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Abstract

We study the problem of sparse tensor principal component analysis: given a tensor
YYY = WWW + λx⊗p with WWW ∈ ⊗pRn having i.i.d. Gaussian entries, the goal is to
recover the k-sparse unit vector x ∈ Rn. The model captures both sparse PCA
(in its Wigner form) and tensor PCA. For the highly sparse regime of k ≤

√
n,

we present a family of algorithms that smoothly interpolates between a simple
polynomial-time algorithm and the exponential-time exhaustive search algorithm.
For any 1 ≤ t ≤ k, our algorithms recovers the sparse vector for signal-to-
noise ratio λ ≥ Õ(

√
t · (k/t)p/2) in time Õ(np+t), capturing the state-of-the-art

guarantees for the matrix settings (in both the polynomial-time and sub-exponential
time regimes). Our results naturally extend to the case of r distinct k-sparse signals
with disjoint supports, with guarantees that are independent of the number of
spikes. Even in the restricted case of sparse PCA, known algorithms only recover
the sparse vectors for λ ≥ Õ(k ·r) while our algorithms require λ ≥ Õ(k). Finally,
by analyzing the low-degree likelihood ratio, we complement these algorithmic
results with rigorous evidence illustrating the trade-offs between signal-to-noise
ratio and running time. This lower bound captures the known lower bounds for both
sparse PCA and tensor PCA. In this general model, we observe a more intricate
three-way trade-off between the number of samples n, the sparsity k, and the tensor
power p.

1 Introduction

Sparse tensor principal component analysis is a statistical primitive generalizing both sparse PCA2

and tensor PCA3. We are given multi-linear measurements in the form of a tensor

YYY = WWW + λx⊗p ∈ ⊗pRn (SSTM)

for a Gaussian noise tensorWWW ∈ ⊗pRn containing i.i.d. N(0, 1) entries4 and signal-to-noise ratio
λ > 0. Our goal is to estimate the “structured” unit vector x ∈ Rn. The structure we enforce on
x is sparsity: |supp(x)| ≤ k. The model can be extended to include multiple spikes in a natural
way: YYY = WWW +

∑r
q=1 λqx

⊗p
(q), and even general order-p tensors: YYY = WWW +

∑r
q=1 λqX(q) for

X(q) = x(q,1) ⊗ · · · ⊗ x(q,p) ∈ ⊗pRn. In this introduction, we focus on the simplest single spike
setting of SSTM.

It is easy to see that sparse PCA corresponds to the setting with tensor order p = 2. On the other
hand, tensor PCA is captured by effectively removing the sparsity constraint: |supp(x)| ≤ n. In
∗Part of the work was done while the author was in ETH Zürich.
2Often in the literature, the terms sparse PCA and spiked covariance model refer to the sparse spiked Wishart

model. However, here we consider the sparse spiked Wigner matrix model.
3Tensor PCA is also known as the spiked Wigner tensor model, or simply the spiked tensor model.
4Throughout the paper, we will write random variables in boldface.
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recent years, two parallel lines of work focused respectively on sparse PCA [JL09, AW08, BR13a,
DM16, HKP+17, DKWB19, HSV20, dKNS20] and tensor PCA [MR14, HSS15, MSS16, HKP+17,
KWB19, AMMN19], however no result captures both settings. The appeal of the sparse spiked
tensor model (henceforth SSTM) is that it allows one to study the computational and statistical
aspects of these other fundamental statistical primitives in a unified framework, understanding the
computational phenomena at play from a more general perspective.

In this work, we investigate SSTM from both algorithmic and computational hardness perspectives.
Our algorithm improves over known tensor algorithms whenever the signal vector is highly sparse.
We also present a lower bound against low-degree polynomials which extends the known lower
bounds for both sparse PCA and tensor PCA, leading to a more intricate understanding of how all
three parameters (n, k and p) interact.

1.1 Related work

Disregarding computational efficiency, it is easy to see that optimal statistical guarantees can be
achieved with a simple exhaustive search (corresponding to the maximum likelihood estimator):
find a k-sparse unit vector maximizing 〈YYY , x⊗p〉. This algorithm returns a k-sparse unit vector x̂
achieving constant squared correlation5 with the signal x as soon as λ &

√
k · log(np/k). That is,

whenever λ & max‖x‖=1,‖x‖0=k〈WWW,x⊗p〉. Unfortunately, this approach runs in time exponential in
k and takes super-polynomial time when p . k.6 As such, we assume p ≤ k from now on.

Taking into account computational aspects, the picture changes. A good starting point to draw
intuition for SSTM is the literature on sparse PCA and tensor PCA. We briefly outline some known
results here. To simplify the discussion, we hide absolute constant multiplicative factors using O(·),
Ω(·), ., and &, and hide multiplicative factors logarithmic in n using Õ(·).

