
Supplementary Material: Memory-Efficient
Approximation Algorithms for MAX-K-CUT and

Correlation Clustering

Nimita Shinde
IITB-Monash Research Academy, Mumbai, India

nimitas@iitb.ac.in

Vishnu Narayanan
Industrial Engineering and Operations Research

IIT Bombay, Mumbai, India
vishnu@iitb.ac.in

James Saunderson
Electrical and Computer Systems Engineering

Monash University, Clayton, Australia
james.saunderson@monash.edu

A Proofs

A.1 Proof of Lemma 1

Proof. Let ϑ ∈ Rd1 and µ ∈ Rd2 be the dual variables corresponding to the d1 equality constraints
and the d2 inequality constraints respectively. The dual of (SDP) is

min
ϑ,µ

d1∑
i=1

b
(1)
i ϑi +

d2∑
j=1

b
(2)
j µj subject to

d1∑
i=1

ϑiA
(1)
i +

d2∑
j=1

A
(2)
j µj − C � 0

µ ≤ 0,

(DSDP)

where A(2)
j ’s for j = 1, . . . , d2 are assumed to be symmetric.

Lower bound on the objective. Let X? be an optimal solution to (SDP) and let X?
FW be an

optimal solution to (SDP-LSE). For ease of notation, let

u = A(1)(X)− b(1) and v = b(2) −A(2)(X), (1)

and define (ûε, v̂ε), (uFW , vFW) and (u?, v?) by substituting X̂ε, XFW and X? respectively in (1).
Since X̂ε is an ε-optimal solution to (SDP-LSE), and a feasible solution to (SDP-LSE), the following
holds

〈C, X̂ε〉−βφM (ûε, v̂ε) ≥ 〈C,XFW 〉−βφM (uFW , vFW)− ε ≥ 〈C,X?〉−βφM (u?, v?)− ε. (2)

We know that (u?, v?) is feasible to (SDP), so that φM (u?, v?) ≤ log(2d1+d2)
M . Now, rearranging the

terms, and using the upper bound on φM (u?, v?) and the fact that φM (ûε, v̂ε) ≥ 0,

〈C, X̂ε〉 ≥ 〈C,X?〉 − β log(2d1 + d2)

M
− ε. (3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Upper bound on the objective. The Lagrangian of (SDP) is L(X,ϑ, µ) = 〈C,X〉−
∑d1
i=1 uiϑi +∑d2

j=1 vjµj . For a primal-dual optimal pair, (X?, ϑ?, µ?), and X̂ε � 0, we have that L(X̂ε, ϑ
?, µ?) ≤

L(X?, ϑ?, µ?), i.e.,

〈C, X̂ε〉 −
d1∑
i=1

ϑ?i [ûε]i +

d2∑
i=j

µ?j [v̂ε]j ≤ 〈C,X?〉 −
d1∑
i=1

ϑ?i u
?
i +

d2∑
j=1

µ?jv
?
j

≤ 〈C,X?〉.
Rearranging the terms, using the duality of the `1 and `∞ norms, and the fact that µ? ≤ 0, gives

〈C, X̂ε〉 ≤ 〈C,X?〉+

d1∑
i=1

ϑ?i [ûε]i −
d2∑
j=1

µ?j [v̂ε]j

≤ 〈C,X?〉+

(
d1∑
i=1

|ϑ?i |

)
‖ûε‖∞ +

 d2∑
j=1

−µ?j

max
j

[v̂ε]j

≤ 〈C,X?〉+ ‖[ϑ?, µ?]]‖1 max

{
‖ûε‖∞,max

j
[v̂ε]j

}
.

(4)

Bound on infeasibility. Using (4), we rewrite (2) as,

βφM (ûε, v̂ε) ≤ 〈C, X̂ε〉 − 〈C,X?〉+ βφM (u?, v?) + ε

≤ ‖[ϑ?, µ?]‖1 max

{
‖ûε‖∞,max

j
[v̂ε]j

}
+ β

log(2d1 + d2)

M
+ ε.

(5)

Combining the lower bound on φM (·) given in (2.1) with (5) and since β > ‖[ϑ?, µ?]‖1 by assump-
tion, we have

max

{
‖ûε‖∞,max

j
[v̂ε]j

}
≤
β log(2d1+d2)

M + ε

β − ‖[ϑ?, µ?]‖1
. (6)

Completing the upper bound on the objective. Substituting (6) into (4) gives

〈C, X̂ε〉 ≤ 〈C,X?〉+ ‖[ϑ?, µ?]‖1
β log(2d1+d2)

M + ε

β − ‖[ϑ?, µ?]‖1
. (7)

A.2 Proof of Lemma 2

Proof. The proof consists of three parts.

Lower bound on the objective. Substituting the values of β and M , and replacing ε by εTr(C)
in (3), we have

〈C, X̂ε〉 ≥ 〈C,X?
R〉 − 2εTr(C). (8)

Since the identity matrix I is strictly feasible for (k-Cut-Rel), Tr(C) ≤ 〈C,X?
R〉. Combining this

fact with (8) gives,
〈C, X̂ε〉 ≥ (1− 2ε)〈C,X?

R〉.

Bound on infeasibility. For (k-Cut-Rel), let ν = [ν(1), ν(2)] ∈ Rn+|E| be a dual variable such that
ν
(1)
i for i = 1, . . . , n are the variables corresponding to n equality constraints and ν(2)ij for (i, j) ∈
E, i < j are the dual variables corresponding to |E| inequality constraints. Following (DSDP), the
dual of (k-Cut-Rel) is

min
ν

n∑
i=1

ν
(1)
i −

1

k − 1

∑
ij∈E
i<j

ν
(2)
ij subject to

diag∗(ν(1)) +

∑
ij∈E
i<j

[eie
T
j + eje

T
i]
ν
(2)
ij

2 − C � 0

ν(2) ≤ 0.

(Dual-Relax)

2

Let ν? be an optimal dual solution. In order to bound the infeasibility using (6), we need a bound on
‖ν?‖1 which is given by the following lemma.

Lemma A.1. The value of ‖ν?‖1 is upper bounded by 4Tr(C).

