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A Proofs of Lemmas

For the theoretical exposition, we first establish the following Lemmas. Lemma A.1 proves that the
derivative of the function φ is bounded in the `2-norm when the domain is restricted to the support of
P .

Lemma A.1. Under A3, ‖∇φ(x)‖2 ≤ HpM
√
p, for all x ∈ [−M,M ]p.

Proof. From A3, we observe that

‖∇φ(x)−∇φ(0)‖2 ≤ Hp‖x‖2
=⇒ ‖∇φ(x)‖2 ≤ Hp‖x‖2 ≤ HpM

√
p.

Lemma A.2 essentially proves that the function φ is Lipschitz with Lipschitz constant HpM
√
p on

[−M,M ]p.

Lemma A.2. Under A3, for all x,y ∈ [−M,M ]p, φ(·) is 2HpM
√
p-Lipschitz, i.e.

|φ(x)− φ(y)| ≤ HpM
√
p‖x− y‖2.

Proof. From the mean value theorem,

φ(x)− φ(y) = 〈∇φ(ξ),x− y〉,

for some ξ in the convex combinations of x and y. Clearly, ξ ∈ [−M,M ]p, due to the convexity of
[−M,M ]p. Now by the Cauchy-Schwartz inequality and Lemma A.1,

|φ(x)− φ(y)| ≤ ‖∇φ(ξ)‖2‖x− y‖2 ≤ HpM
√
p‖x− y‖2.

Lemma A.3 proves that the function fΘ, as a function of Θ, is Lipschitz with respect to the ‖ · ‖∞
norm.
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Lemma A.3. For any Θ,Θ′ ∈ [−M,M ]p,

‖fΘ − fΘ′‖∞ ≤ 4τα,kHpM
√
p

k∑
j=1

‖θ′j − θj‖2.

Here, Θ = [θ>1 , . . . ,θ
>
k ]> and Θ = [θ′>1 , . . . ,θ′>k ]>.

Proof.

‖fΘ − fΘ′‖∞
= sup
x∈[−M,M ]p

∣∣Ψα(dφ(x,θ1), . . . , dφ(x,θk))−Ψα(dφ(x,θ′1), . . . , dφ(x,θ′k))
∣∣

≤ τα,k
k∑
j=1

|dφ(x,θj)− dφ(x,θ′j)|

= τα,k

k∑
j=1

|φ(θ′j)− φ(θj) + 〈∇φ(θ′j),x− θ
′
j〉 − 〈∇φ(θj),x− θj〉|

= τα,k

k∑
j=1

|φ(θ′j)− φ(θj) + 〈∇φ(θ′j)−∇φ(θj),x− θ′j〉+ 〈∇φ(θj),θj − θ′j〉|

≤ τα,k
k∑
j=1

(
|φ(θ′j)− φ(θj)|+ |〈∇φ(θ′j)−∇φ(θj),x− θ′j〉|+ |〈∇φ(θj),θj − θ′j〉|

)
≤ τα,k

k∑
j=1

(
HpM

√
p‖θ′j − θj‖2 + ‖∇φ(θ′j)−∇φ(θj)‖2‖x− θ′j‖2 + ‖∇φ(θj)‖2‖θj − θ′j‖2

)
≤ τα,k

k∑
j=1

(
HpM

√
p‖θ′j − θj‖2 +Hp‖θ′j − θj‖2 × 2

√
pM +HpM

√
p‖θj − θ′j‖2

)
≤ 4τα,kHpM

√
p

k∑
j=1

‖θ′j − θj‖2

B Proofs from Section 3

B.1 Proof of Lemma 3.1

Proof. Let J(x) = dφ(x,θ). Since PC(θ) minimizes J(·) over C, there exists a subgradient
d ∈ ∂J(PC(θ)) such that

〈d,x− PC(θ)〉 ≥ 0. (1)

We note that J(PC(θ)) = {∇φ(PC(θ))−∇φ(θ)}. Thus, from equation (1),

〈∇φ(PC(θ))−∇φ(θ),x− PC(θ)〉 ≥ 0. (2)

We now observe that,

dφ(x,θ)− dφ(x, PC(θ))− dφ(PC(θ),θ) = 〈∇φ(PC(θ))−∇φ(θ),x− PC(θ)〉 ≥ 0.