1.1.1 Sparse PCA (Wigner noise)

Sparse PCA with Wigner noise exhibits a sharp phase transition in the top eigenvalue of YYY for
λ ≥

√
n [FP07]. In this strong signal regime, the top eigenvector7 v of YYY correlates8 with x with

high probability, thus the following spectral method achieves the same guarantees as the exhaustive
search suggested above: compute a leading eigenvector of YYY and restrict it to the top k largest entries
in absolute value. Conversely, when λ <

√
n, the top eigenvector of YYY does not correlate with

the signal x. In this weak signal regime, [JL09] proposed a simple algorithm known as diagonal
thresholding: compute the top eigenvector of the principal submatrix defined by the k largest diagonal
entries of YYY . This algorithm recovers the sparse direction when λ & Õ(k), thus requiring almost
an additional

√
k factor when compared to inefficient algorithms. More refined polynomial-time

algorithms (low-degree polynomials [dKNS20], covariance thresholding [DM16] and the basic SDP
relaxation [dGJL07, dKNS20]) only improve over diagonal thresholding by a logarithmic factor in the
regime n1−o(1) . k2 . n. Interestingly, multiple results suggest that this information-computation
gap is inherent to the sparse PCA problem [BR13a, BR13b, DKWB19, dKNS20]. Subexponential
time algorithms and lower bounds have also been shown. For instance, [DKWB19, HSV20] presented
smooth trade-offs between signal strength and running time.9

5One could also aim to find a unit vector with correlation approaching one or, in the restricted setting of
x ∈ {0,±1/

√
k}, aim to recover the support of x. At the coarseness of our discussion here, these goals could

be considered mostly equivalent.
6Note that the problem input is of size np. So when p & k, exhaustive search takes nO(p) time which is

polynomial in np. Thus, the interesting parameter regimes occur when p . k.
7By “top eigenvector” or “leading eigenvector”, we mean the eigenvector corresponding to “largest (in

absolute value) eigenvalue”.
8More precisely, the vector consisting of the k largest (in absolute value) entries of v.
9Both works studied the single spike matrix setting. [HSV20] only considers the Wishart noise model and

thus its guarantees cannot be compared to ours. [DKWB19] studied both the Wishart and Wigner noise models.
In the Wishart noise model setting, both [HSV20] and [DKWB19] observe the same tradeoff between running
time and signal-to-noise ratio. In the Wigner noise model setting, our algorithm and the algorithm of [DKWB19]
offer the same smooth-trade off between running time and signal strength, up to universal constants.
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1.1.2 Tensor PCA

In tensor settings, computing max‖x‖=1〈YYY , x⊗p〉 is NP-hard already for p = 3 [HL13]. For even
tensor powers p, one can unfold the tensor YYY into a np/2-by-np/2 matrix and solve for the top
eigenvector [MR14]. However, this approach is sub-optimal for odd tensor powers. For general tensor
powers p, a successful strategy to tackle tensor PCA has been the use of semidefinite programming
[HSS15, BGL16, HSS19]. Spectral algorithms inspired by the insight of these convex relaxations
have also been successfully applied to the problem [SS17]. These methods succeed in recovering the
single-spike x when λ & Õ

(
np/4

)
, thus exhibiting a large gap when compared to exhaustive search

algorithms. Matching lower bounds have been shown for constant degrees in the Sum-of-Squares
hierarchy [BGL16, HKP+17] and through average case reductions [BB20].

1.1.3 Sparsity-exploiting algorithms and tensor algorithms

It is natural to ask how do the characteristics of sparse PCA and tensor PCA extend to the more
general setting of SSTM. In particular, there are two main observations to be made.

The first observation concerns the sharp computational transition that we see for k .
√
n in sparse

PCA. In these highly sparse settings, the top eigenvector of YYY does not correlate with the signal x
and so algorithms primarily based on spectral methods fail to recover it. Indeed, the best known
guarantees are achieved through algorithms that crucially exploit the sparsity of the hidden signal.
These algorithms require the signal strength to satisfy λ ≥ Õ(

√
k), with only logarithmic dependency

on the ambient dimension. To exemplify this to an extreme, notice how the following algorithm can
recover the support of xxT with the same guarantees as diagonal thresholding, essentially disregarding
the matrix structure of the data: zero all but the k2 largest (in absolute value) entries of YYY . A natural
question to ask is whether a similar phenomenon may happen for higher order tensors. In the highly
sparse settings where k .

√
n, can we obtain better algorithms exploiting the sparsity of the hidden

vector? Recently, a partial answer appeared in [LZ20] with a polynomial time algorithm recovering
the hidden signal for λ ≥ Õ(p · kp/2), albeit with suboptimal dependency on the tensor order p.

