Supplementary Material: Memory-Efficient Approximation Algorithms for MAX-K-CUT and Correlation Clustering

Nimita Shinde IITB-Monash Research Academy, Mumbai, India nimitas@iitb.ac.in

Vishnu Narayanan Industrial Engineering and Operations Research IIT Bombay, Mumbai, India vishnu@iitb.ac.in

James Saunderson Electrical and Computer Systems Engineering Monash University, Clayton, Australia james.saunderson@monash.edu

A Proofs

A.1 Proof of Lemma 1

Proof. Let $\vartheta \in \mathbb{R}^{d_1}$ and $\mu \in \mathbb{R}^{d_2}$ be the dual variables corresponding to the d_1 equality constraints and the d_2 inequality constraints respectively. The dual of (SDP) is

$$\min_{\vartheta,\mu} \quad \sum_{i=1}^{d_1} b_i^{(1)} \vartheta_i + \sum_{j=1}^{d_2} b_j^{(2)} \mu_j \quad \text{subject to} \quad \begin{cases} & \sum_{i=1}^{d_1} \vartheta_i A_i^{(1)} + \sum_{j=1}^{d_2} A_j^{(2)} \mu_j - C \succeq 0 \\ & \mu \le 0, \end{cases}$$
(DSDP)

where $A_j^{(2)}$'s for $j = 1, ..., d_2$ are assumed to be symmetric.

Lower bound on the objective. Let X^* be an optimal solution to (SDP) and let X_{FW}^* be an optimal solution to (SDP-LSE). For ease of notation, let

$$u = \mathcal{A}^{(1)}(X) - b^{(1)}$$
 and $v = b^{(2)} - \mathcal{A}^{(2)}(X),$ (1)

and define $(\hat{u}_{\epsilon}, \hat{v}_{\epsilon})$, (u_{FW}, v_{FW}) and (u^*, v^*) by substituting \hat{X}_{ϵ} , X_{FW} and X^* respectively in (1). Since \hat{X}_{ϵ} is an ϵ -optimal solution to (SDP-LSE), and a feasible solution to (SDP-LSE), the following holds

$$\langle C, \widehat{X}_{\epsilon} \rangle - \beta \phi_M(\widehat{u}_{\epsilon}, \widehat{v}_{\epsilon}) \ge \langle C, X_{FW} \rangle - \beta \phi_M(u_{FW}, v_{FW}) - \epsilon \ge \langle C, X^* \rangle - \beta \phi_M(u^*, v^*) - \epsilon.$$
(2)

We know that (u^*, v^*) is feasible to (SDP), so that $\phi_M(u^*, v^*) \leq \frac{\log(2d_1+d_2)}{M}$. Now, rearranging the terms, and using the upper bound on $\phi_M(u^*, v^*)$ and the fact that $\phi_M(\widehat{u}_{\epsilon}, \widehat{v}_{\epsilon}) \geq 0$,

$$\langle C, \widehat{X}_{\epsilon} \rangle \ge \langle C, X^{\star} \rangle - \frac{\beta \log(2d_1 + d_2)}{M} - \epsilon.$$
 (3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Upper bound on the objective. The Lagrangian of (SDP) is $L(X, \vartheta, \mu) = \langle C, X \rangle - \sum_{i=1}^{d_1} u_i \vartheta_i + \sum_{j=1}^{d_2} v_j \mu_j$. For a primal-dual optimal pair, $(X^*, \vartheta^*, \mu^*)$, and $\widehat{X}_{\epsilon} \succeq 0$, we have that $L(\widehat{X}_{\epsilon}, \vartheta^*, \mu^*) \leq L(X^*, \vartheta^*, \mu^*)$, i.e.,

$$\langle C, \widehat{X}_{\epsilon} \rangle - \sum_{i=1}^{d_1} \vartheta_i^{\star} [\widehat{u}_{\epsilon}]_i + \sum_{i=j}^{d_2} \mu_j^{\star} [\widehat{v}_{\epsilon}]_j \le \langle C, X^{\star} \rangle - \sum_{i=1}^{d_1} \vartheta_i^{\star} u_i^{\star} + \sum_{j=1}^{d_2} \mu_j^{\star} v_j^{\star} \\ \le \langle C, X^{\star} \rangle.$$

Rearranging the terms, using the duality of the ℓ_1 and ℓ_∞ norms, and the fact that $\mu^* \leq 0$, gives

$$\langle C, \widehat{X}_{\epsilon} \rangle \leq \langle C, X^{\star} \rangle + \sum_{i=1}^{d_{1}} \vartheta_{i}^{\star} [\widehat{u}_{\epsilon}]_{i} - \sum_{j=1}^{d_{2}} \mu_{j}^{\star} [\widehat{v}_{\epsilon}]_{j}$$

$$\leq \langle C, X^{\star} \rangle + \left(\sum_{i=1}^{d_{1}} |\vartheta_{i}^{\star}| \right) \|\widehat{u}_{\epsilon}\|_{\infty} + \left(\sum_{j=1}^{d_{2}} -\mu_{j}^{\star} \right) \max_{j} [\widehat{v}_{\epsilon}]_{j}$$

$$\leq \langle C, X^{\star} \rangle + \|[\vartheta^{\star}, \mu^{\star}]]\|_{1} \max \left\{ \|\widehat{u}_{\epsilon}\|_{\infty}, \max_{j} [\widehat{v}_{\epsilon}]_{j} \right\}.$$

$$(4)$$

Bound on infeasibility. Using (4), we rewrite (2) as,

$$\beta \phi_M(\widehat{u}_{\epsilon}, \widehat{v}_{\epsilon}) \le \langle C, \widehat{X}_{\epsilon} \rangle - \langle C, X^* \rangle + \beta \phi_M(u^*, v^*) + \epsilon$$

$$\le \| [\vartheta^*, \mu^*] \|_1 \max\left\{ \| \widehat{u}_{\epsilon} \|_{\infty}, \max_j [\widehat{v}_{\epsilon}]_j \right\} + \beta \frac{\log(2d_1 + d_2)}{M} + \epsilon.$$
(5)

Combining the lower bound on $\phi_M(\cdot)$ given in (2.1) with (5) and since $\beta > \|[\vartheta^*, \mu^*]\|_1$ by assumption, we have

$$\max\left\{\|\widehat{u}_{\epsilon}\|_{\infty}, \max_{j}[\widehat{v}_{\epsilon}]_{j}\right\} \leq \frac{\beta \frac{\log(2d_{1}+d_{2})}{M} + \epsilon}{\beta - \|[\vartheta^{\star}, \mu^{\star}]\|_{1}}.$$
(6)

Completing the upper bound on the objective. Substituting (6) into (4) gives

$$\langle C, \widehat{X}_{\epsilon} \rangle \leq \langle C, X^{\star} \rangle + \| [\vartheta^{\star}, \mu^{\star}] \|_1 \frac{\beta \frac{\log(2d_1 + d_2)}{M} + \epsilon}{\beta - \| [\vartheta^{\star}, \mu^{\star}] \|_1}.$$
(7)

A.2 Proof of Lemma 2

Proof. The proof consists of three parts.

Lower bound on the objective. Substituting the values of β and M, and replacing ϵ by $\epsilon \text{Tr}(C)$ in (3), we have

$$|C, \widehat{X}_{\epsilon}\rangle \ge \langle C, X_R^{\star}\rangle - 2\epsilon \operatorname{Tr}(C).$$
 (8)

Since the identity matrix I is strictly feasible for (k-Cut-Rel), $Tr(C) \leq \langle C, X_R^* \rangle$. Combining this fact with (8) gives,

$$\langle C, \widehat{X}_{\epsilon} \rangle \ge (1 - 2\epsilon) \langle C, X_R^{\star} \rangle.$$

Bound on infeasibility. For (k-Cut-Rel), let $\nu = [\nu^{(1)}, \nu^{(2)}] \in \mathbb{R}^{n+|E|}$ be a dual variable such that $\nu_i^{(1)}$ for $i = 1, \ldots, n$ are the variables corresponding to n equality constraints and $\nu_{ij}^{(2)}$ for $(i, j) \in E, i < j$ are the dual variables corresponding to |E| inequality constraints. Following (DSDP), the dual of (k-Cut-Rel) is

$$\min_{\nu} \sum_{i=1}^{n} \nu_{i}^{(1)} - \frac{1}{k-1} \sum_{\substack{ij \in E \\ i < j}} \nu_{ij}^{(2)} \quad \text{subject to} \quad \begin{cases} & \operatorname{diag}^{*}(\nu^{(1)}) + \sum_{\substack{ij \in E \\ i < j}} [e_{i}e_{j}^{T} + e_{j}e_{i}^{T}] \frac{\nu_{ij}^{(2)}}{2} - C \succeq 0 \\ & \nu^{(2)} \le 0. \end{cases}$$
(Dual Balar)

(Dual-Relax)

Let ν^* be an optimal dual solution. In order to bound the infeasibility using (6), we need a bound on $\|\nu^*\|_1$ which is given by the following lemma.