Proof. The matrix C is a scaled Laplacian and so, the only off-diagonal entries that are nonzero
correspond to (i, j) ∈ E and have value less than zero. For (Dual-Relax), a feasible solution
is ν(1) = diag(C), ν(2)ij = 2Cij for (i, j) ∈ E, i < j. The optimal objective function value
of (Dual-Relax) is then upper bounded by

n∑
i=1

ν
(1)?
i − 1

k − 1

∑
ij∈E
i<j

ν
(2)?
ij ≤ Tr(C) +

1

k − 1
Tr(C) =

k

k − 1
Tr(C)

⇒
n∑
i=1

ν
(1)?
i ≤ k

k − 1
Tr(C) +

1

k − 1

∑
ij∈E
i<j

ν
(2)?
ij ≤ k

k − 1
Tr(C), (9)

where the last inequality follows since ν(2) ≤ 0.

We have

〈
diag∗(ν(1)?) +

∑
ij∈E
i<j

[eie
T
j + eje

T
i]
ν
(2)?
ij

2 ,11T

〉
− 〈C,11T 〉 ≥ 0 since both matrices are

PSD. Using the fact that 1 is in the null space of C, we get

−
∑
ij∈E
i<j

ν
(2)?
ij ≤

n∑
i=1

ν
(1)?
i . (10)

Since ν(2)? ≤ 0, we can write

‖ν?‖1 =

n∑
i=1

|ν(1)?i | −
∑
ij∈E
i<j

ν
(2)?
i ≤ 2

n∑
i=1

ν
(1)?
i , (11)

which follows from (10) and the fact that for the dual to be feasible we have ν(1) ≥ 0 since C has
nonnegative entries on the diagonal. Substituting (9) in (11),

‖ν?‖1 ≤
2k

k − 1
Tr(C) ≤ 4Tr(C), (12)

where the last inequality follows since k/(k − 1) ≤ 2 for k ≥ 2.

Since X̂ε is an εTr(C)-optimal solution to (k-Cut-LSE), we replace ε be εTr(C) in (6). Finally,
substituting (12) into (6), and setting β = 6Tr(C) and M = 6 log(2n+|E|)

ε ,

max

{
‖diag(X̂ε)− 1‖∞, max

ij∈E,i<j
− 1

k − 1
− [X̂ε]ij

}
≤ ε. (13)

This condition can also be stated as

‖diag(X̂ε)− 1‖∞ ≤ ε, [X̂ε]ij ≥ −
1

k − 1
− ε (i, j) ∈ E, i < j.

Upper bound on the objective. Substituting (13) and (12) and the values of parameters β and M
into (7) gives

〈C, X̂ε〉 ≤ 〈C,X?
R〉+ 4Tr(C)ε ≤ (1 + 4ε)〈C,X?

R〉,
where the last inequality follows since Tr(C) ≤ 〈C,X?

R〉.

3

A.3 Proof of Lemma 3

Proof. We first show that Algorithm 2 generates samples whose covariance is feasible to (k-Cut-Rel).

Proposition 1. Given k Gaussian random vectors z1, . . . , zk ∼ N (0, X̂ε), such that their covariance
X̂ε satisfies the inequality (7), the Gaussian random vectors zf1 , . . . , z

f
k ∼ N (0, Xf) generated by

Algorithm 2 have covariance Xf that is a feasible solution to (k-Cut-Rel).

Proof. Define X = X̂ε + err11T . Note that, X � 0 and it satisfies the following properties:

1. Since X̂ε satisfies (7), we have err ≤ ε. Combining this fact with the definition of X , we
have Xjl ≥ − 1

k−1 for (j, l) ∈ E, j < l.

2. Furthermore, diag(X) = diag(X̂ε) + err, which when combined with (7), gives 1 ≤
diag(X) ≤ 1 + 2err.

3. For y ∼ N (0, 1), if zi = zi +
√

erry1, i.e., it is a sum of two Gaussian random vectors,
then zi ∼ N (0, X).

The steps 5 and 6 of Algorithm 2 generate a zero-mean random vector zf whose covariance is

Xf =
X

max(diag(X))
+

(
I − diag∗

(
diag(X)

max(diag(X))

))
, (14)

i.e., zf ∼ N (0, Xf). Furthermore, Xf is feasible to (k-Cut-Rel) since diag(Xf) = 1, Xf
jl ≥ −

1
k−1

for (j, l) ∈ E, j < l, and it is a sum of two PSD matrices so that Xf � 0.

The objective function value of (k-Cut-Rel) at Xf (defined in (14)) is

〈C,Xf 〉 =

〈
C,

X̂ε + err11T

max(diag(X̂ε)) + err
+

(
I − diag∗

(
diag(X̂ε) + err

max(diag(X̂ε)) + err

))〉

≥
(i)

〈C, X̂ε〉
max(diag(X̂ε)) + err

≥
(ii)

1− 2ε

1 + 2ε
〈C,X?

R〉 ≥
(iii)

(1− 4ε)〈C,X?
R〉, (15)

where (i) follows from the fact that both C and err11T

max(diag(X̂ε))+err
+ I − diag∗

(
diag(X̂ε)+err

max(diag(X̂ε))+err

)
are

PSD and so, their inner product is nonnegative, (ii) follows from Lemma 2 and the fact that err ≤ ε,
and (iii) uses the fact that 1−2ε ≥ (1 + 2ε)(1−4ε). Let E[CUT] denote the value of the cut generated
from the samples zfi ’s. Combining (15) with the inequality E[CUT]

〈C,Xf 〉 ≥ αk (see (5)), we have

E[CUT] ≥ αk〈C,Xf 〉 ≥ αk(1− 4ε)〈C,X?
R〉 ≥ αk(1− 4ε)optGk . (16)

A.4 Proof of Lemma 4

Proof. We use Algorithm 1 with p = ε
T (n,ε) and T (n, ε) = 144 log(2n+|E|)n2

ε2 to generate an εTr(C)-
optimal solution to (k-Cut-LSE). We first bound the outer iteration complexity, i.e., the number
of iterations of Algorithm 1 until convergence. This value also denotes the number of times the
subproblem LMO is solved.