The second observation concerns the computational-statistical gap in the spiked tensor model. As
p grows, the gap between efficient algorithms and exhaustive search widens with the polynomial
time algorithms requiring signal strength λ ≥ Õ

(
np/4

)
while exhaustive search succeeds when

λ ≥ Õ(
√
n) [MR14]. The question here is: how strong is the dependency on p for efficient algorithms

in sparse signal settings?

In this work, we investigate these questions in the high order tensors regime p ∈ ω(1). We present a
family of algorithms with a smooth trade-off between running time and signal-to-noise ratio. Even
restricting to polynomial-time settings, our algorithms improve over previous results. Furthermore,
through the lens of low-degree polynomials, we provide rigorous evidence of an exponential gap in
the tensor order p between algorithms and lower bounds.
Remark. The planted sparse densest sub-hypergraph model [CPMB19, BCPS20, CPSB20] is closely
related to SSTM. We discuss this model in Appendix E.

1.2 Results

1.2.1 Single spike setting

Consider first the restricted, but representative, case where the planted signal is a (k,A)-sparse unit
vector with k non-zero entries having magnitudes in the range

[
1

A
√
k
, A√

k

]
for some constant A ≥ 1.

We say that the signal is flat when A = 1 and approximately flat when A ≥ 1.

Our first result is a limited brute force algorithm – informally, an algorithm that smoothly interpolates
between some brute force approach and some “simple” polynomial time algorithm – that exactly
recovers the signal support of the planted signal10.
Theorem 1 (Algorithm for single spike sparse tensor PCA, Informal). Let A ≥ 1 be a constant.
Consider the observation tensor

YYY = WWW + λx⊗p

10A similar algorithm was analyzed by [DKWB19] for the special case of p = 2 and r = 1.
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where the additive noise tensorWWW ∈ ⊗pRn contains i.i.d. N(0, 1) entries and the signal x ∈ Rn is
a (k,A)-sparse unit vector with signal strength λ > 0. Let 1 ≤ t ≤ k be an integer. Suppose that

λ &

√
t

(
2A2k

t

)p
lnn .

Then, there exists an algorithm that runs in O(pnp+t) time and, with probability 0.99, outputs the
support of x.

Let’s first consider Theorem 1 in its simplest setting where A = 1 and t is a fixed constant. For
k .

√
n, the theorem succeed when λ ≥ Õ(kp/2), thus improving over the guarantees of known

tensor PCA methods which require λ ≥ Õ(np/4). In addition, since support recovery is exact, one
can obtain a good estimate11 of the planted signal by running any known tensor PCA algorithm on
the subtensor corresponding to its support. Indeed, the resulting subtensor will be of significantly
smaller dimension and the requirement needed on the signal strength by single-spike tensor PCA
algorithms are weaker than the requirement we impose on λ (see Remark 9 for details). As a result,
our algorithm recovers the guarantees of diagonal thresholding in the matrix (p = 2) setting. Our
polynomial-time algorithm also improves over the result of [LZ20], which required λ &

√
pkp log n,

by removing the polynomial dependency of the tensor order p in the signal strength λ.12

Consider now the limited brute force parameter t. From the introductory exposition, we know that
one can obtain a statistically optimal algorithm by performing a brute force search over the space
of k-sparse flat vectors in Rn. The limited brute force algorithm is a natural extension that takes
into account computational constraints by searching over the smaller set of t-sparse flat vectors,
for 1 ≤ t ≤ k, to maximize 〈YYY , u⊗p〉. The parametric nature of the algorithm captures both the
brute force search algorithm (when t = k) and the idea of diagonal thresholding (when t = 1 and
p = 2). As long as t ≤ k, using a larger t represents a direct trade-off between running time and the
signal-to-noise ratio. Extending the result to approximately flat vectors, the dependency on A in the
term

(
2A2

)p
can be removed by increasing the computational budget to some value t′ ≥ 2A2t.

1.2.2 Multiple spikes

Theorem 2 (Algorithm for multi-spike sparse tensor PCA, Informal). Let A ≥ 1 be a constant.
Consider the observation tensor

YYY = WWW +

r∑
q=1

λqx
⊗p
(q)

where the additive noise tensor WWW ∈ ⊗pRn contains i.i.d. N(0, 1) entries and the signals
x(1), . . . , x(r) ∈ Rn are (k,A)-sparse unit vectors with disjoint supports and corresponding signal
strengths λ1 ≥ . . . ≥ λr > 0. Let 1 ≤ t ≤ k be an integer and 0 < ε ≤ 1/2. Suppose that

λr &
1

ε
·

√
t

(
2A2k

t

)p
lnn and λr & A2p · (2ε)p−1 · λ1 .