Lemma A.1. The value of $\|\nu^{\star}\|_1$ is upper bounded by 4Tr(C).

Proof. The matrix C is a scaled Laplacian and so, the only off-diagonal entries that are nonzero correspond to $(i, j) \in E$ and have value less than zero. For (Dual-Relax), a feasible solution is $\nu^{(1)} = \text{diag}(C)$, $\nu^{(2)}_{ij} = 2C_{ij}$ for $(i, j) \in E, i < j$. The optimal objective function value of (Dual-Relax) is then upper bounded by

$$\sum_{i=1}^{n} \nu_{i}^{(1)\star} - \frac{1}{k-1} \sum_{\substack{ij \in E \\ i < j}} \nu_{ij}^{(2)\star} \le \operatorname{Tr}(C) + \frac{1}{k-1} \operatorname{Tr}(C) = \frac{k}{k-1} \operatorname{Tr}(C)$$

$$\Rightarrow \sum_{i=1}^{n} \nu_{i}^{(1)\star} \le \frac{k}{k-1} \operatorname{Tr}(C) + \frac{1}{k-1} \sum_{\substack{ij \in E \\ i < j}} \nu_{ij}^{(2)\star} \le \frac{k}{k-1} \operatorname{Tr}(C), \quad (9)$$

where the last inequality follows since $\nu^{(2)} \leq 0$.

We have $\left\langle \operatorname{diag}^*(\nu^{(1)\star}) + \sum_{\substack{ij \in E \\ i < j}} [e_i e_j^T + e_j e_i^T] \frac{\nu_{ij}^{(2)\star}}{2}, \mathbb{1}\mathbb{1}^T \right\rangle - \langle C, \mathbb{1}\mathbb{1}^T \rangle \ge 0$ since both matrices are

PSD. Using the fact that 1 is in the null space of C, we get

$$-\sum_{\substack{ij\in E\\i< j}} \nu_{ij}^{(2)\star} \le \sum_{i=1}^{n} \nu_{i}^{(1)\star}.$$
(10)

Since $\nu^{(2)\star} \leq 0$, we can write

$$\|\nu^{\star}\|_{1} = \sum_{i=1}^{n} |\nu_{i}^{(1)\star}| - \sum_{\substack{ij \in E\\i < j}} \nu_{i}^{(2)\star} \le 2\sum_{i=1}^{n} \nu_{i}^{(1)\star}, \tag{11}$$

which follows from (10) and the fact that for the dual to be feasible we have $\nu^{(1)} \ge 0$ since C has nonnegative entries on the diagonal. Substituting (9) in (11),

$$\|\nu^{\star}\|_{1} \le \frac{2k}{k-1} \operatorname{Tr}(C) \le 4 \operatorname{Tr}(C),$$
(12)

where the last inequality follows since $k/(k-1) \le 2$ for $k \ge 2$.

Since \widehat{X}_{ϵ} is an $\epsilon \operatorname{Tr}(C)$ -optimal solution to (k-Cut-LSE), we replace ϵ be $\epsilon \operatorname{Tr}(C)$ in (6). Finally, substituting (12) into (6), and setting $\beta = 6\operatorname{Tr}(C)$ and $M = 6\frac{\log(2n+|E|)}{\epsilon}$,

$$\max\left\{\|\operatorname{diag}(\widehat{X}_{\epsilon}) - \mathbb{1}\|_{\infty}, \max_{ij \in E, i < j} -\frac{1}{k-1} - [\widehat{X}_{\epsilon}]_{ij}\right\} \le \epsilon.$$
(13)

This condition can also be stated as

$$\|\operatorname{diag}(\widehat{X}_{\epsilon}) - \mathbb{1}\|_{\infty} \leq \epsilon, \quad [\widehat{X}_{\epsilon}]_{ij} \geq -\frac{1}{k-1} - \epsilon \quad (i,j) \in E, i < j.$$

Upper bound on the objective. Substituting (13) and (12) and the values of parameters β and M into (7) gives

 $\langle C, \widehat{X}_{\epsilon} \rangle \leq \langle C, X_R^{\star} \rangle + 4 \operatorname{Tr}(C) \epsilon \leq (1+4\epsilon) \langle C, X_R^{\star} \rangle,$ lity follows since $\operatorname{Tr}(C) \leq \langle C, X_R^{\star} \rangle$

3

where the last inequality follows since $\operatorname{Tr}(C) \leq \langle C, X_R^{\star} \rangle$.

A.3 Proof of Lemma 3

Proof. We first show that Algorithm 2 generates samples whose covariance is feasible to (k-Cut-Rel).

Proposition 1. Given k Gaussian random vectors $z_1, \ldots, z_k \sim \mathcal{N}(0, \widehat{X}_{\epsilon})$, such that their covariance \widehat{X}_{ϵ} satisfies the inequality (7), the Gaussian random vectors $z_1^f, \ldots, z_k^f \sim \mathcal{N}(0, X^f)$ generated by Algorithm 2 have covariance X^f that is a feasible solution to (k-Cut-Rel).

Proof. Define $\overline{X} = \widehat{X}_{\epsilon} + \operatorname{err} \mathbb{1}\mathbb{1}^T$. Note that, $\overline{X} \succeq 0$ and it satisfies the following properties:

- Since X
 _ϵ satisfies (7), we have err ≤ ϵ. Combining this fact with the definition of X
 , we have X
 _{jl} ≥ -1/(k-1) for (j,l) ∈ E, j < l.
- 2. Furthermore, $\operatorname{diag}(\overline{X}) = \operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}$, which when combined with (7), gives $1 \leq \operatorname{diag}(\overline{X}) \leq 1 + 2\operatorname{err}$.
- 3. For $y \sim \mathcal{N}(0, 1)$, if $\overline{z}_i = z_i + \sqrt{\operatorname{err}} y \mathbb{1}$, i.e., it is a sum of two Gaussian random vectors, then $\overline{z}_i \sim \mathcal{N}(0, \overline{X})$.

The steps 5 and 6 of Algorithm 2 generate a zero-mean random vector z^{f} whose covariance is

$$X^{f} = \frac{\overline{X}}{\max(\operatorname{diag}(\overline{X}))} + \left(I - \operatorname{diag}^{*}\left(\frac{\operatorname{diag}(\overline{X})}{\max(\operatorname{diag}(\overline{X}))}\right)\right),\tag{14}$$

i.e., $z^f \sim \mathcal{N}(0, X^f)$. Furthermore, X^f is feasible to (k-Cut-Rel) since diag $(X^f) = 1, X_{jl}^f \geq -\frac{1}{k-1}$ for $(j, l) \in E, j < l$, and it is a sum of two PSD matrices so that $X^f \succeq 0$.