Upper bound on outer iteration complexity. Let the objective function of (k-Cut-LSE) be

g(X) = 〈C,X〉 − βφM
(

diag(X)− 1,
[
− 1
k−1 − e

T
i Xej

]
(i,j)∈E

)
.

4

Theorem 1. Let g(X) be a concave and differentiable function and X? an optimal solution
of (k-Cut-LSE). Let Cug be an upper bound on the curvature constant of g, and let η ≥ 0 be
the accuracy parameter for LMO, then, Xt satisfies

−g(Xt) + g(X?) ≤
2Cug (1 + η)

t+ 2
,

with probability at least (1− p)t ≥ 1− tp.

The result follows from [1, Theorem 1] when LMO generates a solution with approximation error
at most 1

2ηγC
u
g with probability 1 − p. Now, η ∈ (0, 1) is an appropriately chosen constant, and

from [4, Lemma 3.1], an upper bound Cuf on the curvature constant of g(X) is βMn2. Thus, after at
most

T =
2Cug (1 + η)

εTr(C)
− 2 =

2βMn2(1 + η)

εTr(C)
− 2 (17)

iterations, Algorithm 1 generates an εTr(C)-optimal solution to (k-Cut-LSE).

Bound on the approximate k-cut value. From Theorem 1, we see that after at most T iterations,
Algorithm 1 generates a solution X̂ε that satisfies the bounds in Lemma 2 with probability with at least
1−ε when p = ε

T (n,ε) . Consequently, the bound given in (15) also holds with probability at least 1−ε.
And so, the expected value of 〈C,Xf 〉 is E[〈C,Xf 〉] ≥ (1− 4ε)〈C,X?

R〉(1− ε) ≥ (1− 5ε)〈C,X?
R〉.

Finally, from (16), the expected value of the k-cut, denoted by E[CUT], is bounded as

E[CUT] = EL[EG[CUT]] ≥ αkEL[〈C,Xf 〉] ≥ αk(1− 5ε)〈C,X?
R〉 ≥ αk(1− 5ε)optGk ,

where EL[·] denotes the expectation over the randomness in the subproblem LMO and EG[·] denotes
the expectation over random Gaussian samples.

Finally, we compute an upper bound on the complexity of each iteration, i.e., inner iteration complex-
ity, of Algorithm 1.

Upper bound on inner iteration complexity. At each iteration t, Algorithm 1 solves the subprob-
lem LMO, which generates a unit vector h, such that

α〈hhT ,∇gt〉 ≥ max
d∈S

α〈d,∇gt〉 −
1

2
ηγtC

u
g , (18)

where γt = 2
t+2 , ∇gt = ∇g(Xt) and S = {X � 0 : Tr(X) ≤ n}. Note that this problem is

equivalent to approximately computing maximum eigenvector of the matrix ∇gt which can be done
using Lanczos algorithm [2].

Lemma A.2 (Convergence of Lanczos algorithm). Let ρ ∈ (0, 1] and p ∈ (0, 1/2]. For ∇gt ∈ Sn,
the Lanczos method [2], computes a vector h ∈ Rn, that satisfies

hT∇gth ≥ λmax(∇gt)−
ρ

8
‖∇gt‖ (19)

with probability at least 1− 2p, after at most q ≥ 1
2 + 1√

ρ log(n/p2) iterations.

This result is an adaptation of [2, Theorem 4.2] which provides convergence of Lanczos to approxi-
mately compute minimum eigenvalue and the corresponding eigenvector of a symmetric matrix. Let
N = 1

2 + 1√
ρ log(n/p2). We now derive an upper bound on N .

Comparing (19) and (18), we see that
1

2
ηγtC

u
g = α

ρ

8
‖∇gt‖

⇒1

ρ
=
α‖∇gt‖
4ηγtCug

Substituting the value of γt in the equation above, and noting that γt = 2
t+2 ≥

2
T+2 , we have

1

ρ
=
α‖∇gt‖(t+ 2)

8ηCug
≤ α‖∇gt‖(T + 2)

8ηCug
=
α‖∇gt‖(1 + η)

4ηεTr(C)
, (20)

5

where the last equality follows from substituting the value of T (see (17)). We now derive an upper
bound on ‖∇gt‖.

Lemma A.3. Let g(X) = 〈C,X〉−βφM
(

diag(X)− 1,
[
− 1
k−1 − e

T
i Xej

]
(i,j)∈E

)
, where φM (·)

is defined in (3). We have ‖∇gt‖ ≤ Tr(C)(1 + 6(
√

2|E|+ n)).

Proof. For the function g(X) as defined in the lemma,∇gt = C − βD, where D is matrix such that
Dii ∈ [−1, 1] for i = 1, . . . , n, Dij ∈ [−1, 1] for (i, j) ∈ E, and Dij = 0 for (i, j) /∈ E. Thus, we
have

max
k
|λk(D)| ≤

√
Tr(DTD) =

√√√√ n∑
i,j=1

|Dij |2 ≤
√

2|E|+ n, (21)

where the last inequality follows since there are at most 2|E| off-diagonal and n diagonal nonzero
entries in the matrix D with each nonzero entry in the range [−1, 1]. Now,

‖∇gt‖ = ‖C − βD‖ ≤
(i)
‖C‖+ ‖ − βD‖

≤ max
i
|λi(C)|+ max

i
|λi(−βD)|

≤
(ii)

Tr(C) + β
√

2|E|+ n

≤
(iii)

Tr(C)(1 + 6(
√

2|E|+ n)).

where (i) follows from the triangle inequality for the spectral norm of C − βD, (ii) follows from (21)
and since C is graph Laplacian and a positive semidefinite matrix, and (iii) follows by substituting
β = 6Tr(C) as given in Lemma 2.

Substituting α = n, and the bound on ‖∇gt‖ in (20), we have

1

ρ
≤ 1 + η

4η

n(1 + 6(
√

2|E|+ n))

ε
, and

N =
1

2
+

1
√
ρ

log(n/p2) ≤ 1

2
+

√
1 + η

4η

√
n(1 + 6(

√
2|E|+ n))

ε
log(n/p2) = Nu.