Hence the result.

B.2 Proof of Lemma 3.2

Proof. Suppose Θ = {θ1, . . . ,θk}. We take C = [−M,M ]k×p and Θ′ = {PC(θ1), . . . , PC(θk)}.
Clearly C is a convex set. Thus, from Lemma 3.1, we observe that

dφ(x,θj) ≥ dφ(x, PC(θj)) + dφ(PC(θj),θj) ≥ dφ(x, PC(θj)) ∀ j = 1, . . . , k.

2



=⇒ Ψα (dφ(x, PC(θ1)), . . . , dφ(x, PC(θk))) ≤ Ψα (dφ(x,θ1), . . . , dφ(x,θk))

=⇒
∫

Ψα (dφ(x, PC(θ1)), . . . , dφ(x, PC(θk))) dQ ≤
∫

Ψα (dφ(x,θ1), . . . , dφ(x,θk)) dQ

=⇒ QfΘ′ ≤ QfΘ

B.3 Proof of Lemma 3.3

Proof. We first divide the set [−M,M ] into a small bins, each with size ε. Denote γi = −M + iε, for
i = 1, . . . , b 2M

ε c, and let Γε =
{
γi ‖ i ∈ {1, . . . , b 2M

ε c}
}

. If ε > 2M , we take Γε = {0}. Clearly,
|Γε| = max{b 2M

ε c, 1}. From the construction of Γε, for all x ∈ [−M,M ], there exists i ∈ [|Γε|],
such that, |x− γi| ≤ ε. We take ε = (4τα,kHpMkp)

−1
δ. We define

Θδ = {Θ = ((θi`)) : θi` ∈ Γε} .
Then immediately we see

|Θδ| =
(

max

{⌊
2M

ε

⌋
, 1

})kp
.

For any Θ ∈ [−M,M ]p, we can construct Θ′ ∈ Θδ, such that, |θi` − θ′i`| ≤ ε. From Lemma A.3,
we observe that,

‖fΘ − fΘ′‖∞ ≤ 4τα,kHpM
√
p

k∑
j=1

‖θ′j − θj‖2.

≤ 4τα,kHpM
√
pk
√
pε

= 4τα,kHpMkpε

= δ.

Thus, Fδ = {fΘ : Θ ∈ Θδ} constitutes a δ-cover of F under the ‖ · ‖∞ norm. Hence,

N(δ;F , ‖ · ‖∞) ≤ |Fδ| ≤ |Θδ| =
(

max

{⌊
2M

ε

⌋
, 1

})kp
=

(
max

{⌊
8M2τα,kHpkp

δ

⌋
, 1

})kp
.

B.4 Proof of Lemma 3.4

Proof. From Lemma A.3, we observe that,

diam(F) = sup
Θ,Θ′∈[−M,M ]k×p

‖fΘ − fΘ′‖∞

≤ 4HpM
√
pτα,k sup

Θ,Θ′∈[−M,M ]k×p

k∑
j=1

‖θ′j − θj‖2

≤ 4HpM
√
pτα,k × 2kM

√
p

= 8τα,kHpM
2kp.