The objective function value of (k-Cut-Rel) at X^{f} (defined in (14)) is

$$\langle C, X^f \rangle = \left\langle C, \frac{\widehat{X}_{\epsilon} + \operatorname{err} \mathbb{1} \mathbb{1}^T}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} + \left(I - \operatorname{diag}^* \left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} \right) \right) \right\rangle$$

$$\geq \frac{\langle C, \widehat{X}_{\epsilon} \rangle}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} \geq \frac{1 - 2\epsilon}{1 + 2\epsilon} \langle C, X_R^* \rangle \geq (1 - 4\epsilon) \langle C, X_R^* \rangle,$$
(15)

where (i) follows from the fact that both C and $\frac{\operatorname{err I I}^T}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} + I - \operatorname{diag}^*\left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}}\right)$ are PSD and so, their inner product is nonnegative, (ii) follows from Lemma 2 and the fact that $\operatorname{err} \leq \epsilon$, and (iii) uses the fact that $1 - 2\epsilon \geq (1 + 2\epsilon)(1 - 4\epsilon)$. Let $\mathbb{E}[\operatorname{CUT}]$ denote the value of the cut generated from the samples z_i^f 's. Combining (15) with the inequality $\frac{\mathbb{E}[\operatorname{CUT}]}{\langle C, X^f \rangle} \geq \alpha_k$ (see (5)), we have

$$\mathbb{E}[\operatorname{CUT}] \ge \alpha_k \langle C, X^f \rangle \ge \alpha_k (1 - 4\epsilon) \langle C, X^*_R \rangle \ge \alpha_k (1 - 4\epsilon) \operatorname{opt}_k^G.$$
(16)

A.4 Proof of Lemma 4

Proof. We use Algorithm 1 with $p = \frac{\epsilon}{T(n,\epsilon)}$ and $T(n,\epsilon) = \frac{144 \log(2n+|E|)n^2}{\epsilon^2}$ to generate an $\epsilon \operatorname{Tr}(C)$ -optimal solution to (k-Cut-LSE). We first bound the outer iteration complexity, i.e., the number of iterations of Algorithm 1 until convergence. This value also denotes the number of times the subproblem LMO is solved.

Upper bound on outer iteration complexity. Let the objective function of (k-Cut-LSE) be $g(X) = \langle C, X \rangle - \beta \phi_M \left(\operatorname{diag}(X) - \mathbb{1}, \left[-\frac{1}{k-1} - e_i^T X e_j \right]_{(i,j) \in E} \right).$

Theorem 1. Let g(X) be a concave and differentiable function and X^* an optimal solution of (k-Cut-LSE). Let C_g^u be an upper bound on the curvature constant of g, and let $\eta \ge 0$ be the accuracy parameter for LMO, then, X_t satisfies

$$-g(X_t) + g(X^*) \le \frac{2C_g^u(1+\eta)}{t+2},$$

with probability at least $(1-p)^t \ge 1-tp$.

The result follows from [1, Theorem 1] when LMO generates a solution with approximation error at most $\frac{1}{2}\eta\gamma C_g^u$ with probability 1 - p. Now, $\eta \in (0, 1)$ is an appropriately chosen constant, and from [4, Lemma 3.1], an upper bound C_f^u on the curvature constant of g(X) is βMn^2 . Thus, after at most

$$T = \frac{2C_g^u(1+\eta)}{\epsilon \operatorname{Tr}(C)} - 2 = \frac{2\beta M n^2(1+\eta)}{\epsilon \operatorname{Tr}(C)} - 2$$
(17)

iterations, Algorithm 1 generates an $\epsilon Tr(C)$ -optimal solution to (k-Cut-LSE).

Bound on the approximate k-cut value. From Theorem 1, we see that after at most T iterations, Algorithm 1 generates a solution \widehat{X}_{ϵ} that satisfies the bounds in Lemma 2 with probability with at least $1-\epsilon$ when $p = \frac{\epsilon}{T(n,\epsilon)}$. Consequently, the bound given in (15) also holds with probability at least $1-\epsilon$. And so, the expected value of $\langle C, X^f \rangle$ is $\mathbb{E}[\langle C, X^f \rangle] \ge (1-4\epsilon)\langle C, X^*_R \rangle (1-\epsilon) \ge (1-5\epsilon)\langle C, X^*_R \rangle$. Finally, from (16), the expected value of the k-cut, denoted by $\mathbb{E}[\text{CUT}]$, is bounded as

$$\mathbb{E}[\mathsf{CUT}] = \mathbb{E}_L[\mathbb{E}_G[\mathsf{CUT}]] \ge \alpha_k \mathbb{E}_L[\langle C, X^f \rangle] \ge \alpha_k (1 - 5\epsilon) \langle C, X_R^\star \rangle \ge \alpha_k (1 - 5\epsilon) \mathsf{opt}_k^G$$

where $\mathbb{E}_{L}[\cdot]$ denotes the expectation over the randomness in the subproblem LMO and $\mathbb{E}_{G}[\cdot]$ denotes the expectation over random Gaussian samples.

Finally, we compute an upper bound on the complexity of each iteration, i.e., inner iteration complexity, of Algorithm 1.

Upper bound on inner iteration complexity. At each iteration t, Algorithm 1 solves the subproblem LMO, which generates a unit vector h, such that

$$\alpha \langle hh^T, \nabla g_t \rangle \ge \max_{d \in \mathcal{S}} \alpha \langle d, \nabla g_t \rangle - \frac{1}{2} \eta \gamma_t C_g^u, \tag{18}$$

where $\gamma_t = \frac{2}{t+2}$, $\nabla g_t = \nabla g(X_t)$ and $S = \{X \succeq 0 : \text{Tr}(X) \leq n\}$. Note that this problem is equivalent to approximately computing maximum eigenvector of the matrix ∇g_t which can be done using Lanczos algorithm [2].

Lemma A.2 (Convergence of Lanczos algorithm). Let $\rho \in (0, 1]$ and $p \in (0, 1/2]$. For $\nabla g_t \in \mathbb{S}_n$, the Lanczos method [2], computes a vector $h \in \mathbb{R}^n$, that satisfies

$$h^T \nabla g_t h \ge \lambda_{\max}(\nabla g_t) - \frac{\rho}{8} \|\nabla g_t\|$$
(19)

with probability at least 1 - 2p, after at most $q \ge \frac{1}{2} + \frac{1}{\sqrt{\rho}} \log(n/p^2)$ iterations.

This result is an adaptation of [2, Theorem 4.2] which provides convergence of Lanczos to approximately compute minimum eigenvalue and the corresponding eigenvector of a symmetric matrix. Let $N = \frac{1}{2} + \frac{1}{\sqrt{\rho}} \log(n/p^2)$. We now derive an upper bound on N.

Comparing (19) and (18), we see that

$$\frac{1}{2}\eta\gamma_t C_g^u = \alpha \frac{\rho}{8} \|\nabla g_t\|$$
$$\Rightarrow \frac{1}{\rho} = \frac{\alpha \|\nabla g_t\|}{4\eta\gamma_t C_g^u}$$

Substituting the value of γ_t in the equation above, and noting that $\gamma_t = \frac{2}{t+2} \ge \frac{2}{T+2}$, we have

$$\frac{1}{\rho} = \frac{\alpha \|\nabla g_t\|(t+2)}{8\eta C_g^u} \le \frac{\alpha \|\nabla g_t\|(T+2)}{8\eta C_g^u} = \frac{\alpha \|\nabla g_t\|(1+\eta)}{4\eta \epsilon \operatorname{Tr}(C)},$$
(20)

where the last equality follows from substituting the value of T (see (17)). We now derive an upper bound on $\|\nabla g_t\|$.

Lemma A.3. Let $g(X) = \langle C, X \rangle - \beta \phi_M \left(\operatorname{diag}(X) - \mathbb{1}, \left[-\frac{1}{k-1} - e_i^T X e_j \right]_{(i,j) \in E} \right)$, where $\phi_M(\cdot)$ is defined in (3). We have $\|\nabla g_t\| \leq \operatorname{Tr}(C)(1 + 6(\sqrt{2|E| + n}))$.

Proof. For the function g(X) as defined in the lemma, $\nabla g_t = C - \beta D$, where D is matrix such that $D_{ii} \in [-1, 1]$ for $i = 1, ..., n, D_{ij} \in [-1, 1]$ for $(i, j) \in E$, and $D_{ij} = 0$ for $(i, j) \notin E$. Thus, we have

$$\max_{k} |\lambda_{k}(D)| \leq \sqrt{\operatorname{Tr}(D^{T}D)} = \sqrt{\sum_{i,j=1}^{n} |D_{ij}|^{2}} \leq \sqrt{2|E|+n},$$
(21)

where the last inequality follows since there are at most 2|E| off-diagonal and *n* diagonal nonzero entries in the matrix *D* with each nonzero entry in the range [-1, 1]. Now,

$$\begin{aligned} \|\nabla g_t\| &= \|C - \beta D\| \leq \|C\| + \| - \beta D\| \\ &\leq \max_i |\lambda_i(C)| + \max_i |\lambda_i(-\beta D)| \\ &\leq \operatorname{Tr}(C) + \beta \sqrt{2|E| + n} \\ &\leq \operatorname{Tr}(C)(1 + 6(\sqrt{2|E| + n})). \end{aligned}$$

where (i) follows from the triangle inequality for the spectral norm of $C - \beta D$, (ii) follows from (21) and since C is graph Laplacian and a positive semidefinite matrix, and (iii) follows by substituting $\beta = 6 \operatorname{Tr}(C)$ as given in Lemma 2.