Finally, each iteration of Lanczos method performs a matrix-vector multiplication with∇gt, which
has at most 2|E|+ n number of nonzero iterations, and O(n) additional arithmetic operations. Thus,
the computational complexity of Lanczos method is O(Nu(|E| + n)). Moreover, Algorithm 1
performs O(|E|+ n) additional arithmetic operations so that the total inner iteration complexity is
O(Nu(|E|+ n)), which can be written as O

(√
n|E|1.25√

ε
log(n/p2)

)
.

Computational complexity of Algorithm 1. Now, substituting p = ε
T (n,ε) , we have

log

(
n

p2

)
= log

(
(144)2n5(log(2n+ |E|))2

ε6

)
≤ log

(
(5.3n)6

ε6

)
= 6 log

(
5.3n

ε

)
,

where the inequality follows since |E| ≤
(
n−1
2

)
,
(
log
(
2n+

(
n−1
2

)))2 ≤ n for n ≥ 1 and (5.3)6 ≥
(144)2. Substituting the upper bound on log(n/p2) inNu, and combining the inner iteration complex-
ity, O(Nu(|E|+ n)), and outer iteration complexity, T , we get a O

(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-
time algorithm.

A.5 Proof of Lemma 5

Proof. We need to prove four inequalities given in Lemma 5.

6

Lower bound on the objective, 〈C, X̂ε〉. Substituting the values of β and M , and replacing ε by
εTr(C) in (3), we have

〈C, X̂ε〉 ≥ 〈C,X?
G〉 − 2ε

Tr(LG−) +
∑
ij∈E+

w+
ij

 . (22)

Since 0.5I+0.511T is feasible for (MA-Rel), 0.5(Tr(LG−)+
∑
ij∈E+ w

+
ij) ≤ 〈C,X?

G〉. Combining
this fact with (22), we have

〈C, X̂ε〉 ≥ (1− 4ε)〈C,X?
G〉.

Bound on infeasibility. Let E = E− ∪ E+ and let ν = [ν(1), ν(2)] ∈ Rn+|E| be the dual variable
such that ν(1) is the dual variable corresponding to the n equality constraints and ν(2) is the dual
variable for |E| inequality constraints. Following (DSDP), the dual of (MA-Rel) is

min
ν

n∑
i=1

ν
(1)
i subject to

diag∗(ν(1)) +

∑
ij∈E
i<j

[eie
T
j + eje

T
i]
ν
(2)
ij

2 − C � 0

ν(2) ≤ 0,

(Dual-CC)

where C = LG− +W+. Let ν? be an optimal dual solution. We derive an upper bound on ‖ν?‖1 in
the following lemma, which is then used to bound the infeasibility using (6).

Lemma A.4. The value of ‖ν?‖1 is upper bounded by 2
(

Tr(LG−) +
∑
ij∈E+ w

+
ij

)
.

Proof. For (Dual-CC), ν(1)i = [LG−]ii +
∑
j:ij∈E+ w

+
ij for i = 1, . . . , n, and ν(2)ij = 2[LG−]ij for

(i, j) ∈ E, i < j is a feasible solution. The optimal objective function value of (Dual-CC) is then
upper bounded as

n∑
i=1

ν
(1)?
i ≤ Tr(LG−) +

∑
ij∈E+

w+
ij . (23)

We have

〈
diag∗(ν(1)?) +

∑
ij∈E
i<j

[eie
T
j + eje

T
i]
ν
(2)?
ij

2 − C,11T
〉
≥ 0 since both matrices are PSD.

Using the fact that 〈LG− ,11T 〉 = 0, and rearranging the terms, we have

−
∑
ij∈E
i<j

ν
(2)?
ij ≤

n∑
i=1

ν
(1)?
i −

∑
ij∈E+

w+
ij .

Since ν(2)? ≤ 0, we can write

‖ν?‖1 =

n∑
i=1

|ν(1)?i | −
∑
ij∈E
i<j

ν
(2)?
ij ≤ 2

n∑
i=1

ν
(1)?
i −

∑
ij∈E+

w+
ij , (24)

where we have used the fact that for any dual feasible solution, ν(1)i ≥ [LG−]ii ≥ 0 for all i =
1, . . . , n. Substituting (23) in (24),

‖ν?‖1 ≤ 2Tr(LG−) +
∑
ij∈E+

w+
ij ≤ 2

Tr(LG−) +
∑
ij∈E+

w+
ij

 . (25)

7

For ∆ = Tr(LG−) +
∑
ij∈E+ w

+
ij , X̂ε is an ε∆-optimal solution to (MA-LSE). And so, we replace

ε be ε∆ in (6). Now, substituting (25) and the values of β and M into (6), we get

max

{
‖diag(X̂ε)− 1‖∞, max

ij∈E,i<j
−[X̂ε]ij

}
≤ ε. (26)

This condition can also be stated as
‖diag(X̂ε)− 1‖∞ ≤ ε, [X̂ε]ij ≥ −ε (i, j) ∈ E, i < j.

Substituting (26), (25) and the values of the parameters β and M into (7) gives

〈C, X̂ε〉 ≤ 〈C,X?
G〉+ 2

Tr(LG−) +
∑
ij∈E+

w+
ij

 ε ≤ (1 + 4ε)〈C,X?
G〉,

where the last inequality follows since I is a feasible solution to (MA-Rel).

A.6 Proof of Lemma 6

Proof. We first note that Algorithm 2 generates a samples whose covariance is feasible to (MA-Rel).

Proposition 2. Let z1, z2 ∼ N (0, X̂ε) be Gaussian random vectors such that their covariance X̂ε sat-
isfies the inequality (10). Replace Step 3 of Algorithm 2 with err = max{0,max(i,j)∈E,i<j −[X̂ε]ij}.
The Gaussian random vectors zf1 , z

f
2 ∼ N (0, Xf) generated by the modified Algorithm 2 have co-

variance that is feasible to (MA-Rel).

The proof of Proposition 2 is the same as the proof of Proposition 1. Now, let

Xf =
X̂ε + err11T

max(diag(X̂ε)) + err
+

(
I − diag∗

(
diag(X̂ε) + err

max(diag(X̂ε)) + err

))
The objective function value of (MA-Rel) at Xf is

〈C,Xf 〉 =

〈
C,

X̂ε + err11T

max(diag(X̂ε)) + err
+

(
I − diag∗

(
diag(X̂ε) + err

max(diag(X̂ε)) + err

))〉

≥
(i)

〈C, X̂ε〉
max(diag(X̂ε)) + err

+

〈
C,

(
I − diag∗

(
diag(X̂ε) + err

max(diag(X̂ε)) + err

))〉

≥
(ii)

〈C, X̂ε〉
max(diag(X̂ε)) + err

≥
(iii)

1− 4ε

1 + 2ε
〈C,X?

