
Appendix

A Pseudo Code and Architecture of the FSAF Training Algorithm

For completeness, we provide the pseudo code of the training algorithm of FSAF in the following
Algorithm 1. Figure 6 further illustrates the demo policy and the replay buffers used in FSAF.

Algorithm 1 FSAF Training Algorithm

1: Initialize: N instances of Q-networks with parameters Θ = {θ(n)}Nn=1, demo policy πD, a
collection of candidate tasks T , and the parameters K,S for computing the meta-loss

2: for each iteration i = 0, 1, · · · do
3: Sample a batch of tasks Ti from T
4: for each task τ ∈ Ti do
5: Generate black-box functions of task τ from GP and set Θτ,0 = Θ
6: for k = 0, · · · ,K − 1 do
7: Collect trajectories {(s0, a1, r1, · · · )} using πΘτ,k and store transitions inRQ
8: Collect trajectories {(s0, a1, r1, · · · )} using πD and store transitions inRD
9: Sample a mini-batch of transitions Dtr

τ,k from the replay buffersRQ,RD

10: Θτ,k+1 =MSVGD(Θτ,k,Dtr
τ,k)

11: end for
12: Set Θ∗τ,0 = Θτ,K

13: for s = 0, · · · , S − 1 do
14: Sample a mini-batch of transitions Dval

τ,s from the replay buffersRQ,RD

15: Θ∗τ,s+1 =MSVGD(Θ∗τ,s,D
val
τ,s)

16: end for
17: end for
18: Θ← Θ− β∇Θ

(∑
τ∈Ti Lmeta(Θ; τ)

)
19: end for

Figure 6: Architecture of the proposed FSAF.

B Detailed Training Configuration of FSAF
Training tasks of FSAF. To construct a diverse collection of tasks for the training of FSAF, we
leverage GP functions with RBF, Matèrn-3/2, and spectral mixture kernels to capture smooth functions,
functions with abrupt local variations, and functions of periodic nature, respectively. For both the
RBF and the Matèrn-3/2 kernels, we consider three possible ranges of lengthscales, including
[0.07, 0.13], [0.17, 0.23], [0.27, 0.33]. For the spectral mixture kernels, we consider mixtures of two
Gaussian components of periods 0.3 and 0.6 and three possible ranges of the lengthscales, including
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[0.27, 0.33], [0.47, 0.53], [0.57, 0.63]. As a result, there are nine candidate tasks in the task collection
T . In each training iteration i, three out of the nine tasks are selected uniformly at random from the
above task collection (and hence |T i| = 3 in Algorithm 1). The input domain of these GP functions
is configured to be [0, 1]3. To facilitate the training procedure, we discretize the continuous input
domain by using the Sobol sequence to generate a grid on which the GP functions and the AFs are
evaluated, as typically done in BO.
Demo policy for the prior of Bayesian DQN. Recall from Section 3.2 that we leverage a Bayesian
variant of DQN and construct an informative prior using a demo policy induced by an off-the-shelf
AF. For the demo policy, we use EI, which is computationally efficient and achieves moderate regrets
in most of the cases. To control how much the demo policy involves in the training, we use a
hyperparameter termed demonstration ratio κ, which is implemented by randomly choosing whether
to use a mini-batch of transitions from the demo replay buffer with probability κ at each SVGD step.
In our experiments, we find that a small demonstration ratio of 1

128 is sufficiently effective.
Hyperparameters of Bayesian DQN. Recall the hyperparametersN ,K, and S defined in Algorithm
1. We take N = 5, K = 5, and S = 1 given the memory limitation of GPUs. Despite the small
values of N , K, and S, these choices already provide superior performance.

Network architecture of each DQN particle. For all the DQN particles used in the experiments,
we adopt the standard dueling network architecture [54], where one value network and an advantage
network are maintained to produce the estimated Q-values. For a fair comparison between FSAF and
MetaBO, both the value network and the advantage network of our FSAF are configured to have 4
fully-connected hidden layers with ReLU activation functions and 200 hidden units per layer. As
described in Section 3.1, the input of an advantage network consists of a four-tuple, namely the
posterior mean µt(x), the posterior standard deviation σt(x), the best observation so far y∗t , and the
ratio between the current timestamp and total sampling budget t

T . Accordingly, the input of a value
network consists of y∗t and t

T .
Computing Resources. All the training and testing processes are run on a Linux server with (i) an
Intel Xeon Gold 6136 CPU operating at a maxinum clock rate of 3.7 GHz, (ii) a total of 256 GB
memory, and (iii) an RTX 3090 GPU.