Substituting $\alpha = n$, and the bound on $\|\nabla g_t\|$ in (20), we have

$$\frac{1}{\rho} \leq \frac{1+\eta}{4\eta} \frac{n(1+6(\sqrt{2|E|+n}))}{\epsilon}, \quad \text{and}$$
$$N = \frac{1}{2} + \frac{1}{\sqrt{\rho}} \log(n/p^2) \leq \frac{1}{2} + \sqrt{\frac{1+\eta}{4\eta}} \sqrt{\frac{n(1+6(\sqrt{2|E|+n}))}{\epsilon}} \log(n/p^2) = N^u.$$

Finally, each iteration of Lanczos method performs a matrix-vector multiplication with ∇g_t , which has at most 2|E| + n number of nonzero iterations, and $\mathcal{O}(n)$ additional arithmetic operations. Thus, the computational complexity of Lanczos method is $\mathcal{O}(N^u(|E| + n))$. Moreover, Algorithm 1 performs $\mathcal{O}(|E| + n)$ additional arithmetic operations so that the total inner iteration complexity is $\mathcal{O}(N^u(|E| + n))$, which can be written as $\mathcal{O}\left(\frac{\sqrt{n}|E|^{1.25}}{\sqrt{\epsilon}}\log(n/p^2)\right)$.

Computational complexity of Algorithm 1. Now, substituting $p = \frac{\epsilon}{T(n,\epsilon)}$, we have

$$\log\left(\frac{n}{p^2}\right) = \log\left(\frac{(144)^2 n^5 (\log(2n+|E|))^2}{\epsilon^6}\right) \le \log\left(\frac{(5.3n)^6}{\epsilon^6}\right) = 6\log\left(\frac{5.3n}{\epsilon}\right),$$

where the inequality follows since $|E| \leq \binom{n-1}{2}$, $\left(\log\left(2n + \binom{n-1}{2}\right)\right)^2 \leq n$ for $n \geq 1$ and $(5.3)^6 \geq (144)^2$. Substituting the upper bound on $\log(n/p^2)$ in N^u , and combining the inner iteration complexity, $\mathcal{O}(N^u(|E|+n))$, and outer iteration complexity, T, we get a $\mathcal{O}\left(\frac{n^{2.5}|E|^{1.25}}{\epsilon^{2.5}}\log(n/\epsilon)\log(|E|)\right)$ -time algorithm.

A.5 Proof of Lemma 5

Proof. We need to prove four inequalities given in Lemma 5.

Lower bound on the objective, $\langle C, \hat{X}_{\epsilon} \rangle$. Substituting the values of β and M, and replacing ϵ by $\epsilon \operatorname{Tr}(C)$ in (3), we have

$$\langle C, \widehat{X}_{\epsilon} \rangle \ge \langle C, X_G^{\star} \rangle - 2\epsilon \left(\operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+ \right).$$
 (22)

Since $0.5I + 0.5\mathbb{1}\mathbb{1}^T$ is feasible for (MA-Rel), $0.5(\operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+) \leq \langle C, X_G^* \rangle$. Combining this fact with (22), we have

$$\langle C, \widehat{X}_{\epsilon} \rangle \ge (1 - 4\epsilon) \langle C, X_G^{\star} \rangle$$

Bound on infeasibility. Let $E = E^- \cup E^+$ and let $\nu = [\nu^{(1)}, \nu^{(2)}] \in \mathbb{R}^{n+|E|}$ be the dual variable such that $\nu^{(1)}$ is the dual variable corresponding to the *n* equality constraints and $\nu^{(2)}$ is the dual variable for |E| inequality constraints. Following (DSDP), the dual of (MA-Rel) is

$$\min_{\nu} \sum_{i=1}^{n} \nu_{i}^{(1)} \quad \text{subject to} \quad \begin{cases} \operatorname{diag}^{*}(\nu^{(1)}) + \sum_{\substack{ij \in E \\ i < j}} [e_{i}e_{j}^{T} + e_{j}e_{i}^{T}] \frac{\nu_{ij}^{(2)}}{2} - C \succeq 0 \\ \\ \nu^{(2)} \leq 0, \end{cases} \tag{Dual-CC}$$

where $C = L_{G^-} + W^+$. Let ν^* be an optimal dual solution. We derive an upper bound on $\|\nu^*\|_1$ in the following lemma, which is then used to bound the infeasibility using (6).

Lemma A.4. The value of $\|\nu^*\|_1$ is upper bounded by $2\left(\operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+\right)$.

Proof. For (Dual-CC), $\nu_i^{(1)} = [L_{G^-}]_{ii} + \sum_{j:ij \in E^+} w_{ij}^+$ for i = 1, ..., n, and $\nu_{ij}^{(2)} = 2[L_{G^-}]_{ij}$ for $(i, j) \in E, i < j$ is a feasible solution. The optimal objective function value of (Dual-CC) is then upper bounded as

$$\sum_{i=1}^{n} \nu_i^{(1)\star} \le \operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+.$$
(23)

We have $\left\langle \operatorname{diag}^*(\nu^{(1)\star}) + \sum_{\substack{ij \in E \\ i < j}} [e_i e_j^T + e_j e_i^T] \frac{\nu_{ij}^{(2)\star}}{2} - C, \mathbb{1}\mathbb{1}^T \right\rangle \ge 0$ since both matrices are PSD.

Using the fact that $\langle L_{G^-}, \mathbb{1}\mathbb{1}^{T} \rangle = 0$, and rearranging the terms, we have

$$-\sum_{\substack{ij\in E\\i< j}}\nu_{ij}^{(2)\star} \le \sum_{i=1}^{n}\nu_{i}^{(1)\star} - \sum_{ij\in E^{+}}w_{ij}^{+}.$$

Since $\nu^{(2)\star} \leq 0$, we can write

$$\|\nu^{\star}\|_{1} = \sum_{i=1}^{n} |\nu_{i}^{(1)\star}| - \sum_{\substack{ij \in E \\ i < j}} \nu_{ij}^{(2)\star} \le 2\sum_{i=1}^{n} \nu_{i}^{(1)\star} - \sum_{ij \in E^{+}} w_{ij}^{+},$$
(24)

where we have used the fact that for any dual feasible solution, $\nu_i^{(1)} \ge [L_{G^-}]_{ii} \ge 0$ for all $i = 1, \ldots, n$. Substituting (23) in (24),

$$\|\nu^{\star}\|_{1} \leq 2\mathrm{Tr}(L_{G^{-}}) + \sum_{ij\in E^{+}} w_{ij}^{+} \leq 2\left(\mathrm{Tr}(L_{G^{-}}) + \sum_{ij\in E^{+}} w_{ij}^{+}\right).$$
(25)

For $\Delta = \text{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+$, \widehat{X}_{ϵ} is an $\epsilon \Delta$ -optimal solution to (MA-LSE). And so, we replace ϵ be $\epsilon \Delta$ in (6). Now, substituting (25) and the values of β and M into (6), we get

$$\max\left\{\|\operatorname{diag}(\widehat{X}_{\epsilon}) - \mathbb{1}\|_{\infty}, \max_{ij \in E, i < j} - [\widehat{X}_{\epsilon}]_{ij}\right\} \le \epsilon.$$
(26)

This condition can also be stated as

$$\|\operatorname{diag}(\widehat{X}_{\epsilon}) - \mathbb{1}\|_{\infty} \le \epsilon, \quad [\widehat{X}_{\epsilon}]_{ij} \ge -\epsilon \quad (i, j) \in E, i < j.$$

Substituting (26), (25) and the values of the parameters β and M into (7) gives

$$\langle C, \widehat{X}_{\epsilon} \rangle \leq \langle C, X_G^{\star} \rangle + 2 \left(\operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+ \right) \epsilon \leq (1 + 4\epsilon) \langle C, X_G^{\star} \rangle,$$

where the last inequality follows since I is a feasible solution to (MA-Rel).