Then, there exists an algorithm that runs in O(rpnp+t) time and, with probability 0.99, outputs the
individual signal supports of x(π(1)), . . . , x(π(r)) for some unknown bijection π : [r]→ [r].

Theorem 2 requires two assumptions on the signals: (1) signals have disjoint support; (2) there is a
bounded signal strength gap of λr & A2p · (2ε)p−1 · λ1. In the context of sparse PCA, algorithms
that recover multiple spikes (e.g. [JL09, DM16]) only require the sparse vectors to be orthogonal.
However, their guarantees are of the form λr ≥ Õ

(∣∣∣⋃q∈[r] supp
(
x(q)

)∣∣∣). That is, when the

r signals have disjoint supports, they require the smallest signal to satisfy λr ≥ Õ (k · r). In
comparison, already for constant t, Theorem 2 successfully recovers the supports when λr ≥ Õ(k),

11Recovery is up to a global sign flip since 〈u, v〉p = 〈u,−v〉p for even tensor powers p.
12The result of [LZ20] extends to the settings where YYY = WWW + λX for an approximately flat tensor

X ∈ ⊗pRn. Both Theorem 1 and Theorem 2 can also be extended to these settings (see Appendix B.2).
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thus removing the dependency on the number of signals and improving the bound by a 1/r factor13.
Meanwhile, the bounded signal strength gap assumption is a common identifiability assumption
(e.g. see [CMW13, DM16]). We remark that Theorem 2 provides a tradeoff between this signal
strength gap assumption and the signal strengths: we can recover the supports with a smaller gap if
the signal strengths are increased proportionally – increasing λr by a multiplicative factor α enables
the algorithm to succeed with gap that is smaller by a multiplicative factor of 1/α. As an immediate
consequence, we also obtain a tradeoff between gap assumption and running time: every time we
double t (while ensuring 1 ≤ t ≤ k), λr increases by a factor of (1/

√
2)p−1 and thus the algorithm

can succeed with a smaller gap. Finally, as in the single spike case, the exact support recovery allow
us to obtain good estimate of each signal by running known tensor PCA algorithms.

Remark We remark that these results can be extended to the general tensor settings

YYY = WWW +

r∑
q=1

λqX(q)

where for q ∈ [r], X(q) = x(q,1) ⊗ · · · ⊗ x(q,p) ∈ ⊗pRn in a natural way. See Appendix B.2.

1.2.3 An exponential gap between lower bounds and algorithms

SSTM generalizes both sparse PCA and tensor PCA. Hence, a tight hardness result for the model
is interesting as it may combine and generalize the known bounds for these special cases. Here,
we give a lower bound for the restricted computational model captured by low-degree polynomials.
Originally developed in the context of the sum of squares hierarchy, this computational model appears
to accurately predict the current best-known guarantees for problems such as sparse PCA, tensor PCA,
community detection, and planted clique (e.g. see [HS17, HKP+17, Hop18, BHK+19, DKWB19,
KWB19, dKNS20]).

Theorem 3 (Lower bound for low-degree polynomials, Informal). Let 1 ≤ D ≤ 2n/p and ν be the
distribution of ZZZ ∈ ⊗pRn with i.i.d. entries from N(0, 1). Then, there exists a distribution µ over
tensors YYY ∈ ⊗pRn of the form

YYY = WWW + λxxx⊗p

where WWW ∈ ⊗pRn is a noise tensor with i.i.d. N(0, 1) entries, the marginal distribution of xxx is

supported on vectors with entries
{
±1/
√
k, 0
}n

, and xxx and WWW are distributionally independent,
such that whenever

λ .

√
D

2p
min

{(
n

pD

)p/4
,

(
k

pD

(
1 +

∣∣∣∣ln(npDek2

)∣∣∣∣))p/2
}
,

µ is indistinguishable14 from ν with respect to all polynomials of degree at most D.

Theorem 3 states that for certain values of λ, low-degree polynomials cannot be used to distinguish
between the distribution of YYY andWWW as typical values of low-degree polynomials are the same (up to
a vanishing difference) under both distributions. The theorem captures known results in both sparse
and tensor PCA settings. When p = 2, our bound reduces to λ . min

{√
n, k√

D

(
1 +

∣∣ln ( 2nD
ek2

)∣∣)},
matching known low-degree bounds of [DKWB19] in the sparse PCA setting. Meanwhile, in the

tensor PCA settings (p ≥ 2, k = n), Theorem 3 implies a bound of the form λ .
√
D
(
n
pD

)p/4
, thus

recovering the results of [KWB19].