B.5 Proof of Lemma 3.5

Proof. From the non-negativity of Ψα(·), we get, Ψα(dφ(x,θ1), . . . , dφ(x,θk)) ≥ 0, for any
x ∈ [−M,M ]p and Θ ∈ [−M,M ]k×p. For any β ∈ Rk≥0, from A3, we get,

Ψα(β) = |Ψα(β)−Ψα(0)| ≤ τα,k‖β − 0‖1 = ‖β‖1.
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Taking β = (dφ(x,θ1), . . . , dφ(x,θk))>, we get,

Ψα(dφ(x,θ1), . . . , dφ(x,θk))

≤ τα,k
k∑
j=1

dφ(x,θj)

= τα,k

k∑
j=1

(φ(x)− φ(θj)− 〈∇φ(θj),x− θj〉)

≤ τα,k
k∑
j=1

(|φ(x)− φ(θj)|+ |〈∇φ(θj),x− θj〉|)

≤ τα,k
k∑
j=1

(HpM
√
p‖x− θj‖2 + ‖∇φ(θj)‖2‖x− θj‖2) (3)

≤ 2τα,kHpM
√
p

k∑
j=1

‖x− θj‖2 (4)

≤ 4τα,kHpM
2pk.

Here inequality (3) follows from Cauchy-Schwartz inequality and Lemma A.2. Inequality (4) follows
from Lemma A.1.

B.6 Proof of Theorem 3.1

Proof. Let ∆ = 8HpM
2k1−1/sp. We construct a decreasing sequence {δi}i∈N as follows. Take

δ1 := diam(F) = ∆ (the last equality follows from Lemma 3.4) and δi+1 = 1
2δi. Let Fi be a

minimal δi cover of F , i.e. |Fi| = N(δi;F , ‖ · ‖∞). Now denote fi to be the closest element of f in
Fi (with ties broken arbitrarily). We can thus write,

E sup
f∈F

1

n

n∑
i=1

εif(Xi) ≤ ξ1 + ξ2 + ξ3,

where

ξ1 = E sup
f∈F

1

n

n∑
i=1

εi(f(Xi)− fm(Xi)), (5)

ξ2 =

m−1∑
j=1

E sup
f∈F

1

n

n∑
i=1

εi(fj+1(Xi)− fj(Xi)), (6)

ξ3 = E sup
f∈F

1

n

n∑
i=1

εif1(Xi). (7)

Since we can pick f1 arbitrarily from F (as δ1 = diam(F)), ξ3 = 0. To bound ξ1, we observe that,

ξ1 = E sup
f∈F

1

n

n∑
i=1

εi(f(Xi)−fm(Xi)) ≤ E sup
f∈F

1

n

√√√√( n∑
i=1

ε2i

)(
n∑
i=1

(f(Xi)− fm(Xi))2

)
≤ δm

To bound ξ2, we observe that,

‖fj+1 − fj‖∞ ≤ ‖fj+1 − f‖∞ + ‖f − fj‖∞ ≤ δj+1 + δj .

Now appealing to Massart’s lemma [4], we get,

E sup
f∈F

1

n

n∑
i=1

εi(fj+1(Xi)− fj(Xi)) ≤
(δj+1 + δj)

√
2 log (N(δj ;F , ‖ · ‖∞)N(δj+1;F , ‖ · ‖∞))

√
n

≤
2(δj+1 + δj)

√
logN(δj+1;F , ‖ · ‖∞)
√
n
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Thus,

ξ2 =

m−1∑
j=1

E sup
f∈F

1

n

n∑
i=1

εi(fj+1(Xi)− fj(Xi)) ≤
m−1∑
j=1

2(δj+1 + δj)
√

logN(δj+1;F , ‖ · ‖∞)
√
n

Combining the bounds on ξ1, ξ2 and ξ3, we get,

E sup
f∈F

1

n

n∑
i=1

εif(Xi) ≤ δm +
2√
n

m−1∑
j=1

(δj+1 + δj)
√

logN(δj+1;F , ‖ · ‖∞). (8)

From the construction of {δi}i≥1, we know, δj+1 + δj = 6(δj+1 − δj+2). Hence from equation 8,
we get,

E sup
f∈F

1

n

n∑
i=1

εif(Xi) ≤ δm +
2√
n

m−1∑
j=1

(δj+1 + δj)
√

logN(δj+1;F , ‖ · ‖∞)

= δm +
12√
n

m−1∑
j=1

(δj+1 − δj+2)
√

logN(δj+1;F , ‖ · ‖∞)

≤ δm +
12√
n

∫ δ2

δm+1

√
logN(ε;F , ‖ · ‖∞)dε

Taking limits as m→∞ in the above equation, we get,

E sup
f∈F

1

n

n∑
i=1

εif(Xi) ≤
12√
n

∫ ∆

0

√
logN(ε;F , ‖ · ‖∞)dε.