A.6 Proof of Lemma 6

Proof. We first note that Algorithm 2 generates a samples whose covariance is feasible to (MA-Rel).

Proposition 2. Let $z_1, z_2 \sim \mathcal{N}(0, \widehat{X}_{\epsilon})$ be Gaussian random vectors such that their covariance \widehat{X}_{ϵ} satisfies the inequality (10). Replace Step 3 of Algorithm 2 with $\operatorname{err} = \max\{0, \max_{(i,j)\in E, i< j} - [\widehat{X}_{\epsilon}]_{ij}\}$. The Gaussian random vectors $z_1^f, z_2^f \sim \mathcal{N}(0, X^f)$ generated by the modified Algorithm 2 have covariance that is feasible to (MA-Rel).

The proof of Proposition 2 is the same as the proof of Proposition 1. Now, let

$$X^{f} = \frac{\widehat{X}_{\epsilon} + \operatorname{err} \mathbb{1}\mathbb{1}^{T}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} + \left(I - \operatorname{diag}^{*}\left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}}\right)\right)$$

The objective function value of (MA-Rel) at X^f is

$$\langle C, X^{f} \rangle = \left\langle C, \frac{\widehat{X}_{\epsilon} + \operatorname{err} \mathbb{1}\mathbb{1}^{T}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} + \left(I - \operatorname{diag}^{*}\left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}}\right)\right)\right\rangle$$

$$\geq \frac{\langle C, \widehat{X}_{\epsilon} \rangle}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} + \left\langle C, \left(I - \operatorname{diag}^{*}\left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}}\right)\right)\right\rangle$$

$$\geq \frac{\langle C, \widehat{X}_{\epsilon} \rangle}{\max(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}} \geq \frac{1 - 4\epsilon}{1 + 2\epsilon} \langle C, X_{G}^{*} \rangle \geq (1 - 6\epsilon) \langle C, X_{G}^{*} \rangle \quad (27)$$

where (i) follows from the fact that $\langle L_{G^-}, \operatorname{err} \mathbb{1}\mathbb{1}^T \rangle = 0$ and $\langle W_+, \operatorname{err} \mathbb{1}\mathbb{1}^T \rangle \ge 0$, (ii) follows since L_{G^-} and $I - \operatorname{diag}^*\left(\frac{\operatorname{diag}(\widehat{X}_{\epsilon}) + \operatorname{err}}{\operatorname{max}(\operatorname{diag}(\widehat{X}_{\epsilon})) + \operatorname{err}}\right)$ are PSD and their inner product is nonnegative and the diagonal entries of W_+ are 0, (iii) follows from Lemma 5 and the fact that $\operatorname{err} \le \epsilon$, and (iv) follows since $1 - 4\epsilon \ge (1 + 2\epsilon)(1 - 6\epsilon)$. Combining the fact that $\langle C, X_G^* \rangle \ge \operatorname{opt}_{CC}^G$ and $\mathbb{E}[\mathcal{C}] \ge 0.766 \langle C, X^f \rangle$ with the above, we have

$$\mathbb{E}[\mathcal{C}] \ge 0.766(1 - 6\epsilon) \operatorname{opt}_{CC}^{G}.$$

A.7 Proof of Lemma 7

Proof. We use Algorithm 1 with $p = \frac{\epsilon}{T(n,\epsilon)}$ and $T(n,\epsilon) = \frac{64 \log(2n+|E|)n^2}{\epsilon^2}$ to generate an $\epsilon \Delta$ -optimal solution to (MA-LSE), where $\Delta = \text{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+$.

Upper bound on outer iteration complexity. The convergence result given in Theorem 1 holds when Algorithm 1 is applied to (k-Cut-LSE). Then, the total number of iterations of Algorithm 1, also known as outer iteration complexity, required to generate $\epsilon\Delta$ -optimal solution to (k-Cut-LSE) is

$$T = \frac{2C_g^u(1+\eta)}{\epsilon\Delta} - 2 = \frac{2\beta M n^2(1+\eta)}{\epsilon\Delta} - 2.$$

Bound on the value of generated clustering. Algorithm 1 with $p = \frac{\epsilon}{T(n,\epsilon)}$ generates a solution \widehat{X}_{ϵ} that satisfies the bounds in Lemma 2 with probability with at least $1 - \epsilon$ after at most T iterations. Thus, the bound given in (27) holds with probability at least $1 - \epsilon$ and we have

$$\mathbb{E}[\langle C, X^f \rangle] \ge (1 - 6\epsilon) \langle C, X^{\star}_G \rangle (1 - \epsilon) \ge (1 - 7\epsilon) \langle C, X^{\star}_G \rangle$$

Let $\mathbb{E}_L[\cdot]$ denote the expectation over the randomness in the subproblem LMO and $\mathbb{E}_G[\cdot]$ denote the expectation over random Gaussian samples. The expected value of the generated clustering is then bounded as

$$\mathbb{E}[\mathcal{C}] = \mathbb{E}_L[\mathbb{E}_G[\mathcal{C}]] \ge 0.766\mathbb{E}_L[\langle C, X^f \rangle] \ge 0.766(1 - 7\epsilon)\langle C, X_G^\star \rangle \ge 0.766(1 - 7\epsilon)\mathsf{opt}_{CC}^G,$$

where (i) follows from the fact that the value of clustering generated by CGW rounding scheme satisfies $\mathbb{E}[\mathcal{C}] \ge 0.766 \langle C, X^f \rangle$.

We now determine the inner iteration complexity of Algorithm 1.

Upper bound on inner iteration complexity. At each iteration t of Algorithm 1, the subroutine LMO (see (18)) is equivalent to approximately computing maximum eigenvector of the matrix ∇g_t . This is achieved using Lanczos method whose convergence is given in Lemma A.2. Now, let $N = \frac{1}{2} + \frac{1}{\rho} \log(n/p^2)$. We see that the bound on $1/\rho$ is

$$\frac{1}{\rho} \le \frac{\alpha \|\nabla g_t\|(1+\eta)}{4\eta\epsilon\Delta},\tag{28}$$

which is similar to (20). We now derive an upper bound on $\|\nabla g_t\|$.

Lemma A.5. Let $g(X) = \langle L_{G^-} + W^+, X \rangle - \beta \phi_M \left(\operatorname{diag}(X) - \mathbb{1}, \left[-e_i^T X e_j \right]_{(i,j) \in E} \right)$, where $\phi_M(\cdot)$ is defined in (3). We have $\|\nabla g_t\| \leq \Delta (1 + 4(\sqrt{2|E| + n}))$, where $\Delta = \operatorname{Tr}(L_{G^-}) + \sum_{ij \in E^+} w_{ij}^+$.

Proof. For the function g(X) as defined in the lemma, $\nabla g_t = L_{G^-} + W^+ - \beta D$, where D is matrix such that $D_{ii} \in [-1,1]$ for i = 1, ..., n, $D_{ij} \in [-1,1]$ for $(i,j) \in E$, and $D_{ij} = 0$ for $(i,j) \notin E$, and $E = E^- \cup E^+$. We have

$$\max_{k} |\lambda_{k}(W^{+})| \leq \sqrt{\operatorname{Tr}(W^{+T}W^{+})} = \sqrt{\sum_{(i,j)\in E^{+}} |w_{ij}^{+}|^{2}} \leq \sum_{(i,j)\in E^{+}} w_{ij}^{+}, \quad \text{and}$$
(29)

$$\max_{k} |\lambda_{k}(D)| \leq \sqrt{\text{Tr}(D^{T}D)} = \sqrt{\sum_{i,j=1}^{n} |D_{ij}|^{2}} \leq \sqrt{2|E| + n},$$
(30)

where the last inequality follows since D has at most 2|E| + n nonzero entries in the range [-1, 1]. Now, we have

$$\begin{aligned} \|\nabla g_t\| &= \|L_{G^-} + W^+ - \beta D\| \leq \|L_{G^-}\| + \|W^+\| + \| - \beta D\| \\ &\leq \max_i |\lambda_i(L_{G^-})| + \max_i |\lambda_i(W^+)| + \max_i |\lambda_i(-\beta D)| \\ &\leq \max_i |\lambda_i(L_{G^-})| + \sum_{(i,j)\in E^+} w_{ij}^+ + \beta \sqrt{2|E| + n} \\ &\leq \max_{(iii)} \Delta(1 + 4(\sqrt{2|E| + n})). \end{aligned}$$

where (i) follows since the spectral norm of $L_{G^-} + W^+ - \beta D$ satisfies the triangle inequality, (ii) follows from (29), (30) and the fact that L_{G^-} is a positive semidefinite matrix, and (iii) follows by substituting the value of Δ and $\beta = 4\Delta$ as given in Lemma 5.