Table 1 summarizes the hyperparameter configuration of the training of FSAF.

Table 1: FSAF training hyperarameters.

Description Value

Batch size (i.e., |Dtr
τ,k| in Algorithm 1) 128

Target update interval (in terms of iterations) 5
Lower-level learning rate (i.e., η in (8)) 0.01
Upper-level learning rate (i.e., β in Algorithm 1) 0.001
Agent/demo replay buffer size 1000
Discount factor γ 0.98
Number of DQN particles 5
Total sampling budget 100
Cardinality of the Sobol grid 200

C Experiment Details

C.1 Experiment Details of Figure 1

Recall that Figure 1 illustrates the overfitting issue of DQN+MAML. Regarding the DQN used for
Figure 1, we use the same design, network architecture, and training tasks as those described in
Appendix B. Regarding the vanilla MAML for Figure 1, we use the squared TD error in (4) as the loss
function for both the lower-level and upper-level updates. For both training and the fast adaptation
during testing, we apply 5-shot adaptation (i.e., 5 black-box functions are used for adaptation) and
set the number of few-shot gradient updates to be 5. In Figures 1(b)-1(d), we report the empirical
average simple regret as well as the empirical standard deviation over 100 independent trials.
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C.2 Experiment Details of Figure 2

Recall that Figure 2 shows the simple regret performance of the AFs under various standard opti-
mization benchmark functions. The input domain of each benchmark function is a hypercube in the
form of [−xlim, xlim]d (e.g., xlim = 5 and d = 2 for the Ackley function). Moreover, as the function
values of these benchmark functions can be one or more orders of magnitude different from each
other, for ease of comparison, we scale all the values of the functions to the range [−2, 2]. For the
posterior inference required by all the AFs, we use a GP with an RBF kernel as the surrogate model.
For each benchmark function, the lengthscale parameter of the RBF kernel is estimated via marginal
likelihood maximization, which is a commonly-used Bayesian model selection framework.

Validation datasets and testing datasets. As mentioned in Section 4, we construct the validation
datasets (mainly for the few-shot adaptation of FSAF and the fine-tuning of MetaBO-T) and the
testing datasets by applying random translations and re-scalings to the x and the y values, respectively.
Specifically, the amount of translation added to each dimension of x is selected from the range
[−0.1xlim, 0.1xlim] uniformly at random. Similarly, the re-scaling factor applied to each y value is
chosen uniformly at random from the range [0.9, 1.1].

Maximization of the AFs. Recall that the input domain of each optimization benchmark function
is a hypercube. To address the continuous input domains and achieve a fair comparison between
FSAF and MetaBO, we leverage the hierarchical gridding method similar to that in [27] for the
maximization procedure of the AFs. Specifically, we first construct a coarse Sobol grid of Ncoarse
points that span over the entire domain and then evaluate the AF on this grid. Next, we find the Nm
maximal evaluations on this coarse grid and build a finer local Sobol grid of Nlocal points for each
of the Nm maximal points. Then, the maximum of the AF is approximated by the maximum value
among these NmNlocal AF evaluations. To finish the testing process within a reasonable amount of
time, we choose Ncoarse = 2000, Nm = 10, and Nlocal = 1000.

C.3 Experiment Details of Figure 3

Recall that Figure 3 demonstrates the regret performance under the test functions obtained from a
variety of real-world datasets. Below we describe these real-world datasets in more detail.