From Lemma 3.3, plugging in the value of N(ε;F , ‖ · ‖∞), we get,

Rn(F) ≤ 12√
n

∫ ∆

0

√
logN(ε;F , ‖ · ‖∞)dε

≤ 12√
n

∫ ∆

0

√
kp log

(
max

{
∆

ε
, 1

})
dε

=
12√
n

∫ ∆

0

√
kp log

(
∆

ε

)
dε

= 12

√
kp

n
∆

∫ ∞
0

2t2e−t
2

dt

= 12

√
kp

n
∆

∫ ∞
0

u
3
2−1e−udu

= 12

√
kp

n
∆Γ(3/2)

= 6

√
kpπ

n
× 8τα,kHpM

2kp

= 48
√
πτα,kHpM

2(kp)3/2n−1/2.

B.7 Proof of Theorem 3.2

Proof. From Lemma, 3.5, we observe that supf∈F ‖f‖∞ ≤ 4τα,kHpM
2pk. Under assumption A1,

we observe that, with probability at least 1− δ,

sup
f∈F
|Pnf − Pf | ≤ 2Rn(F) + sup

f∈F
‖f‖∞

√
log(2/δ)

2n

≤ 96
√
πτα,kHpM

2(kp)3/2n−1/2 + 4τα,kHpM
2pk

√
log(2/δ)

2n
. (9)
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Inequality (9) follows from appealing to Theorem 3.1 and observing that supf∈F ‖f‖∞ ≤
4τα,kHpM

2pk.

B.8 Proof of Theorem 3.3

Proof. (Proof of Strong consistency) We will first show |PfΘ̂n
− PfΘ∗ |

a.s.−−→ 0. To show this let
C = max{192

√
πτα,kHpM

2(kp)3/2, 8τα,kHpM
2pk}. Then from Theorem 3.2, we observe that

with probability at least 1− δ,

|PfΘ̂n
− PfΘ∗ | ≤

C√
n

+ C

√
log(2/δ)

2n
. (10)

Fix ε > 0. If n ≥ 4C2/ε2 and δ = 2 exp
(
− nε2

2C2

)
, the RHS of (10) becomes no bigger than ε. Thus,

P

(
|PfΘ̂n

− PfΘ∗ | > ε
)
≤ 2 exp

(
− nε

2

2C2

)
, ∀n ≥ 4C2/ε2.

Since the series
∑∞
n=1 exp

(
− nε2

2C2

)
is convergent from the above equation, so is

P

(
|PfΘ̂n

− PfΘ∗ | > ε
)

. Hence, PfΘ̂n

a.s.−−→ PfΘ∗ . Thus, for any ε > 0, PfΘ̂n
≤ pfΘ∗ + ε

almost surely w.r.t. [P ] for n sufficiently large. From assumption A4, diss(Θ̂n,Θ
∗) ≤ η, almost

surely w.r.t. [P ], for any prefixed η > 0, and n large. Thus, diss(Θ̂n,Θ
∗)

a.s.−−→ 0, which proves the
result.

(Proof of
√
n-consistency) Fix δ ∈ (0, 1]. From Theorem 3.2, with probability at least 1− δ,

|PfΘ̂n
− PfΘ∗ | ≤ 192

√
πτα,kHpM

2(kp)3/2n−1/2 + 8τα,kHpM
2pk

√
log(2/δ)

2n
= O(n−1/2).

Hence,
√
n|PfΘ̂n

− PfΘ∗ | = O(1) with probability at least 1 − δ. Thus, ∃Cδ, such that

P

(√
n|PfΘ̂n

− PfΘ∗ | ≤ Cδ
)
≥ 1 − δ for all n large enough. Hence, |PfΘ̂n

− PfΘ∗ | =

OP (n−1/2).