13It is an intriguing question whether an improvement of 1/r can be achieved in the more general settings
of orthogonal spikes. Our approach relies on the signals having disjoint support and we expect it to not be
generalizable to orthogonal signals. This can be noticed in the simplest settings with brute-force parameter
t = 1 and p = 2 where the criteria of Algorithm 3 for finding an entry of a signal vector is to look at the
diagonal entries of the data matrix. In this case, the algorithm may be fooled since the largest diagonal entry can
depend on more than one spike. Nevertheless, we are unaware of any fundamental barrier suggesting that such
guarantees are computationally hard to achieve.

14In the sense that for any low-degree polynomial p(YYY ) we have Eµp(YYY )−Eνp(YYY )√
Vp(YYY )

∈ o(1). See Appendix A.4.2.

5



For constant power p and k .
√
n, our lower bound suggests that no estimator captured by polyno-

mials of degree D . t log n can improve over our algorithmic guarantees by more than a logarithmic
factor. However, for p ∈ ω(1), an exponential gap appears between the bounds of Theorem 3
and state-of-the-art algorithms (both in the sparse settings as well as in the dense settings).15 As a
concrete example, let us consider the setting where p = n0.1 < k. The polynomial time algorithm
of Theorem 1 requires λ ≥ Õ(kp/2) while according to Theorem 3 it may be enough to have
λ ≥ Õ

(
k/n0.1

)p/2
. Similarly, for k &

√
np, known tensor algorithms recovers the signal for

λ ≥ Õ(np/4) while our lower bound only rules out algorithms for λ ≤ Õ
(
n0.9·p/4).

Surprisingly, for the distinguishing problem considered in Theorem 3, these bounds appear to be
tight. For a wide range of parameters (in both the dense and sparse settings) there exists polynomial
time algorithms that can distinguish the distributions ν and µ right at the threshold considered in
Theorem 3 (see Appendix C). It remains a fascinating open question whether sharper recovering
algorithms can be designed or stronger lower bounds are required.

Finally, we would like to highlight that this non-trivial dependency on p is a purely computational
phenomenon as it does not appear in information-theoretic bounds (see Appendix D).

Remark Note that Theorem 3 is not in itself a lower bound for the recovery problem. However, any
algorithm which obtains a good estimation of the signal vector x for signal strength λ ≥

√
k log n

can be used to design a probabilistic algorithm which solve the distinguishing problem for signal
strength Op(λ). Let us elaborate. Consider an algorithm that given YYY = WWW + λx⊗p outputs a vector
x̂ such that |〈x̂, x〉| ≥ 0.9. With high probability, max|z|2=1,|z|0=k |〈WWW, z⊗p〉| ≤ Õ(

√
k) and thus

|〈YYY , x̂⊗p〉| ≥ λ · (0.9)p − Õ(
√
k). Therefore, one can solve the distinguishing problem as follows:

output “planted” if |〈YYY , x̂⊗p〉| &
√
k log n and “null” otherwise.

1.3 Notation and outline of paper

We write random variables in boldface and the set {1, . . . , n} as [n]. We hide absolute constant
multiplicative factors and multiplicative factors logarithmic in n using standard notations: O(·), Ω(·),
., &, and Õ(·). We denote by e1, . . . , en ∈ Rn the standard basis vectors. For x ∈ Rn, we use
supp(x) ⊆ [n] to denote the set of support coordinates. We say that x is a (k,A)-sparse vector if
k ∈ [n], constant A ≥ 1, |supp(x)| = k, and 1

A
√
k
≤ |x`| ≤ A√

k
for ` ∈ supp(x). When A = 1, we

say that x is a k-sparse flat vector and may omit the parameter A. For general A ≥ 1, we say that x

is approximately flat. For an integer t ≥ 1, we define Ut =
{
u ∈

{
− 1√

t
, 0, 1√

t

}n
: |supp(u)| = t

}
as the set of t-sparse flat vectors. For a tensor T ∈ ⊗pRn and a vector u ∈ Rn, their inner product is
defined as 〈T, u⊗p〉 =

∑
i1,...,ip∈[n]

Ti1,...,ipui1 . . . uip .

The rest of the paper is organized as follows: In Section 2, we introduce the main ideas behind
Theorem 1 and Theorem 2. In Section 3, we flesh out some concrete unresolved research ques-
tions. Appendix A contains preliminary notions. We formally prove Theorem 1 and Theorem 2
in Appendix B. The lower bound Theorem 3 is given in Appendix C. We present an information
theoretic bound in Appendix D. Appendix E discusses the planted sparse densest sub-hypergraph
model. Finally, Appendix F contains any deferred technical proofs required throughout the paper.