• XGBoost Hyperparameter Optimization. We use the HPOBench dataset6 for the hyperparam-
eter optimization for the XGBoost algorithm. Specifically, we use the pre-computed results of
XGBoost with six tunable hyperparameters (e.g., learning rate, L1 and L2 regularization terms, and
subsampling ratios) on 48 classification datasets, each of which is associated with 1000 randomly
selected hyperparameter configurations. Hence, these 48 subsets of pre-computed results naturally
provide 48 black-box test functions (with the cardinality of the input domain = 1000, for each
black-box function) for BO. While these 48 black-box functions are different, they are deemed to
be of common characteristics as these functions are obtained under the same XGBoost algorithm
and related classification datasets. In the 1-shot setting, we use 1 out of the 48 black-box functions
as the meta-data for fast adaptation of FSAF and finding the lengthscale parameter of the GP
surrogate model via marginal likelihood maximization. The remaining 47 black-box functions are
used only for testing. The use of meta-data is similar in other tasks.

• Electrical Grid Stability Dataset. This dataset corresponds to an augmented version of the
Electrical Grid Stability Simulated Dataset7 [55]. This dataset records total 12 features, such as the
reaction times of the producer and the consumer, power balance, and price elasticity coefficient, and
the objective is to maximize the grid stability. This dataset contains 60000 parameter configurations,
and we divide them into 39 testing sets and 1 validation set. The validation set is used for both
few-shot adaptation of FSAF as well as finding the lengthscale parameter of the GP surrogate
model for posterior inference.

• Air Quality Prediction. We use the meteorological monitoring data of air quality collected in
northern Taiwan in 20158. We select 14 air quality features, such as the amount of Sulfur dioxide,

6Created by AutoML and available at https://github.com/automl/HPOBench.
7Created by Vadim Arzamasov (Karlsruher Institut für Technologie, Karlsruhe, Germany) and available at

https://www.kaggle.com/pcbreviglieri/smart-grid-stability.
8Created by Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan), available at

https://airtw.epa.gov.tw/ENG/default.aspx
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Carbon monoxide, and ozone, and set the amount of PM2.5 as the objective function. After cleaning
up all the NaN entries and missing data entries, we get about 73000 parameter configurations
and split them into 29 testing sets and 1 validation set. Again, the validation set is used for both
few-shot adaptation of FSAF as well as finding the lengthscale parameter of the GP surrogate
model for posterior inference.

• Oil Well Dataset. We use the NYS Oil, Gas, Other Regulated Wells datasets9 to find the deepest
drilled depth among the oil wells. For each data entry, we use the longitude and latitude of both
the surface as well as the bottom of the oil well as the input features. This dataset contains about
41000 parameter configurations, and we divide the dataset into 29 subsets of testing data and 1 set
of validation data for few-shot adaptation of FSAF and finding the lengthscale parameter of the GP
surrogate model for posterior inference.

• Asteroid Dataset. This dataset10 contains a variety features of the asteroids, and our goal is to find
the maximum asteroid diameter based on all of its 12 numerical features. Since the range of the
asteroid diameters is too large, we apply the commonly-used input warping technique in BO and
use the logarithm of the diameter values as the objective. After cleaning up all the NaN entries and
missing entries, we get about 136000 parameter configurations and split them into 39 testing sets
and 1 validation set.

Regarding the maximization of AFs, since the input domains of the real-world test functions are all
discrete, the maximum value of each AF can be found exactly and therefore the hierarchical gridding
procedure is not required in this case.

D Additional Experimental Results

In this section, we provide additional experimental results regarding the synthetic GP test functions,
the combination of FSAF and FSBO, and the percentiles associated with Figure 3 in the main text.

0 10 20 30 40 50
Number of Samples

10 3

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

SM periods=[0.2,0.4,0.8] 3D

FSAF
MetaBO
MetaBO-T
EI
PI
GP-UCB
MES

(a)

0 20 40 60 80 100
Number of Samples

10 1

100

Si
m

pl
e 

Re
gr

et

SM periods=[0.2,0.4,0.8] 5D

(b)

0 10 20 30 40 50
Number of Samples

10 3

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

SM periods=[0.3,0.6,0.9] 3D

(c)

0 20 40 60 80 100
Number of Samples

10 1

100
Si

m
pl

e 
Re

gr
et

SM periods=[0.3,0.6,0.9] 5D

(d)

0 10 20 30 40 50
Number of Samples

10 5

10 4

10 3

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

RBF 3D

(e)

0 20 40 60 80 100
Number of Samples

10 4

10 3

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

RBF 5D

(f)

0 10 20 30 40 50
Number of Samples

10 3

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

Matern3/2 3D

(g)

0 20 40 60 80 100
Number of Samples

10 2

10 1

100

Si
m

pl
e 

Re
gr

et

Matern3/2 5D

(h)

Figure 7: Median simple regrets of FSAF and other benchmark methods under synthetic GP test
functions. Other percentiles are provided in Table 2 for visual clarity.