Substituting the bound on $\|\nabla g_t\|$ in (28), we have

$$\frac{1}{\rho} \leq \frac{1+\eta}{4\eta} \frac{n(1+4(\sqrt{2|E|+n}))}{\epsilon}, \quad \text{and}$$

$$N = \frac{1}{2} + \frac{1}{\sqrt{\rho}} \log(n/p^2) \leq \frac{1}{2} + \sqrt{\frac{1+\eta}{4\eta}} \sqrt{\frac{n(1+4(\sqrt{2|E|+n}))}{\epsilon}} \log(n/p^2) = N^u$$

The computational complexity of Lanczos method is $\mathcal{O}(N^u(|E|+n))$, where the term |E|+n appears since Lanczos method performs matrix-vector multiplication with $\|\nabla g_t\|$, whose sparsity is $\mathcal{O}(|E|)$, plus additional $\mathcal{O}(n)$ arithmetic operations at each iteration. We finally write the computational complexity of each iteration of Algorithm 1 as $\mathcal{O}\left(\frac{\sqrt{n}|E|^{1.25}}{\sqrt{\epsilon}}\log(n/p^2)\right)$.

Total computational complexity of Algorithm 1. Since $p = \frac{\epsilon}{T(n,\epsilon)}$, we have

$$\log\left(\frac{n}{p^2}\right) = \log\left(\frac{(64)^2 n^5 (\log(2n+|E|))^2}{\epsilon^6}\right) \le \log\left(\frac{4^6 n^6}{\epsilon^6}\right) = 6\log\left(\frac{4n}{\epsilon}\right),$$

where the inequality follows since $|E| \leq \binom{n-1}{2}$ and $\left(\log\left(2n + \binom{n-1}{2}\right)\right)^2 \leq n$ for $n \geq 1$. Multiplying outer and inner iteration complexity and substituting the bound on p, we prove that Algorithm 1 is a $\mathcal{O}\left(\frac{n^{2.5}|E|^{1.25}}{\epsilon^{2.5}}\log(n/\epsilon)\log(|E|)\right)$ -time algorithm. \Box

A.8 Proof of Lemma 8

For any symmetric matrix $X \in \mathbb{S}^n$, the definition of τ -spectral closeness (Definition 1) implies

$$(1-\tau)\langle L_G, X \rangle \le \langle L_{\tilde{G}}, X \rangle \le (1+\tau)\langle L_G, X \rangle.$$
 (31)

Let C and \tilde{C} be the cost matrix in the objective of (k-Cut-Rel), when the problem is defined on the graphs G and \tilde{G} respectively. Since C and \tilde{C} are scaled Laplacian matrices (with the same scaling factor (k-1)/2k, from (31), we can write

$$(1-\tau)\langle C, X \rangle \le \langle \tilde{C}, X \rangle \le (1+\tau)\langle C, X \rangle.$$
(32)

Let X_G^{\star} and $X_{\tilde{G}}^{\star}$ be optimal solutions to (k-Cut-Rel) defined on the graphs G and \tilde{G} respectively. From (32), we can write,

$$(1-\tau)\langle C, X_G^{\star}\rangle \le \langle \tilde{C}, X_G^{\star}\rangle \le \langle \tilde{C}, X_{\tilde{G}}^{\star}\rangle, \tag{33}$$

where the last inequality follows since X_{G}^{\star} and $X_{\tilde{G}}^{\star}$ are feasible and optimal solutions respectively to (k-Cut-Rel) defined on the graph \tilde{G} . Combining this with the bound in Lemma 3, i.e., $\mathbb{E}[\text{CUT}] \geq \alpha_k (1 - 4\epsilon) \langle \tilde{C}, X_{\tilde{G}}^{\star} \rangle$, we get

$$\mathbb{E}[\operatorname{CUT}] \geq \alpha_k (1 - 4\epsilon) \langle \tilde{C}, X^{\star}_{\tilde{G}} \rangle \geq \alpha_k (1 - 4\epsilon) (1 - \tau) \langle C, X^{\star}_G \rangle \geq \alpha_k (1 - 4\epsilon - \tau) \langle C, X^{\star}_G \rangle$$
$$\geq \alpha_k (1 - 4\epsilon - \tau) \operatorname{opt}^G_k,$$

where (i) follows from (33), (ii) follows since $(1 - 4\epsilon)(1 - \tau) = 1 - 4\epsilon - \tau + 4\epsilon\tau \ge 1 - 4\epsilon\tau$ for nonnegative ϵ and τ , and (iii) follows since $\langle C, X_G^{\star} \rangle \ge \operatorname{opt}_k^G$ for an optimal solution X_G^{\star} to (k-Cut-Rel) defined on the graph G.

A.9 Proof of Lemma 9

Proof. The Laplacian matrices L_{G^-} and $L_{\tilde{G}^-}$ of the graphs G^- and its sparse approximation \tilde{G}^- respectively satisfy (31). Furthermore, let $L_G^+ = D^+ - W^+$, where $D_{ii}^+ = \sum_{j:(i,j)\in E^+} w_{ij}^+$, be the Laplacian of the graph G^+ and similarly let $L_{\tilde{G}}^+ = \tilde{D}^+ - \tilde{W}^+$ be the Laplacian of the graph \tilde{G}^+ . If X = I, from (31), we have

$$(1-\tau)\operatorname{Tr}(D^+) \le \operatorname{Tr}(\tilde{D}^+) \le (1+\tau)\operatorname{Tr}(D^+).$$
(34)

Rewriting the second inequality in (31) for $X = X_G^*$, and noting that $\operatorname{diag}(X_G^*) = 1$, we have

$$\langle W^+, X_G^\star \rangle \leq \frac{\langle \tilde{W}^+, X_G^\star \rangle}{1 + \tau} + \frac{(1 + \tau) \operatorname{Tr}(D^+) - \operatorname{Tr}(\tilde{D}^+)}{1 + \tau}$$

$$\leq \frac{\langle \tilde{W}^+, X_G^\star \rangle}{1 + \tau} + \frac{2\tau \operatorname{Tr}(D^+)}{1 + \tau},$$

$$(35)$$

where the second inequality follows from (34). Let $C = L_{G^-} + W^+$ and $\tilde{C} = L_{\tilde{G}^-} + \tilde{W}^+$ represent the cost in (MA-Rel) and (MA-Sparse) respectively. Let X_G^* be an optimal solution to (MA-Rel). The optimal objective function value of (MA-Rel) at X_G^* is $\langle C, X_G^* \rangle$ and

$$\begin{split} (1-\tau)\langle C, X_G^{\star} \rangle &= (1-\tau)\langle L_{G^-}, X_G^{\star} \rangle + (1-\tau)\langle W^+, X_G^{\star} \rangle \\ &\leq _{(i)} \langle L_{\tilde{G}^-}, X_G^{\star} \rangle + \frac{1-\tau}{1+\tau} \langle \tilde{W}^+, X_G^{\star} \rangle + \frac{2\tau(1-\tau)}{1+\tau} \mathrm{Tr}(D^+) \\ &\leq _{(ii)} \langle \tilde{C}, X_G^{\star} \rangle - \frac{2\tau}{1+\tau} \langle \tilde{W}^+, X_G^{\star} \rangle + \frac{2\tau}{1+\tau} \mathrm{Tr}(\tilde{D}^+) \\ &\leq _{(iii)} \langle \tilde{C}, X_{\tilde{G}}^{\star} \rangle + \frac{2\tau}{1+\tau} \langle \tilde{C}, X_{\tilde{G}}^{\star} \rangle, \end{split}$$

where (i) follows from (31) and (35), (ii) follows from (34), and substituting $\tilde{C} = L_{\tilde{G}^-} + \tilde{W}^+$ and rearranging the terms and (iii) holds true since $\langle \tilde{W}^+, X_G^* \rangle \geq 0$, and I and X_G^* are feasible to (MA-Sparse) so that $\operatorname{Tr}(\tilde{D}^+) \leq \langle \tilde{C}, X_{\tilde{G}}^* \rangle$ and $\langle \tilde{C}, X_G^* \rangle \leq \langle \tilde{C}, X_{\tilde{G}}^* \rangle$. Rearraning the terms, we have

$$\langle C, X_G^{\star} \rangle \le \frac{1+3\tau}{1-\tau^2} \langle \tilde{C}, X_{\tilde{G}}^{\star} \rangle.$$
(36)