2 Recovering signal supports via limited brute force searches

We describe here the main ideas behind our limited brute force algorithm. We consider the model

Model 4 (Sparse spiked tensor model). For A ≥ 1, r ≥ 1, k ≤ n we observe a tensor of the form

YYY = WWW +

r∑
q=1

λqx
⊗p
(q) ∈ ⊗

pRn

15In particular, in the sparse settings k ≤ √np, the p−p/2 factor could not be seen in the restricted case of
sparse PCA (as this factor is a constant when p = 2).
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where WWW ∈ ⊗pRn is a noise tensor with i.i.d. N(0, 1) entries, λ1 ≥ . . . ≥ λr > 0 are the signal
strengths, and x(1), . . . , x(r) are k-sparse flat unit length signal vectors.

We first look at the simplest setting of a single flat signal (i.e. A = 1 and r = 1). Then, we explain
how to extend the analysis to multiple flat signals. For a cleaner discussion, we assume here that
all the non-zero entries of the sparse vector x and vectors in the set Ut have positive sign. Our
techniques also easily extend to approximately flat vectors (where A ≥ 1) and general signal tensors
x(1) ⊗ · · · ⊗ x(p) ∈ ⊗pRn. We provide details for these extensions in Appendix B.

2.1 Single flat signal

Limited-brute force As already mentioned in the introduction, a brute force search over Uk for
the vector maximizing 〈YYY , u⊗p〉 returns the signal vector x (up to a global sign flip) with high
probability whenever λ &

√
k log n. This algorithm provides provably optimal guarantees but

requires exponential time (see Appendix D for an information-theoretic lower bound). The idea
of a limited brute force search is to search over a smaller set Ut (1 ≤ t ≤ k) instead, and use the
maximizer vvv∗ to determine the signal support supp (x). The hope is that for a sufficiently large
signal-to-noise ratio, this t-sparse vector vvv∗ will still be non-trivially correlated with the hidden vector
x. Indeed as t grows, the requirement on λ decreases towards the information-theoretic bound, at the
expense of increased running time.

As a concrete example, consider the matrix settings (p = 2). It is easy to generalize the classic
diagonal thresholding algorithm ([JL09]) into a limited brute-force algorithm. Recall that diagonal
thresholding identifies the support of x by picking the indices of the largest k diagonal entries of
YYY . In other words, the algorithm simply computes 〈YYY , e⊗2

i 〉 for all i ∈ [n] and returns the largest k
indices. From this perspective, the algorithm can be naturally extended to t > 1 by computing the(
k
t

)
vectors u ∈ Ut maximizing 〈YYY , u⊗2〉 and reconstructing the signal from them. For t = k, the

algorithm corresponds to exhaustive search.

With this intuition in mind, we now introduce our family of algorithms, heavily inspired16 by
[DKWB19]. We first apply a preprocessing step to obtain two independent copies of the data.

Algorithm 1 Preprocessing
Input: YYY .
Sample a Gaussian tensor ZZZ ∈ ⊗pRn where each entry is an i.i.d. standard Gaussian N(0, 1).
Return two independent copies YYY (1) and YYY (2) of YYY as follows:

YYY (1) =
1√
2

(YYY +ZZZ) and YYY (2) =
1√
2

(YYY −ZZZ)

Algorithm 1 effectively creates two independent copies of the observation tensor YYY . To handle the
noise variance, the signal-to-noise ratio is only decreased by the constant factor 1/

√
2. For simplicity,

we will ignore this constant factor in the remainder of the section.

Algorithm 2 Single spike limited brute force

Input: k, t and YYY (1),YYY (2) obtained from Algorithm 1.
Compute vvv∗ := argmaxu∈Ut〈YYY

(1), u⊗p〉.
Compute the vector ααα ∈ Rn with entries ααα` := 〈YYY (2), vvv⊗p−1

∗ ⊗ e`〉 for every ` ∈ [n].
Return the indices of the largest k entries of ααα.

16The algorithm in [DKWB19] is a specialization of ours (with comparable guarantees) in the simplest setting
of p = 2 and a single spike. However, looking at [DKWB19], it is a priori unclear how to generalize the result
to the settings of our interest. This is especially true in the tensor settings (p ≥ 3) with multiple spikes, where
signals may interfere with each other.
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The signal support recovery process outlined in Algorithm 2 has two phases. In the first phase, we
search over Ut to obtain a vector vvv∗ that is correlated with the signal x. In the second phase, we use
vvv∗ to identify supp(x). The correctness of the algorithm follows from these two claims:

(i) The t-sparse maximizer vvv∗ shares a large fraction of its support coordinates with signal x.

(ii) The k largest entries of ααα belong to the support supp(x) of signal x.

Crucial to our analysis is the following standard concentration bound on Gaussian tensors. We directly
use Lemma 5 in our exposition here, and formally prove a more general form in Appendix F.1.