G〉 ≥
(iv)

(1− 6ε)〈C,X?
G〉 (27)

where (i) follows from the fact that 〈LG− , err11T 〉 = 0 and 〈W+, err11T 〉 ≥ 0, (ii) follows since

LG− and I − diag∗
(

diag(X̂ε)+err
max(diag(X̂ε))+err

)
are PSD and their inner product is nonnegative and the

diagonal entries of W+ are 0, (iii) follows from Lemma 5 and the fact that err ≤ ε, and (iv) follows
since 1−4ε ≥ (1+2ε)(1−6ε). Combining the fact that 〈C,X?

G〉 ≥ optGCC and E[C] ≥ 0.766〈C,Xf 〉
with the above, we have

E[C] ≥ 0.766(1− 6ε)optGCC .

A.7 Proof of Lemma 7

Proof. We use Algorithm 1 with p = ε
T (n,ε) and T (n, ε) = 64 log(2n+|E|)n2

ε2 to generate an ε∆-
optimal solution to (MA-LSE), where ∆ = Tr(LG−) +

∑
ij∈E+ w

+
ij .

Upper bound on outer iteration complexity. The convergence result given in Theorem 1 holds
when Algorithm 1 is applied to (k-Cut-LSE). Then, the total number of iterations of Algorithm 1,
also known as outer iteration complexity, required to generate ε∆-optimal solution to (k-Cut-LSE) is

T =
2Cug (1 + η)

ε∆
− 2 =

2βMn2(1 + η)

ε∆
− 2.

8

Bound on the value of generated clustering. Algorithm 1 with p = ε
T (n,ε) generates a solution

X̂ε that satisfies the bounds in Lemma 2 with probability with at least 1− ε after at most T iterations.
Thus, the bound given in (27) holds with probability at least 1− ε and we have

E[〈C,Xf 〉] ≥ (1− 6ε)〈C,X?
G〉(1− ε) ≥ (1− 7ε)〈C,X?

G〉.

Let EL[·] denote the expectation over the randomness in the subproblem LMO and EG[·] denote the
expectation over random Gaussian samples. The expected value of the generated clustering is then
bounded as

E[C] = EL[EG[C]] ≥
(i)

0.766EL[〈C,Xf 〉] ≥ 0.766(1− 7ε)〈C,X?
G〉 ≥ 0.766(1− 7ε)optGCC ,

where (i) follows from the fact that the value of clustering generated by CGW rounding scheme
satisfies E[C] ≥ 0.766〈C,Xf 〉.
We now determine the inner iteration complexity of Algorithm 1.

Upper bound on inner iteration complexity. At each iteration t of Algorithm 1, the subroutine
LMO (see (18)) is equivalent to approximately computing maximum eigenvector of the matrix∇gt.
This is achieved using Lanczos method whose convergence is given in Lemma A.2. Now, let
N = 1

2 + 1
ρ log(n/p2). We see that the bound on 1/ρ is

1

ρ
≤ α‖∇gt‖(1 + η)

4ηε∆
, (28)

which is similar to (20). We now derive an upper bound on ‖∇gt‖.

Lemma A.5. Let g(X) = 〈LG−+W+, X〉−βφM
(

diag(X)− 1,
[
−eTi Xej

]
(i,j)∈E

)
, where φM (·)

is defined in (3). We have ‖∇gt‖ ≤ ∆(1 + 4(
√

2|E|+ n)), where ∆ = Tr(LG−) +
∑
ij∈E+ w

+
ij .

Proof. For the function g(X) as defined in the lemma,∇gt = LG− +W+− βD, where D is matrix
such that Dii ∈ [−1, 1] for i = 1, . . . , n, Dij ∈ [−1, 1] for (i, j) ∈ E, and Dij = 0 for (i, j) /∈ E,
and E = E− ∪ E+. We have

max
k
|λk(W+)| ≤

√
Tr(W+TW+) =

√ ∑
(i,j)∈E+

|w+
ij |2 ≤

∑
(i,j)∈E+

w+
ij , and (29)

max
k
|λk(D)| ≤

√
Tr(DTD) =

√√√√ n∑
i,j=1

|Dij |2 ≤
√

2|E|+ n, (30)

where the last inequality follows since D has at most 2|E|+ n nonzero entries in the range [−1, 1].
Now, we have

‖∇gt‖ = ‖LG− +W+ − βD‖ ≤
(i)
‖LG−‖+ ‖W+‖+ ‖ − βD‖

≤ max
i
|λi(LG−)|+ max

i
|λi(W+)|+ max

i
|λi(−βD)|

≤
(ii)

Tr(LG−) +
∑

(i,j)∈E+

w+
ij + β

√
2|E|+ n

≤
(iii)

∆(1 + 4(
√

2|E|+ n)).

where (i) follows since the spectral norm of LG− +W+ − βD satisfies the triangle inequality, (ii)
follows from (29), (30) and the fact that LG− is a positive semidefinite matrix, and (iii) follows by
substituting the value of ∆ and β = 4∆ as given in Lemma 5.

9

Substituting the bound on ‖∇gt‖ in (28), we have

1

ρ
≤ 1 + η

4η

n(1 + 4(
√

2|E|+ n))

ε
, and

N =
1

2
+

1
√
ρ

log(n/p2) ≤ 1

2
+

√
1 + η

4η

√
n(1 + 4(

√
2|E|+ n))

ε
log(n/p2) = Nu.

The computational complexity of Lanczos method isO(Nu(|E|+n)), where the term |E|+n appears
since Lanczos method performs matrix-vector multiplication with ‖∇gt‖, whose sparsity is O(|E|),
plus additional O(n) arithmetic operations at each iteration. We finally write the computational
complexity of each iteration of Algorithm 1 as O

(√
n|E|1.25√

ε
log(n/p2)

)
.