Combining (36) with the fact that the expected value of clustering $\mathbb{E}[\mathcal{C}]$ generated for the graph \hat{G} satisfies (11), we have

$$\mathbb{E}[\mathcal{C}] \ge 0.766(1-6\epsilon) \langle \tilde{C}, X_{\tilde{G}}^{\star} \rangle \ge 0.766 \frac{(1-6\epsilon)(1-\tau^2)}{1+3\tau} \langle C, X_{G}^{\star} \rangle \ge (1-6\epsilon-3\tau)(1-\tau^2) \operatorname{opt}_{CC}^{G},$$

where the last inequality follows since $(1 - 6\epsilon - 3\tau)(1 + 3\tau) \le 1 - 6\epsilon$.

A.10 Proof of Lemma 10

The first step of the procedure given in Section 5 is to sparsify the input graph using the technique proposed in [3] whose computational complexity is $\mathcal{O}(|E|\log^2 n)$. The second step when generating solutions to MAX-K-CUT and MAX-AGREE is to apply the procedures given in Sections 3 and 4 respectively. The computational complexity of this step is bounded as given in Propositions 4 and 7 leading to a $\mathcal{O}\left(\frac{n^{2.5}|E|^{1.25}}{\epsilon^{2.5}}\log(n/\epsilon)\log(|E|)\right)$ -time algorithm.

Bound on the value of generated k-cut. Let $p = \frac{\epsilon}{T(n,\epsilon)}$ and $T(n,\epsilon) = \frac{144 \log(2n+|E|)n^2}{\epsilon^2}$ as given in Lemma 4. Using the procedure given in Section 3, we have $\mathbb{E}[\text{CUT}] \ge \alpha_k(1-5\epsilon) \text{opt}_k^{\tilde{G}}$. From the proof of Lemma 8, we see that CUT is then an approximate k-cut for the input graph G such that $\mathbb{E}[\text{CUT}] \ge \alpha_k(1-5\epsilon-\tau) \text{opt}_k^G$.

Bound on the value of generated clustering. Let $p = \frac{\epsilon}{T(n,\epsilon)}$ and $T(n,\epsilon) = \frac{64 \log(2n+|E|)n^2}{\epsilon^2}$ as given in Lemma 7 and let the procedure given in Section 4 be applied to the sparse graph \tilde{G} . Then, the generated clustering satisfies $\mathbb{E}[\mathcal{C}] \geq 0.766(1-7\epsilon) \operatorname{opt}_{CC}^{\tilde{G}}$. Combining this with the proof of Lemma 9, we have $\mathbb{E}[\mathcal{C}] \geq 0.766(1-7\epsilon-3\tau)(1-\tau^2) \operatorname{opt}_{CC}^{\tilde{G}}$.

B Preliminary Computational Results for MAX-K-CUT

We provide some preliminary computational results when generating an approximate k-cut on the graph G using the approach outlined in Section 3. The aim of these experiments was to verify that the bounds given in Lemma 3 were satisfied in practice. First, we solved (k-Cut-LSE) to $\epsilon \operatorname{Tr}(C)$ -optimality using Algorithm 1 with the input parameters set to $\alpha = n$, $\epsilon = 0.05$, $\beta = 6\operatorname{Tr}(C)$, $M = 6\frac{\log(2n) + |E|}{\epsilon}$. We then computed feasible samples using Algorithm 2 and then finally used the FJ rounding scheme on the generated samples. The computations were performed using MATLAB R2021a on a machine with 8GB RAM. The peak memory requirement was noted using the profiler command in MATLAB.

We performed computations on randomly selected graphs from GSET dataset. In each case, the infeasibility of the covariance of the generated samples was less than ϵ , thus satisfying (7). The number of iterations of LMO in Algorithm 1 was also within the bounds given in Proposition 1. To a generate k-cut, we generated 10 sets of k i.i.d. zero-mean Gaussian samples with covariance \hat{X}_{ϵ} , and each set was then used to generate a k-cut for the input graph using FJ rounding scheme. Let CUT_{best} denote the value of the best k-cut amongst the 10 generated cuts. Table 1 shows the result for graphs from the GSet dataset with k = 3, 4. Note that, $\text{CUT}_{\text{best}} \geq \mathbb{E}[\text{CUT}] \geq \alpha_k (1 - 4\epsilon)\langle C, X^* \rangle \geq \alpha_k \frac{1-4\epsilon}{1+4\epsilon} \langle C, \hat{X}_\epsilon \rangle$, where the last inequality follows from combining (8) with (6). Since we were able to generate the values, CUT_{best} and $\langle C, \hat{X}_{\epsilon} \rangle$, we noted that the weaker bound $\text{CUT}_{\text{best}}/\langle C, \hat{X}_{\epsilon} \rangle = \text{AR} \geq \alpha_k (1 - 4\epsilon)/(1 + 4\epsilon)$ was satisfied by every input graph when $\epsilon = 0.05$.

Furthermore, Table 1 also shows that the memory used by our method was linear in the size of the input graph. To see this, consider the dataset G1, and note that for k = 3, the memory used by our method was 1252.73kB $\approx 8.02 \times (|V| + |E|) \times 8$, where a factor of 8 denotes that MATLAB uses 8 bytes to store a real number. Similarly, for other instances in GSET, the memory used by our method to generate an approximate k-cut for k = 3, 4 was at most $c \times (|V| + |E|) \times 8$, where for each graph the value of c was bounded by $c \leq 82$, showing linear dependence of the memory used on the size of the input graph.

				#					Memory
Dataset	V	E	k	Iterations	infeas	$\langle C, \widehat{X}_{\epsilon} \rangle$	CUT _{best}	AR	required
				$(\times 10^3)$		(-) ()			(in kB)
G1	800	19176	3	823.94	4×10^{-4}	15631	14266	0.9127	1252.73
G1	800	19176	4	891.23	4×10^{-4}	17479	15746	0.9	1228.09
G2	800	19176	3	827.61	6×10^{-5}	15629	14332	0.917	1243.31
G2	800	19176	4	9268.42	8×10^{-5}	17474	15786	0.903	1231.07
G3	800	19176	3	1242.53	7×10^{-5}	15493	14912	0.916	1239.57
G3	800	19176	4	1341.37	7×10^{-45}	17301	15719	0.908	1240.17
G4	800	19176	3	812.8	9×10^{-5}	15660	14227	0.908	1230.59
G4	800	19176	4	9082.74	10^{-4}	17505	15748	0.899	1223.59
G5	800	19176	3	843.5	10^{-4}	15633	14341	0.917	1222.09
G5	800	19176	4	9294.32	10^{-4}	17470	15649	0.895	1227.9
G14	800	4694	3	1240.99	0.002	3917	2533	0.646	3502.64
G14	800	4694	4	3238.42	0.001	4467.9	3775	0.844	519.25
G15	800	4661	3	3400.17	0.001	4018.6	3385	0.842	612
G15	800	4661	4	1603.13	0.001	4475.8	3754	0.838	648.17
G16	800	4672	3	33216.68	0.001	4035.7	3422	0.847	561
G16	800	4672	4	3059.11	0.001	4437.5	3783	0.852	2800
G17	800	4667	3	3526.4	0.001	4031.5	3414	0.846	602.81
G17	800	4667	4	3400.01	0.001	4440	3733	0.84	693.6
G22	2000	19990	3	7402.59	10^{-4}	17840	11954	0.67	1340.34
G22	2000	19990	4	8103.83	10^{-4}	19582	16670	0.851	1341.67
G23	2000	19990	3	3597.39	10^{-4}	17938	15331	0.854	1360.09
G23	2000	19990	4	3588.04	10^{-4}	19697	16639	0.844	1317.09
G24	2000	19990	3	4304.48	10^{-4}	17913	15370	0.858	1341.96
G24	2000	19990	4	1994.26	10^{-4}	19738	16624	0.842	1321.59

Table 1: Result of generating a k-cut for graphs from GSET using the method outlined in Section 3. We have, infeas = $\max\{\|\operatorname{diag}(X) - 1\|_{\infty}, \max\{0, -[\widehat{X}_{\epsilon}]_{ij} - \frac{1}{k-1}\}\}$ and $\operatorname{AR} = \operatorname{CUT}_{\operatorname{best}}/\langle C, \widehat{X}_{\epsilon} \rangle$.