Lemma 5. Let p ≤ n, t > 0 be an integer, andWWW ∈ ⊗pRn be a tensor with i.i.d. N(0, 1) entries.
Then, with high probability, for any u ∈ Ut,

〈WWW,u⊗p〉 .
√
t log n .

For some constant 0 < ε ≤ 1/2, suppose that

λ &
1

ε · (1− ε)p−1
·

√
t

(
k

t

)p
log n . (1)

For any u ∈ Ut with support supp(u) ⊆ supp(x), we have

〈YYY (1), u⊗p〉 = λ〈x, u〉p + 〈WWW (1), u⊗p〉 ≥ λ ·
(
t

k

) p
2

−O
(√

t log n
)
.

On the other hand, any u ∈ Ut with support satisfying |supp(u) ∩ supp(x)| ≤ (1− ε) · t has small
correlation with YYY (1) in the sense that

〈YYY (1), u⊗p〉 = λ〈x, u〉p + 〈WWW (1), u⊗p〉 ≤ λ · (1− ε)p ·
(
t

k

) p
2

+O
(√

t log n
)
.

By Eq. (1), with high probability, vvv∗ will have at least a fraction (1− ε) of its support contained in
supp(x), yielding the first claim. Observe that vvv∗ does not completely overlap with x. A priori, this
might seem to be an issue. However, it turns out that we can still use vvv∗ to exactly reconstruct the
support of x. Indeed, for all ` ∈ supp(x),

ααα` = λ · x` · 〈x,vvv∗〉p−1 + 〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉

≥ λ · (1− ε)p−1

√
k

·
(
t

k

) p−1
2

+ 〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉

&
1

ε
·
√

log n+ 〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉 .

Now, by independence ofWWW (2) and vvv∗, 〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉 behaves like a standard Gaussian. Thus,

with high probability,
∣∣∣〈WWW (2), vvv⊗p−1

∗ ⊗ e`〉
∣∣∣ . √log n and ααα` &

√
log n. Conversely, if ` is not in

the support of the signal, then ααα` .
√

log n. So, the vector ααα acts as indicator of the support of x!

Remark 6. In its simplest form of t = 1, Algorithm 2 does not exploit the tensor structure of
the data: it performs entry-wise search for the largest (in magnitude) over a subset of YYY . However,
this is no longer true as t grows. For t = k, the algorithm computes the k-sparse flat unit vector u
maximizing 〈YYY (1), u⊗p〉.

2.2 Multiple flat signals with disjoint signal supports

Consider now the setting with r > 1 spikes. Recall that we assumed the vectors x(1), . . . , x(r) to have
non-intersecting supports. We also assumed that for any q, q′ ∈ [r] and some fixed scalar 0 ≤ κ ≤ 1,
if λq ≥ λq′ , then λq′ ≥ κ · λq. We remark that we may not recover the signal supports in a known
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order, but we are guaranteed to recover all of them exactly. For simplicity of discussion, let us assume
here that we recover the vector x(i) at iteration i.

The idea to recover the r spikes is essentially to run Algorithm 2 r times. At first, we compute the
t-sparse vector vvv∗ by maximizing the product 〈YYY (1), vvv⊗p∗ 〉. Then, using vvv∗, we compute the vector ααα
to obtain a set I1 ⊆ [n]. With high probability, we will have I1 = supp

(
x(1)

)
and so we will exactly

recover the support of x(1). In the second iteration of the loop, we repeat the same procedure with the
additional constraint of searching only over the n− k dimensional subset of Ut containing vectors
with disjoint support from I1. Similarly, at iteration i, we search over the subset of Ut containing
vectors with disjoint support from

⋃
1≤j<i

Ij . As before, we first preprocess the data to create two

independent copies YYY (1) and YYY (2). Concretely:

Algorithm 3 Multi-spike limited brute force

Input: k, t, r and YYY (1),YYY (2) obtained from Algorithm 1.
Repeat for i = 1 to r:

Compute vvv∗ := argmaxu∈Ut〈YYY
(1), u⊗p〉 subject to supp (vvv∗) ∩

( ⋃
1≤j<i

Ij

)
= ∅.

Compute the vector ααα ∈ Rn with entries ααα` := 〈YYY (2), vvv⊗p−1
∗ ⊗ e`〉 for every ` ∈ [n].

Let Ii be the set of indices of the largest k entries of ααα.
Return I1, . . . , Ir.

The proof structure is similar to that of Algorithm 2 and essentially amounts to showing that the
claims (i) and (ii) described in Section 2.1 hold in each iteration.