C Proofs from Section 3.4

C.1 Proof of Lemma 3.6

Proof. Suppose Θ = {θ1, . . . ,θk}. We take C = [−M,M ]k×p and Θ′ = {PC(θ1), . . . , PC(θk)}.
Clearly C is convex. Let L ⊂ {1, . . . , L} be the set of all partitions which do not contain an outlier.
Thus, from Lemma 3.1, we observe that

dφ(Xi,θj) ≥ dφ(Xi, PC(θj)) + dφ(PC(θj),θj) ≥ dφ(Xi, PC(θj))∀ j = 1, . . . , k and i ∈ I
=⇒ Ψα (dφ(Xi, PC(θ1)), . . . , dφ(X, PC(θk))) ≤ Ψα (dφ(Xi,θ1), . . . , dφ(X,θk)) ∀ i ∈ I

=⇒
∑
i∈B`

Ψα (dφ(Xi, PC(θ1)), . . . , dφ(X, PC(θk))) ≤
∑
i∈B`

Ψα (dφ(Xi,θ1), . . . , dφ(X,θk)) ∀ ` ∈ L

=⇒ 1

b

∑
i∈B`

fΘ′(Xi) ≤
1

b

∑
i∈B`

fΘ(Xi)∀ ` ∈ L

Now since |L| > |LC | (from assumption A6),

Median

(
1

b

∑
i∈B1

fΘ′(Xi), . . . ,
1

b

∑
i∈BL

fΘ′(Xi)

)
≤ Median

(
1

b

∑
i∈B1

fΘ(Xi), . . . ,
1

b

∑
i∈BL

fΘ(Xi)

)
=⇒ MoMn

L(Θ′) ≤ MoMn
L(Θ)
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C.2 Proof of Theorem 3.4

Proof. For notational simplicity let PB`
denote the empirical distribution of {Xi}i∈B`

. Suppose
ε > 0. We will first bound the probability of supΘ∈[−M,M ]k×p |MoMn

L(fΘ)− PfΘ| > ε. To do so,
we will individually bound the probabilities of the events

sup
Θ∈[−M,M ]k×p

(MoMn
L(fΘ)− PfΘ) > ε

and
sup

Θ∈[−M,M ]k×p

(PfΘ −MoMn
L(fΘ)) > ε.

We note that if

sup
Θ∈[−M,M ]k×p

L∑
`=1

1 {(P − PB`
)fΘ > ε} > L

2
,

then
sup

Θ∈[−M,M ]k×p

(PfΘ −MoMn
L(fΘ)) > ε.

Here again 1{·} denote the indicator function. Now let ϕ(t) = (t− 1)1{1 ≤ t ≤ 2}+ 1{t > 2}.
Clearly,

1{t ≥ 2} ≤ ϕ(t) ≤ 1{t ≥ 1}. (11)
We observe that,

sup
Θ∈[−M,M ]k×p

L∑
`=1

1 {(P − PB`
)fΘ > ε}

≤ sup
Θ∈[−M,M ]k×p

∑
`∈L

1 {(P − PB`
)fΘ > ε}+ |O|

≤ sup
Θ∈[−M,M ]k×p

∑
`∈L

ϕ

(
2(P − PB`

)fΘ
ε

)
+ |O|

≤ sup
Θ∈[−M,M ]k×p

∑
`∈L

Eϕ
(

2(P − PB`
)fΘ

ε

)
+ |O|

+ sup
Θ∈[−M,M ]k×p

∑
`∈L

[
ϕ

(
2(P − PB`

)fΘ
ε

)
− Eϕ

(
2(P − PB`

)fΘ
ε

)]
. (12)

To bound supΘ∈[−M,M ]k×p

∑L
`=1 1 {(P − PB`

)fΘ > ε}, we will first bound the quantity

Eϕ
(

2(P−PB`
)fΘ

ε

)
. We observe that,

Eϕ
(
2(P − PB`)fΘ

ε

)
≤ E

[
1

{
2(P − PB`)fΘ

ε
> 1

}]
=P

[
(P − PB`

)fΘ >
ε

2

]
≤ exp

{
− bε2

32τ2
α,kH

2
pM

4k2p2

}
(13)

We now turn to bounding the term

sup
Θ∈[−M,M ]k×p

∑
`∈L

[
ϕ

(
2(P − PB`

)fΘ
ε

)
− Eϕ

(
2(P − PB`

)fΘ
ε

)]
.

