real symmetric matrices of fixed dimension. Assume that with probability $1, \lambda_{0}:=\inf _{n} \lambda_{\min }\left(B_{n}\right)>0$, and $\left\|A_{n}-B_{n}\right\|=o_{p}(1)$. Moreover, assume that

$$
\begin{aligned}
& \left\|M_{1 n}-A_{n}\right\|=O_{p}(1 / \sqrt{n}),\left\|M_{3 n}-A_{n}\right\|=O_{p}(1 / \sqrt{n}), \\
& \left\|M_{2 n}-B_{n}\right\|=O_{p}(1 / \sqrt{n}),\left\|M_{4 n}-B_{n}\right\|=O_{p}(1 / \sqrt{n}) .
\end{aligned}
$$

If in addition,

$$
\sqrt{n}\left\|M_{1 n}+M_{2 n}-M_{3 n}-M_{4 n}\right\| \rightarrow_{p} 0
$$

then

$$
\sqrt{n}\left\|M_{1 n}^{-1}+M_{2 n}^{-1}-M_{3 n}^{-1}-M_{4 n}^{-1}\right\| \rightarrow_{p} 0 .
$$

Proof. Define the event

$$
\begin{aligned}
E_{n}:= & \left\{\left\|A_{n}-B_{n}\right\| \geq \lambda_{0} / 2\right\} \cup\left\{\max \left\{\left\|M_{1 n}-A_{n}\right\|,\left\|M_{3 n}-A_{n}\right\|\right\} \geq \lambda_{0} / 2\right\} \\
& \cup\left\{\max \left\{\left\|M_{2 n}-B_{n}\right\|,\left\|M_{4 n}-B_{n}\right\|\right\} \geq \lambda_{0} / 2\right\} .
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=0$. Now on E_{n}^{c}, according to a Neumann series expansion,

$$
\begin{aligned}
M_{1 n}^{-1} & =\left[A_{n}+\left(M_{1 n}-A_{n}\right)\right]^{-1} \\
& =A_{n}^{-1 / 2}\left[I-A_{n}^{-1 / 2}\left(M_{1 n}-A_{n}\right) A_{n}^{-1 / 2}+D_{1 n}\right] A_{n}^{-1 / 2}
\end{aligned}
$$

Here $D_{1 n}=\sum_{j \geq 2}\left[-A_{n}^{-1 / 2}\left(M_{1 n}-A_{n}\right) A_{n}^{-1 / 2}\right]^{j}$, and we have on E_{n}^{c}

$$
\begin{align*}
\left\|D_{1 n}\right\| & \leq \sum_{j \geq 2}\left\|A_{n}^{-1 / 2}\left(M_{1 n}-A_{n}\right) A_{n}^{-1 / 2}\right\|^{j} \\
& \leq \frac{\left\|A_{n}^{-1}\right\|^{2}\left\|M_{1 n}-A_{n}\right\|^{2}}{1-\left\|A_{n}^{-1}\right\|\left\|M_{1 n}-A_{n}\right\|} \leq \frac{8}{\lambda_{0}^{2}}\left\|M_{1 n}-A_{n}\right\|^{2} \tag{32}
\end{align*}
$$

Here we use the fact that on E_{n}^{c}

$$
\left\|A_{n}^{-1 / 2}\left(M_{1 n}-A_{n}\right) A_{n}^{-1 / 2}\right\| \leq\left\|A_{n}^{-1 / 2}\right\|^{2}\left\|M_{1 n}-A_{n}\right\|<\frac{2}{\lambda_{0}} \cdot \frac{\lambda_{0}}{2}=1
$$

Similar expansions hold for $M_{2 n}, M_{3 n}$ and $M_{4 n}$, and we define $D_{2 n}, D_{3 n}$ and $D_{4 n}$ accordingly. Using some simple algebra, we deduce that on E_{n}^{c},

$$
M_{1 n}^{-1}+M_{2 n}^{-1}-M_{3 n}^{-1}-M_{4 n}^{-1}=J_{1 n}+J_{2 n}+J_{3 n}+J_{4 n}
$$

where

$$
\begin{aligned}
J_{1 n} & =-A_{n}^{-1}\left[M_{1 n}+M_{2 n}-M_{3 n}-M_{4 n}\right] A_{n}^{-1} \\
J_{2 n} & =-A_{n}^{-1}\left(M_{4 n}-M_{2 n}\right) A_{n}^{-1}+B_{n}^{-1}\left(M_{4 n}-M_{2 n}\right) B_{n}^{-1} \\
J_{3 n} & =A_{n}^{-1 / 2}\left(D_{1 n}-D_{3 n}\right) A_{n}^{-1 / 2} \\
J_{4 n} & =B_{n}^{-1 / 2}\left(D_{2 n}-D_{4 n}\right) B_{n}^{-1 / 2}
\end{aligned}
$$