Let λmin = minq∈[r] λq and λmax = maxq∈[r] λq. For some 0 < ε ≤ 1/2, let κ &
(

ε
1−ε

)p−1

such
that λmin ≥ κ · λmax. Suppose that

λmin &
1

ε · (1− ε)p
·

√
t

(
k

t

)p
log n and λmin &

(
ε

1− ε

)p−1

· λmax . (2)

Consider an arbitrary iteration i and suppose that we exactly recovered the support of one signal in
each of the previous iterations. Without loss of generality, assume that λmax is the largest signal
strength among the yet to be recovered signals, and let x(max) be one such corresponding signal.

For u ∈ Ut satisfying supp(u) ⊆ supp(x(max)), we have

〈YYY (1), u⊗p〉 = λmax〈x(max), u〉p + 〈WWW (1), u⊗p〉 ≥ λmax ·
(
t

k

) p
2

−O
(√

t log n
)
.

On the other hand, for any u ∈ Ut such that
∣∣supp (u) ∩ supp

(
x(q)

)∣∣ ≤ (1− ε) · t for all q ∈ [r],

〈YYY (1), u⊗p〉 =
∑
q∈[r]

λq〈x(q), u〉p + 〈WWW (1), u⊗p〉

≤ λmax ·
(
t

k

) p
2

· ((1− ε)p + εp) +O
(√

t log n
)

≤ λmax ·
(
t

k

) p
2

· (1− ε)p−1
+O

(√
t log n

)
.

Thus, as in Section 2.1, it follows that vvv∗ satisfies
∣∣supp (vvv∗) ∩ supp

(
x(i)

)∣∣ ≥ (1− ε) · t for some
signal x(i). Note that x(i) may not be x(max). Even though vvv∗ does not exactly overlap with any
of the signal vectors, we will not accumulate an error at each iteration. This is because, analogous
to the single spike setting, we can exactly identify the support of a signal through ααα. For any
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` ∈ supp
(
x(i)

)
, it holds that ααα` &

√
log n as before because

∣∣∣〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉

∣∣∣ . √log n.

Conversely, since signal supports are disjoint, we see that for ` /∈ supp
(
x(i)

)
,

ααα` =
∑
q∈[r]

λq · x(q),` · 〈x(q), vvv∗〉p−1 + 〈WWW (2), vvv⊗p−1
∗ ⊗ e`〉

≤ λmax ·
εp−1

√
k
·
(
t

k

) p−1
2

+O
(√

log n
)

≤ λmin

κ
· ε
p−1

√
k
·
(
t

k

) p−1
2

+O
(√

log n
)

.
√

log n .

So, once again, ααα exactly identifies the support of x(i) with high probability.
Remark 7 (On the strength of the assumption on κ). As already briefly discussed in Section 1.2, the
algorithm provides a three-way trade-off between signal gap κ, signal-to-noise ratio λ and running
time. By appropriately choosing the constant ε > 0, the algorithm can tolerate different values of

κ. Indeed, the above analysis holds as long as κ &
(

ε
1−ε

)p−1

. This suggests two ways in which
we can loosen the requirement λmin ≥ κ · λmax and still successfully recover the signals through
Algorithm 3. One is increase the running time, so that we can decrease ε without increasing the
signal-to-noise ratio λmin. The other is to decrease ε and increase the value of λmin accordingly.
Remark 8 (On independent copies of YYY ). To clarify why it suffices to have 2 independent copies
of YYY even for multiple iterations, observe that at each iteration i, the choice of the set Ii depends
only on the vector vvv∗ with high probability. Consider the following thought experiment where we are
given a fresh copy YYY (i) of YYY in the second phase of each iteration i of the algorithm (while still using
only a single copy YYY (1)for all the first phases). Even with fresh randomness, the result is the same as
Algorithm 3 with high probability because at each iteration the choice of maximizer vvv∗ causes the
same output.
Remark 9 (Reconstructing the signals from their supports). After recovering individual signal
supports, one can reconstruct signals using known tensor PCA algorithms (e.g. [MR14, HSS15]) on
the subtensor defined by each recovered support. The signal strength required for this new subproblem
is weaker and is satisfied by our recovery assumptions. For instance, by concatenating our algorithm
with [HSS15, Theorem 7.1], one obtains vectors x̂(1), . . . , x̂(r) such that

∣∣〈x̂(i), x(i)〉
∣∣ ≥ 0.99, for

any i ∈ [r], with probability 0.99.

3 Open questions

Open question 1. Theorem 2 improves over existing sparse PCA multi-spike recovery algorithms
(which only assumed orthogonal spikes) by a factor of 1/r in the case where these planted signals
have disjoint support. Can one still obtain an improvement of 1/r if we only assume orthogonality?
Open question 2. For p ∈ ω(1), there is an exponential gap between the bounds of Theorem 3 and
state-of-the-art algorithms. A natural question is whether one can design better recover algorithms
or prove stronger lower bounds for this range of tensor power p ∈ ω(1)?
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