Appealing to Theorem 26.5 of [5] we observe that, with probability at least 1 − e−2Lδ2 , for all
Θ ∈ [−M,M ]k×p,

1

L

∑
`∈L

ϕ

(
2(P − PB`

)fΘ
ε

)

≤E

[
1

L

∑
`∈L

ϕ

(
2(P − PB`

)fΘ
ε

)]
+ 2E

[
sup

Θ∈[−M,M ]k×p

1

L

∑
`∈L

σ`ϕ

(
2(P − PB`

)fΘ
ε

)]
+ δ.

(14)

7



Here {σ`}`∈L are i.i.d. Rademacher random variables. Let {ξi}ni=1 be i.i.d. Rademacher random
variables, independent form {σ`}`∈L. From equation (14), we get,

1

L
sup

Θ∈[−M,M ]k×p

∑
`∈L

[
ϕ

(
2(P − PB`

)fΘ
ε

)
− Eϕ

(
2(P − PB`

)fΘ
ε

)]

≤2E

[
sup

Θ∈[−M,M ]k×p

1

L

∑
`∈L

σ`ϕ

(
2(P − PB`

)fΘ
ε

)]
+ δ

≤ 4

Lε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

σ`(P − PB`
)fΘ

]
+ δ. (15)

Equation (15) follows from the fact that ϕ(·) is 1-Lipschitz and appealing to Lemma 26.9 of [5]. We
now consider a “ghost" sample X ′ = {X ′1, . . . ,X

′
n}, which are i.i.d. and follow the probability law

P . Thus, equation (15) can be further shown to give

=
4

Lε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

σ`EX ′
(
(P ′B`

− PB`
)fΘ

)]
+ δ

≤ 4

Lε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

σ`(P
′
B`
− PB`

)fΘ

]
+ δ

=
4

Lε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

σ`
1

b

∑
i∈B`

(fΘ(X ′i)− fΘ(Xi))

]
+ δ

=
4

bLε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

σ`
∑
i∈B`

ξi(fΘ(X ′i)− fΘ(Xi))

]
+ δ (16)

=
4

nε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

∑
i∈B`

σ`ξi(fΘ(X ′i)− fΘ(Xi))

]
+ δ

≤ 4

nε
E

[
sup

Θ∈[−M,M ]k×p

∑
`∈L

∑
i∈B`

σ`ξi(fΘ(X ′i) + fΘ(Xi))

]
+ δ

=
4

nε
E

[
sup

Θ∈[−M,M ]k×p

∑
i∈J

γi(fΘ(X ′i) + fΘ(Xi))

]
(17)

=
8

nε
E

[
sup

Θ∈[−M,M ]k×p

∑
i∈J

γifΘ(Xi)

]
+ δ

≤ 8

nε
48
√
πτα,kHpM

2(kp)3/2
√
|J |+ δ (18)

≤384

nε

√
πτα,kHpM

2(kp)3/2
√
|I|+ δ. (19)

Equation (16) follows from observing that (fΘ(X ′i) − fΘ(Xi))
d
= ξi(fΘ(X ′i) − fΘ(Xi)). In

equation (17), {γi}i∈J are independent Rademacher random variables due to their construction.
Equation (18) follows from appealing to Theorem 3.1. Thus, combining equations (14), (15), and
(19), we conclude that, with probability of at least 1− e−2Lδ2 ,

sup
Θ∈[−M,M ]k×p

L∑
`=1

1 {(P − PB`
)fΘ > ε}

≤ L

(
exp

{
− bε2

32τ2
α,kH

2
pM

4k2p2

}
+
|O|
L

+
384

nε

√
πτα,kHpM

2(kp)3/2
√
|I|+ δ

)
. (20)
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We choose δ = 2
4+η −

|O|
L and

ε = 2 max

{√
32τ2

α,kH
2
pM

4 log

(
4(η + 4)

η

)
kp

√
L

n
,

1536(η + 4)τα,kHpM
2
√
π

η
(kp)3/2

√
|I|
n

}
.