For any $\epsilon>0$,

$$
\begin{equation*}
P\left(\sqrt{n}\left\|M_{1 n}^{-1}+M_{2 n}^{-1}-M_{3 n}^{-1}-M_{4 n}^{-1}\right\|>\epsilon\right)<P\left(E_{n}\right)+\sum_{\ell=1}^{4} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{\ell n}\right\|>\epsilon / 4\right\}\right) \tag{33}
\end{equation*}
$$

Combining the fact that $\lim _{n \rightarrow \infty} P\left(E_{n}\right)=0$, we only need to prove that each of the rest of the terms on the the RHS of (33) has limit 0 .
First, $\lim _{n \rightarrow \infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{1 n}\right\|>\epsilon / 4\right\}\right)=0$ follows from our assumption. For $J_{2 n}$, observe that $J_{2 n}=J_{2 n}^{(1)}+J_{2 n}^{(2)}$, where

$$
J_{2 n}^{(1)}=\left(B_{n}^{-1}-A_{n}^{-1}\right)\left(M_{4 n}-M_{2 n}\right) A_{n}^{-1}, J_{2 n}^{(2)}=B_{n}^{-1}\left(M_{4 n}-M_{2 n}\right)\left(B_{n}^{-1}-A_{n}^{-1}\right)
$$

We bound the limit of $\left\|J_{2 n}^{(1)}\right\|$ as follows: For any $\delta>0$, there exists $M>0$ such that $\forall n$, $P\left(\sqrt{n}\left\|M_{4 n}-M_{2 n}\right\|>M\right)<\frac{\delta}{2}$. According to our assumption, there further exists $N \in \mathbb{N}$ such that for all $n>N, P\left(\left\|A_{n}-B_{n}\right\|>\frac{\lambda_{0}^{3} \epsilon}{32 M}\right)<\frac{\delta}{2}$. Therefore for all $n>N$,

$$
\begin{aligned}
& P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}^{(1)}\right\|>\epsilon / 8\right\}\right) \\
\leq & P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|A_{n}^{-1}\left(A_{n}-B_{n}\right) B_{n}^{-1}\left(M_{4 n}-M_{2 n}\right) A_{n}^{-1}\right\|>\epsilon / 8\right\}\right) \\
\leq & P\left(E_{n}^{c} \cap\left\{\left\|A_{n}-B_{n}\right\| \cdot \sqrt{n}\left\|M_{4 n}-M_{2 n}\right\|>\lambda_{0}^{3} \epsilon / 32\right\}\right) \\
\leq & P\left(\sqrt{n}\left\|M_{4 n}-M_{2 n}\right\|>M\right)+P\left(\left\|A_{n}-B_{n}\right\|>\lambda_{0}^{3} \epsilon /(32 M)\right)<\delta
\end{aligned}
$$

The above argument implies that $\lim _{n \rightarrow+\infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}^{(1)}\right\|>\epsilon / 8\right\}\right)=0$. Similarly we have $\lim _{n \rightarrow+\infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}^{(2)}\right\|>\epsilon / 8\right\}\right)=0$. Thus

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}\right\|>\epsilon / 4\right\}\right) \\
\leq & \lim _{n \rightarrow+\infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}^{(1)}\right\|>\epsilon / 8\right\}\right)+\lim _{n \rightarrow+\infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{2 n}^{(2)}\right\|>\epsilon / 8\right\}\right)=0 .
\end{aligned}
$$

Now we proceed to bound the limit of $\left\|J_{3 n}\right\|$. In fact we have

$$
\begin{aligned}
& P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{3 n}\right\|>\epsilon / 4\right\}\right) \leq P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|D_{1 n}-D_{3 n}\right\|>\epsilon \lambda_{0} / 8\right\}\right) \\
\leq & P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|D_{1 n}\right\|>\epsilon \lambda_{0} / 16\right\}\right)+P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|D_{3 n}\right\|>\epsilon \lambda_{0} / 16\right\}\right) \\
\leq & P\left(\sqrt{n}\left\|M_{1 n}-A_{n}\right\|^{2}>\epsilon \lambda_{0}^{3} / 128\right)+P\left(\sqrt{n}\left\|M_{3 n}-A_{n}\right\|^{2}>\epsilon \lambda_{0}^{3} / 128\right) .
\end{aligned}
$$

In the last inequality we utilize (32). Combining our assumptions, we have

$$
\lim _{n \rightarrow \infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{3 n}\right\|>\epsilon / 4\right\}\right)=0
$$

Similarly

$$
\lim _{n \rightarrow \infty} P\left(E_{n}^{c} \cap\left\{\sqrt{n}\left\|J_{4 n}\right\|>\epsilon / 4\right\}\right)=0
$$

We conclude our proof.

References

[1] Chernozhukov, Victor ; Chetverikov, Denis ; Demirer, Mert ; Duflo, Esther ; Hansen, Christian ; Newey, Whitney ; Robins, James: Double/debiased machine learning for treatment and structural parameters. In: The Econometrics Journal 21 (2018), Nr. 1