Total computational complexity of Algorithm 1. Since p = ε
T (n,ε) , we have

log

(
n

p2

)
= log

(
(64)2n5(log(2n+ |E|))2

ε6

)
≤ log

(
46n6

ε6

)
= 6 log

(
4n

ε

)
,

where the inequality follows since |E| ≤
(
n−1
2

)
and

(
log
(
2n+

(
n−1
2

)))2 ≤ n for n ≥ 1. Multiply-
ing outer and inner iteration complexity and substituting the bound on p, we prove that Algorithm 1
is a O

(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-time algorithm.

A.8 Proof of Lemma 8

For any symmetric matrix X ∈ Sn, the definition of τ -spectral closeness (Definition 1) implies

(1− τ)〈LG, X〉 ≤ 〈LG̃, X〉 ≤ (1 + τ)〈LG, X〉. (31)

Let C and C̃ be the cost matrix in the objective of (k-Cut-Rel), when the problem is defined on the
graphs G and G̃ respectively. Since C and C̃ are scaled Laplacian matrices (with the same scaling
factor (k − 1)/2k, from (31), we can write

(1− τ)〈C,X〉 ≤ 〈C̃,X〉 ≤ (1 + τ)〈C,X〉. (32)

Let X?
G and X?

G̃
be optimal solutions to (k-Cut-Rel) defined on the graphs G and G̃ respectively.

From (32), we can write,

(1− τ)〈C,X?
G〉 ≤ 〈C̃,X?

G〉 ≤ 〈C̃,X?
G̃
〉, (33)

where the last inequality follows since X?
G and X?

G̃
are feasible and optimal solutions respectively

to (k-Cut-Rel) defined on the graph G̃. Combining this with the bound in Lemma 3, i.e., E[CUT] ≥
αk(1− 4ε)〈C̃,X?

G̃
〉, we get

E[CUT] ≥ αk(1− 4ε)〈C̃,X?
G̃
〉 ≥
(i)
αk(1− 4ε)(1− τ)〈C,X?

G〉 ≥
(ii)

αk(1− 4ε− τ)〈C,X?
G〉

≥
(iii)

αk(1− 4ε− τ)optGk ,

where (i) follows from (33), (ii) follows since (1 − 4ε)(1 − τ) = 1 − 4ε − τ + 4ετ ≥ 1 − 4ετ
for nonnegative ε and τ , and (iii) follows since 〈C,X?

G〉 ≥ optGk for an optimal solution X?
G

to (k-Cut-Rel) defined on the graph G.

A.9 Proof of Lemma 9

Proof. The Laplacian matrices LG− and LG̃− of the graphs G− and its sparse approximation G̃−

respectively satisfy (31). Furthermore, let L+
G = D+ −W+, where D+

ii =
∑
j:(i,j)∈E+ w

+
ij , be the

Laplacian of the graph G+ and similarly let L+

G̃
= D̃+ − W̃+ be the Laplacian of the graph G̃+. If

X = I , from (31), we have

(1− τ)Tr(D+) ≤ Tr(D̃+) ≤ (1 + τ)Tr(D+). (34)

10

Rewriting the second inequality in (31) for X = X?
G, and noting that diag(X?

G) = 1, we have

〈W+, X?
G〉 ≤

〈W̃+, X?
G〉

1 + τ
+

(1 + τ)Tr(D+)− Tr(D̃+)

1 + τ

≤ 〈W̃
+, X?

G〉
1 + τ

+
2τTr(D+)

1 + τ
,

(35)

where the second inequality follows from (34). Let C = LG− +W+ and C̃ = LG̃− + W̃+ represent
the cost in (MA-Rel) and (MA-Sparse) respectively. Let X?

G be an optimal solution to (MA-Rel).
The optimal objective function value of (MA-Rel) at X?

G is 〈C,X?
G〉 and

(1− τ)〈C,X?
G〉 = (1− τ)〈LG− , X?

G〉+ (1− τ)〈W+, X?
G〉

≤
(i)
〈LG̃− , X

?
G〉+

1− τ
1 + τ

〈W̃+, X?
G〉+

2τ(1− τ)

1 + τ
Tr(D+)

≤
(ii)
〈C̃,X?

G〉 −
2τ

1 + τ
〈W̃+, X?

G〉+
2τ

1 + τ
Tr(D̃+)

≤
(iii)
〈C̃,X?

G̃
〉+

2τ

1 + τ
〈C̃,X?

G̃
〉,

where (i) follows from (31) and (35), (ii) follows from (34), and substituting C̃ = LG̃− + W̃+

and rearranging the terms and (iii) holds true since 〈W̃+, X?
G〉 ≥ 0, and I and X?

G are feasible
to (MA-Sparse) so that Tr(D̃+) ≤ 〈C̃,X?

G̃
〉 and 〈C̃,X?

G〉 ≤ 〈C̃,X?
G̃
〉. Rearraning the terms, we

have

〈C,X?
G〉 ≤

1 + 3τ

1− τ2
〈C̃,X?

G̃
〉. (36)

Combining (36) with the fact that the expected value of clustering E[C] generated for the graph G̃
satisfies (11), we have

E[C] ≥ 0.766(1− 6ε)〈C̃,X?
G̃
〉 ≥ 0.766

(1− 6ε)(1− τ2)

1 + 3τ
〈C,X?

G〉 ≥ (1− 6ε− 3τ)(1− τ2)optGCC ,

where the last inequality follows since (1− 6ε− 3τ)(1 + 3τ) ≤ 1− 6ε.

A.10 Proof of Lemma 10

The first step of the procedure given in Section 5 is to sparsify the input graph using the technique
proposed in [3] whose computational complexity is O(|E| log2 n). The second step when generating
solutions to MAX-K-CUT and MAX-AGREE is to apply the procedures given in Sections 3 and 4
respectively. The computational complexity of this step is bounded as given in Propositions 4 and 7
leading to a O

(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-time algorithm.

Bound on the value of generated k-cut. Let p = ε
T (n,ε) and T (n, ε) = 144 log(2n+|E|)n2

ε2 as given

in Lemma 4. Using the procedure given in Section 3, we have E[CUT] ≥ αk(1− 5ε)optG̃k . From the
proof of Lemma 8, we see that CUT is then an approximate k-cut for the input graph G such that
E[CUT] ≥ αk(1− 5ε− τ)optGk .