This makes the right hand side of (20) strictly smaller than L
2 . Thus, we have shown that

P

(
sup

Θ∈[−M,M ]k×p

(PfΘ −MoMn
L(fΘ)) > ε

)
≤ e−2Lδ2 .

Similarly, we can show that,

P

(
sup

Θ∈[−M,M ]k×p

(MoMn
L(fΘ)− PfΘ) > ε

)
≤ e−2Lδ2 .

Combining the above two inequalities, we get,

P

(
sup

Θ∈[−M,M ]k×p

|MoMn
L(fΘ)− PfΘ| > ε

)
≤ 2e−2Lδ2 .

In other words, with at least probability 1− 2e−2Lδ2 ,

sup
Θ∈[−M,M ]k×p

|MoMn
L(fΘ)− PfΘ|

≤2 max

{√
32τ2

α,kH
2
pM

4 log

(
4(η + 4)

η

)
kp

√
L

n
,

1536(η + 4)τα,kHpM
2
√
π

η
(kp)3/2

√
|I|
n

}

.τα,kHp max

{
kp

√
L

n
, (kp)3/2

√
|I|
n

}
.

C.3 Proof of Corollary 3.5

Proof. We observe the follwoing.

|Pf
Θ̂

(MoM)

n

− PfΘ∗ |

= Pf
Θ̂

(MoM)

n

− PfΘ∗

= Pf
Θ̂

(MoM)

n

−MoMn
L(f

Θ̂
(MoM)

n

) + MoMn
L(f

Θ̂
(MoM)

n

)−MoMn
L(fΘ∗) + MoMn

L(fΘ∗)− PfΘ∗

≤ Pf
Θ̂

(MoM)

n

−MoMn
L(f

Θ̂
(MoM)

n

) + MoMn
L(fΘ∗)− PfΘ∗ (21)

≤ 2 sup
Θ∈[−M,M ]k×p

|MoMn
L(fΘ)− PfΘ|

. τα,kHp max

{
kp

√
L

n
, (kp)3/2

√
|I|
n

}
.

Inequality (21) follows from the fact that MoMn
L(f

Θ̂
(MoM)

n

) ≤ MoMn
L(fΘ∗), by definition of Θ̂

(MoM)

n .

C.4 Proof of Corollary 3.6

Proof. In this case, Hp = 2. Thus, the bound in Corollary 3.5 becomes

|Pf
Θ̂

(MoM)

n

− PfΘ∗ | . max

{√
L
n ,

√
|I|
n

}
. By A7, 2e−2Lδ2 = o(1). Thus,

9



P

(
|Pf

Θ̂
(MoM)

n

− PfΘ∗ | = O

(
max

{√
L
n ,

√
|I|
n

}))
≥ 1 − o(1). Hence, |Pf

Θ̂
(MoM)

n

− PfΘ∗ | =

OP

(
max

{√
L
n ,

1√
n

})
Under A7, max

{√
L
n ,

√
|I|
n

}
≤ max

{√
L
n ,

1√
n

}
= o(1) =⇒ |Pf

Θ̂
(MoM)

n

− PfΘ∗ | = oP (1)2.

Thus, Pf
Θ̂

(MoM)

n

P−→ PfΘ∗ . Now, for any ε, δ > 0 , P(PfΘ̂n
≤ PfΘ∗ + ε) ≥ 1 − δ, if n is large.