Continued on next page

				#	inaca from pre	10000 puge			Memory
Detect	V	E	k	" Iterations	infeas	$\langle \alpha \hat{\mathbf{v}} \rangle$	CUT _{best}	AR	required
Dataset	V		κ		meas	$\langle C, \widehat{X}_{\epsilon} \rangle$	CU I best	AK	-
				$(\times 10^3)$					(in kB)
G25	2000	19990	3	9774.03	10^{-4}	18186	15294	0.841	1311.54
G25	2000	19990	4	1540.14	10^{-4}	19778	16641	0.841	1330.95
G26	2000	19990	3	2069.65	10^{-4}	18012	15411	0.855	1321.92
G26	2000	19990	4	1841.06	2×10^{-4}	19735	16609	0.841	1331.53
G43	1000	9990	3	894.53	10^{-4}	9029	7785	0.862	661.09
G43	1000	9990	4	9709.68	2×10^{-4}	9925	8463	0.852	665.59
G44	1000	9990	3	721.64	10^{-4}	9059.5	7782	0.859	661.09
G44	1000	9990	4	9294.43	10^{-4}	9926.1	8448	0.851	765.37
G45	1000	9990	3	794.84	10^{-4}	9038.4	7773	0.86	661.09
G45	1000	9990	4	9503.74	2×10^{-4}	9929.7	8397	0.845	669
G46	1000	9990	3	703.4	10^{-4}	9068.5	7822	0.862	661.09
G46	1000	9990	4	9684.93	4×10^{-4}	9929.9	8333	0.839	657.09
G47	1000	9990	3	777.61	10^{-4}	9059.4	7825	0.863	679.89
G47	1000	9990	4	9789.55	2×10^{-4}	9930.8	8466	0.852	661.09

Table 1 – *Continued from previous page*

C Additional Computational Results for Correlation Clustering

We provide the computational result for the graphs from the GSET dataset (not included in the main article) here. We performed computations for graphs G1-G57 from GSET dataset. The instances for which we were able to generate an $\epsilon\Delta$ -optimal solution to (MA-LSE) are given in Table 2, where the parameters, ϵ and Δ , were set as given in Section 6. For the instances not in the table, we were not able to generate an $\epsilon\Delta$ -optimal solution after 30 hours of runtime.

Table 2: Result of generating a clustering of graphs from GSET using the method outlined in
Section 4. We have, infeas = $\max\{\ \operatorname{diag}(X) - 1\ _{\infty}, \max\{0, -[\widehat{X}_{\epsilon}]_{ij}\}\}, AR = \mathcal{C}_{\operatorname{best}}/\langle C, \widehat{X}_{\epsilon}\rangle$ and
$0.75(1-6\epsilon)/(1+4\epsilon) = 0.4375$ for $\epsilon = 0.05$.

				#					Memory	
Dataset	V	$ E^+ $	$ E^- $	Iterations	infeas	$\langle C, \widehat{X}_{\epsilon} \rangle$	$\mathcal{C}_{\text{best}}$	AR	required	
				$(\times 10^3)$					(in kB)	
G2	800	2501	16576	681.65	8×10^{-4}	848.92	643.13	0.757	1520.18	
G3	800	2571	16498	677.56	7×10^{-4}	835.05	634.83	0.76	1529.59	
G4	800	2457	16622	665.93	6×10^{-4}	852.18	647.37	0.76	1752	
G5	800	2450	16623	646.4	10^{-3}	840.63	636.21	0.756	1535.92	
G6	800	9665	9511	429.9	3×10^{-4}	25766	21302	0.826	1664	
G7	800	9513	9663	423.58	8×10^{-4}	26001	20790	0.799	1535.06	
G8	800	9503	9673	421.34	6×10^{-4}	26005	21080	0.81	4284	
G9	800	9556	9620	426.4	3×10^{-4}	25903	21326	0.823	1812	
G10	800	9508	9668	426.25	3×10^{-4}	25974	21412	0.824	1535.59	
G12	800	798	802	393.69	9×10^{-4}	3023.4	2034	0.672	444.06	
G13	800	817	783	416.29	8×10^{-4}	3001.1	2010	0.669	613.03	
G15	800	3801	825	284.77	10^{-3}	529.83	401.19	0.757	460.17	
G16	800	3886	749	228.12	8×10^{-4}	524.69	417.88	0.796	451.07	
G17	800	3899	744	2448.633	9×10^{-4}	536.65	369.04	0.687	480.45	
G18	800	2379	2315	1919.44	2×10^{-3}	7237.6	5074	0.701	434.67	
G19	800	2274	2387	2653.79	2×10^{-3}	7274.2	5130	0.705	496	
G20	800	2313	2359	1881.75	2×10^{-3}	7258.1	5186	0.714	406.09	
G21	800	2300	2367	1884.97	2×10^{-3}	7281.3	5238	0.719	467.26	
G23	2000	120	19855	550.77	2×10^{-3}	1802.2	1373.2	0.762	1651.54	
G24	2000	96	19875	812.16	10^{-3}	1811.2	1384.6	0.764	1678.04	
G25	2000	109	19872	1739.06	6×10^{-4}	1801.8	1398.1	0.776	1650.48	
G26	2000	117	19855	1125.74	10^{-3}	1789.9	1356.9	0.758	1650.01	
G27	2000	9974	10016	464.93	5×10^{-4}	30502	22010	0.721	1647.09	
Continued on next page										

Continued on next page

			140	$1e_2 - Comm$	acu jiom pre	nous page			
				#					Memory
Dataset	V	$ E^+ $	$ E^- $	Iterations	infeas	$\langle C, \widehat{X}_{\epsilon} \rangle$	$\mathcal{C}_{\text{best}}$	AR	required
				$(\times 10^3)$		() -/			(in kB)
G28	2000	9943	10047	553.65	4×10^{-4}	30412	22196	0.729	1317.78
G29	2000	10035	9955	513.97	2×10^{-4}	30366	23060	0.759	1310.46
G30	2000	10045	9945	594.09	3×10^{-4}	30255	22550	0.745	1310.48
G31	2000	9955	10035	1036.9	2×10^{-4}	29965	22808	0.761	1305.05
G33	2000	1985	2015	403.75	10^{-3}	7442	4404	0.591	634.93
G34	2000	1976	2024	863.53	4×10^{-4}	7307.2	4760	0.651	574.12
G44	1000	229	9721	515.18	10^{-3}	810.82	616.61	0.76	655.09
G45	1000	218	9740	504.91	10^{-3}	812.21	615.84	0.758	660.51
G46	1000	237	9723	469.6	10^{-3}	818.39	623.95	0.762	655.09
G47	1000	230	9732	495.24	9×10^{-4}	819.63	621.65	0.758	648.32
G49	3000	0	6000	1002.59	0.003	599.64	456.48	0.761	733
G50	3000	0	6000	996.19	0.004	599.64	455.78	0.76	540.26
G52	1000	4750	1127	2041.8	0.001	684.1	441.02	0.644	757.59
G53	1000	4820	1061	785.33	8×10^{-4}	695.53	445.03	0.639	417.07
G54	1000	4795	1101	2899.99	7×10^{-4}	686.8	482.57	0.702	517.09
G56	5000	6222	6276	1340.35	0.004	22246	12788	0.574	1243.98

Table 2 – Continued from previous page

References

- [1] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In *Proceedings of the* 30th International Conference on Machine Learning, pages 427–435, 2013.
- [2] Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. *SIAM Journal on Matrix Analysis and Applications*, 13(4):1094–1122, 1992.
- [3] Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A framework for analyzing resparsification algorithms. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 2032–2043. SIAM, 2017.
- [4] Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient structured convex optimization via extreme point sampling. *SIAM Journal on Mathematics of Data Science*, 3(3):787–814, 2021.