Bound on the value of generated clustering. Let p = ε
T (n,ε) and T (n, ε) = 64 log(2n+|E|)n2

ε2 as

given in Lemma 7 and let the procedure given in Section 4 be applied to the sparse graph G̃. Then,
the generated clustering satisfies E[C] ≥ 0.766(1 − 7ε)optG̃CC . Combining this with the proof of
Lemma 9, we have E[C] ≥ 0.766(1− 7ε− 3τ)(1− τ2)optGCC .

11

B Preliminary Computational Results for MAX-K-CUT

We provide some preliminary computational results when generating an approximate k-cut on the
graph G using the approach outlined in Section 3. The aim of these experiments was to verify that
the bounds given in Lemma 3 were satisfied in practice. First, we solved (k-Cut-LSE) to εTr(C)-
optimality using Algorithm 1 with the input parameters set to α = n, ε = 0.05, β = 6Tr(C),
M = 6 log(2n)+|E|

ε . We then computed feasible samples using Algorithm 2 and then finally used the
FJ rounding scheme on the generated samples. The computations were performed using MATLAB
R2021a on a machine with 8GB RAM. The peak memory requirement was noted using the profiler
command in MATLAB.

We performed computations on randomly selected graphs from GSET dataset. In each case, the
infeasibility of the covariance of the generated samples was less than ε, thus satisfying (7). The
number of iterations of LMO in Algorithm 1 was also within the bounds given in Proposition 1.
To a generate k-cut, we generated 10 sets of k i.i.d. zero-mean Gaussian samples with covariance
X̂ε, and each set was then used to generate a k-cut for the input graph using FJ rounding scheme.
Let CUTbest denote the value of the best k-cut amongst the 10 generated cuts. Table 1 shows the
result for graphs from the GSet dataset with k = 3, 4. Note that, CUTbest ≥ E[CUT] ≥ αk(1 −
4ε)〈C,X?〉 ≥ αk

1−4ε
1+4ε 〈C, X̂ε〉, where the last inequality follows from combining (8) with (6).

Since we were able to generate the values, CUTbest and 〈C, X̂ε〉, we noted that the weaker bound
CUTbest/〈C, X̂ε〉 = AR ≥ αk(1− 4ε)/(1 + 4ε) was satisfied by every input graph when ε = 0.05.

Furthermore, Table 1 also shows that the memory used by our method was linear in the size of the
input graph. To see this, consider the dataset G1, and note that for k = 3, the memory used by our
method was 1252.73kB ≈ 8.02× (|V |+ |E|)× 8, where a factor of 8 denotes that MATLAB uses 8
bytes to store a real number. Similarly, for other instances in GSET, the memory used by our method
to generate an approximate k-cut for k = 3, 4 was at most c× (|V |+ |E|)× 8, where for each graph
the value of c was bounded by c ≤ 82, showing linear dependence of the memory used on the size of
the input graph.

Table 1: Result of generating a k-cut for graphs from GSET using the method outlined in Section 3.
We have, infeas = max{‖diag(X)− 1‖∞,max{0,−[X̂ε]ij − 1

k−1}} and AR = CUTbest/〈C, X̂ε〉.

Dataset |V | |E| k
#
Iterations
(×103)

infeas 〈C, X̂ε〉 CUTbest AR
Memory
required
(in kB)

G1 800 19176 3 823.94 4× 10−4 15631 14266 0.9127 1252.73
G1 800 19176 4 891.23 4× 10−4 17479 15746 0.9 1228.09
G2 800 19176 3 827.61 6× 10−5 15629 14332 0.917 1243.31
G2 800 19176 4 9268.42 8× 10−5 17474 15786 0.903 1231.07
G3 800 19176 3 1242.53 7× 10−5 15493 14912 0.916 1239.57
G3 800 19176 4 1341.37 7× 10−45 17301 15719 0.908 1240.17
G4 800 19176 3 812.8 9× 10−5 15660 14227 0.908 1230.59
G4 800 19176 4 9082.74 10−4 17505 15748 0.899 1223.59
G5 800 19176 3 843.5 10−4 15633 14341 0.917 1222.09
G5 800 19176 4 9294.32 10−4 17470 15649 0.895 1227.9

G14 800 4694 3 1240.99 0.002 3917 2533 0.646 3502.64
G14 800 4694 4 3238.42 0.001 4467.9 3775 0.844 519.25
G15 800 4661 3 3400.17 0.001 4018.6 3385 0.842 612
G15 800 4661 4 1603.13 0.001 4475.8 3754 0.838 648.17
G16 800 4672 3 33216.68 0.001 4035.7 3422 0.847 561
G16 800 4672 4 3059.11 0.001 4437.5 3783 0.852 2800
G17 800 4667 3 3526.4 0.001 4031.5 3414 0.846 602.81
G17 800 4667 4 3400.01 0.001 4440 3733 0.84 693.6
G22 2000 19990 3 7402.59 10−4 17840 11954 0.67 1340.34
G22 2000 19990 4 8103.83 10−4 19582 16670 0.851 1341.67
G23 2000 19990 3 3597.39 10−4 17938 15331 0.854 1360.09
G23 2000 19990 4 3588.04 10−4 19697 16639 0.844 1317.09
G24 2000 19990 3 4304.48 10−4 17913 15370 0.858 1341.96
G24 2000 19990 4 1994.26 10−4 19738 16624 0.842 1321.59

Continued on next page

12

Table 1 – Continued from previous page

Dataset |V | |E| k
#
Iterations
(×103)

infeas 〈C, X̂ε〉 CUTbest AR
Memory
required
(in kB)