From assumption A7, P(diss(Θ̂n,Θ
∗) ≤ η) ≥ 1 − δ for any prefixed η > 0, and n large. Thus,

diss(Θ̂n,Θ
∗)

P−→ 0, which proves the result.

D Additional Experiments

D.1 Additional Simulations

Experiment 3 We use the same simulation setting as Experiment 1. However, the outliers are now
generated from a Gaussian as well with mean coordinate 20×15, and covariance matrix 0.1I5, where
15 is the 5 dimensional vector of all 1’s and I5 is the 5× 5 identity matrix.

Experiment 4 We use the same simulation setting as Experiment 2. However, the outliers are now
generated from the same scheme as in Experiment 3.
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Figure 1: Results on Simulation Studies based on Average ARI Values

D.2 Case Study on Real Data: KDDCUP

In this section, we assess the performance of real data through the analysis of KDDCUP dataset [1],
and consists of approximately 4.9M observations depicting connections of sequences of TCP packets.
The features are normalized to have zero mean and unit standard deviation. The data contains 23
classes, out of which, the three largest contain 98% of the observations. Following the footsteps of
[2], the remaining 20 classes consisting of 8752 points are considered as outliers. We run all the
algorithms as described in the beginning of section 4. The parameters considered for our algorithm
are L = 10000, η = 1.02 and α = 1. We measure the performance of this algorithm in terms of the
ARI, as well as average precision and recall [3]. The last two indices are added following [2]. We
report the average of these indices out of 20 replications in Table 1. For all these indices, a higher

2Xn = oP (an) if Xn/an
P−→ 0.
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Table 1: Results on KDDCUP Dataset
Index k.means BTKM RCC PAM RKMpp PKM MOMKM MOMPKM
ARI 10−5 0.01 10−5 10−16 0.81 0.24 0.76 0.87

Precision 0.25 0.23 0.19 0.23 0.64 0.43 0.56 0.71
Recall 0.00 0.14 0.07 0.11 0.63 0.49 0.59 0.76

value implies superior performance. Table 1 shows similar trends as discussed in Section 4 of the
main text. In particular, MOMPKM resembles the ground truth compared to the state-of-the-art.
Surprisingly, RKMpp performs better than other competitors (except for MOMPKM), which was not
always the case for simulated data under ideal model assumptions. This is possibly because of the
fact that the data contains only 47 features, compared to almost 5M samples, significantly capitalizing
on the higher signal-to-noise-ratio, compared to that of the data used in the simulation studies.

E Machine Specifications

The simulation studies were undertaken on an HP laptop with Intel(R) Core(TM)i3-5010U 2.10 GHz
processor, 4GB RAM, 64-bit Windows 8.1 operating system in R and python 3.7 programming
languages. The real data experiments were undertaken on a cluster. The cluster has 656 cores
(essentially CPUs) spread across a number of nodes of varying hardware specifications and ages. 256
of the cores are in the ‘low’ partition. There are 32 cores and 256 GB RAM per node.

F Ethics Statement

Our work focuses on algorithmic and theoretical contributions to unsupervised learning of data that
feature outliers, unifying different center-based clustering frameworks. There are no immediate
privacy or ethical concerns, but by addressing the persistent problem of presence of outliers, broader
impacts extend beyond methodological contributions when the interpretation of pattern discoveries
from the output of unsupervised learning methods have wider implications. Clustering has been used
for countless applications, including community detection, drug discovery, and gene identification
for cancers and other diseases. In such settings where the interpretations and decisions based on
clustering solutions have significant scientific and societal bearing, it is critical that the outliers are
not mistaken as original data while solving for optimal solutions or baseline truth.

That said, we have been careful not to overstate our claims. While theoretical and empirical evidence
supports that we can significantly reduce the effect of outliers, users should not view our method as a
panacea for the problem. Our algorithm provides only a partial remedy to a long-standing challenge
faced by clustering methods, and we emphasize it may eliminate some but not all biases that may
affect interpretations and decisions based on solutions output by unsupervised algorithms.
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