G25 2000 19990 3 9774.03 10−4 18186 15294 0.841 1311.54
G25 2000 19990 4 1540.14 10−4 19778 16641 0.841 1330.95
G26 2000 19990 3 2069.65 10−4 18012 15411 0.855 1321.92
G26 2000 19990 4 1841.06 2× 10−4 19735 16609 0.841 1331.53
G43 1000 9990 3 894.53 10−4 9029 7785 0.862 661.09
G43 1000 9990 4 9709.68 2× 10−4 9925 8463 0.852 665.59
G44 1000 9990 3 721.64 10−4 9059.5 7782 0.859 661.09
G44 1000 9990 4 9294.43 10−4 9926.1 8448 0.851 765.37
G45 1000 9990 3 794.84 10−4 9038.4 7773 0.86 661.09
G45 1000 9990 4 9503.74 2× 10−4 9929.7 8397 0.845 669
G46 1000 9990 3 703.4 10−4 9068.5 7822 0.862 661.09
G46 1000 9990 4 9684.93 4× 10−4 9929.9 8333 0.839 657.09
G47 1000 9990 3 777.61 10−4 9059.4 7825 0.863 679.89
G47 1000 9990 4 9789.55 2× 10−4 9930.8 8466 0.852 661.09

C Additional Computational Results for Correlation Clustering

We provide the computational result for the graphs from the GSET dataset (not included in the main
article) here. We performed computations for graphs G1-G57 from GSET dataset. The instances for
which we were able to generate an ε∆-optimal solution to (MA-LSE) are given in Table 2, where the
parameters, ε and ∆, were set as given in Section 6. For the instances not in the table, we were not
able to generate an ε∆-optimal solution after 30 hours of runtime.

Table 2: Result of generating a clustering of graphs from GSET using the method outlined in
Section 4. We have, infeas = max{‖diag(X)− 1‖∞,max{0,−[X̂ε]ij}}, AR = Cbest/〈C, X̂ε〉 and
0.75(1− 6ε)/(1 + 4ε) = 0.4375 for ε = 0.05.

Dataset |V | |E+| |E−|
#
Iterations
(×103)

infeas 〈C, X̂ε〉 Cbest AR
Memory
required
(in kB)

G2 800 2501 16576 681.65 8× 10−4 848.92 643.13 0.757 1520.18
G3 800 2571 16498 677.56 7× 10−4 835.05 634.83 0.76 1529.59
G4 800 2457 16622 665.93 6× 10−4 852.18 647.37 0.76 1752
G5 800 2450 16623 646.4 10−3 840.63 636.21 0.756 1535.92
G6 800 9665 9511 429.9 3× 10−4 25766 21302 0.826 1664
G7 800 9513 9663 423.58 8× 10−4 26001 20790 0.799 1535.06
G8 800 9503 9673 421.34 6× 10−4 26005 21080 0.81 4284
G9 800 9556 9620 426.4 3× 10−4 25903 21326 0.823 1812

G10 800 9508 9668 426.25 3× 10−4 25974 21412 0.824 1535.59
G12 800 798 802 393.69 9× 10−4 3023.4 2034 0.672 444.06
G13 800 817 783 416.29 8× 10−4 3001.1 2010 0.669 613.03
G15 800 3801 825 284.77 10−3 529.83 401.19 0.757 460.17
G16 800 3886 749 228.12 8× 10−4 524.69 417.88 0.796 451.07
G17 800 3899 744 2448.633 9× 10−4 536.65 369.04 0.687 480.45
G18 800 2379 2315 1919.44 2× 10−3 7237.6 5074 0.701 434.67
G19 800 2274 2387 2653.79 2× 10−3 7274.2 5130 0.705 496
G20 800 2313 2359 1881.75 2× 10−3 7258.1 5186 0.714 406.09
G21 800 2300 2367 1884.97 2× 10−3 7281.3 5238 0.719 467.26
G23 2000 120 19855 550.77 2× 10−3 1802.2 1373.2 0.762 1651.54
G24 2000 96 19875 812.16 10−3 1811.2 1384.6 0.764 1678.04
G25 2000 109 19872 1739.06 6× 10−4 1801.8 1398.1 0.776 1650.48
G26 2000 117 19855 1125.74 10−3 1789.9 1356.9 0.758 1650.01
G27 2000 9974 10016 464.93 5× 10−4 30502 22010 0.721 1647.09

Continued on next page

13

Table 2 – Continued from previous page

Dataset |V | |E+| |E−|
#
Iterations
(×103)

infeas 〈C, X̂ε〉 Cbest AR
Memory
required
(in kB)

G28 2000 9943 10047 553.65 4× 10−4 30412 22196 0.729 1317.78
G29 2000 10035 9955 513.97 2× 10−4 30366 23060 0.759 1310.46
G30 2000 10045 9945 594.09 3× 10−4 30255 22550 0.745 1310.48
G31 2000 9955 10035 1036.9 2× 10−4 29965 22808 0.761 1305.05
G33 2000 1985 2015 403.75 10−3 7442 4404 0.591 634.93
G34 2000 1976 2024 863.53 4× 10−4 7307.2 4760 0.651 574.12
G44 1000 229 9721 515.18 10−3 810.82 616.61 0.76 655.09
G45 1000 218 9740 504.91 10−3 812.21 615.84 0.758 660.51
G46 1000 237 9723 469.6 10−3 818.39 623.95 0.762 655.09
G47 1000 230 9732 495.24 9× 10−4 819.63 621.65 0.758 648.32
G49 3000 0 6000 1002.59 0.003 599.64 456.48 0.761 733
G50 3000 0 6000 996.19 0.004 599.64 455.78 0.76 540.26
G52 1000 4750 1127 2041.8 0.001 684.1 441.02 0.644 757.59
G53 1000 4820 1061 785.33 8× 10−4 695.53 445.03 0.639 417.07
G54 1000 4795 1101 2899.99 7× 10−4 686.8 482.57 0.702 517.09
G56 5000 6222 6276 1340.35 0.004 22246 12788 0.574 1243.98

References
[1] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the

30th International Conference on Machine Learning, pages 427–435, 2013.

[2] Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos
algorithms with a random start. SIAM Journal on Matrix Analysis and Applications, 13(4):1094–1122,
1992.

[3] Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A framework for analyzing respar-
sification algorithms. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2032–2043. SIAM, 2017.

[4] Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient structured convex optimization
via extreme point sampling. SIAM Journal on Mathematics of Data Science, 3(3):787–814, 2021.

14

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Preliminary Computational Results for Max-k-Cut
	Additional Computational Results for Correlation Clustering