9Hosted by State of New York, available at https://www.kaggle.com/new-york-state/nys-oil,
-gas,-other-regulated-wells?select=oil-gas-other-regulated-wells-beginning-1860.csv.

10Provided by the paper titled “Prediction of Asteroid Diameter with the help of Multi-layer Perceptron
Regressor" in International Conference on Computer Science, Industrial Electronics in 2019 [56] and available
at https://www.kaggle.com/basu369victor/prediction-of-asteroid-diameter.
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D.1 Synthetic GP Test Functions

To further validate the effectiveness of FSAF, we evaluate FSAF and the benchmark AFs on GP
functions drawn from various kernels. Specifically, to generate the validation and testing datasets, we
consider four different types of GP kernels for both the input domains of [0, 1]3 and [0, 1]5, including:
(i) Spectral mixture kernel with three Gaussian components of periods 0.2, 0.4, and 0.8 as well as a
lengthscale range [0.5, 0.55]; (ii) Spectral mixture kernel with three Gaussian components of periods
0.3, 0.6, and 0.9 as well as a lengthscale range [0.5, 0.55] (iii) RBF kernel with a lengthscale range
[0.5, 0.55]; (iv) Matèrn kernel with a lengthscale range [0.5, 0.55]. Notably, all the above kernels
have never been seen by FSAF during training. To address the continuous input domains, we use the
same hierarchical gridding method as described in Appendix C.2 to maximize the AFs. Similar to the
case of Figure 2, we consider 5-shot adaptation for FSAF and use the same amount of meta-data for
MetaBO-T.

Figure 7 shows the simple regrets of all the AFs under eight different types of GP functions. Again,
we can see that FSAF is constantly among the best of all the methods under most of the test functions.
We also observe that MetaBO and MetaBO-T perform quite well in the 3-dimensional tasks. We
conjecture that this is due to the fact that the pre-trained MetaBO model was originally trained on
3-dimensional GP functions, as described in [27]. However, MetaBO and MetaBO-T do not adapt
well to the 5-dimensional GP functions, as shown in Figures 7(b), 7(d), 7(f), and 7(h). By contrast,
despite that FSAF is also trained on 3-dimensional GP functions, FSAF adapts more effectively to
GP functions of a higher input dimension, as shown in 7(b), 7(d), 7(f). On the other hand, Figure 7(h)
shows that FSAF does not catch up well with EI after 40 samples under the 5-dimensional Matèrn-2/3
functions. We conjecture that this is due to the fact that 5-dimensional Matèrn-2/3 functions have
even more local variations that could not be captured well by only a small amount of meta-data.
Moreover, among the benchmark methods, the best-performing AF still varies under different types
of functions. This again corroborates the commonly-seen phenomenon and our motivation.
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Figure 8: Median simple regrets of FSAF and EI, with and without
the integration with FSBO. Other percentiles are in Table 3.

D.2 Combining FSAF with FSBO

Recall from Remark 9 that [15] proposes FSBO, which leverages meta-data to fine-tune the ini-
tialization of the GP kernel parameters for the off-the-shelf AFs. As FSBO can provide better GP
kernel parameters for posterior inference than the conventional approaches (e.g., marginal likelihood
maximization), it appears feasible to let FSAF and FSBO complement each other and even com-
bine other off-the-shelf AFs with FSBO for better regret performance. In this section, we provide
experimental results to validate the above argument. Since [15] did not release their source code,
we need to re-implement FSBO by ourselves11. Specifically, for the meta-learning part of FSBO,
we leverage Reptile [57] with a spectral mixture kernel as a lightweight variant of [58]. Moreover,

11We contacted the authors of [15] via email and got the reply that they still needed a bit more time before
making the code publicly available. Moreover, we also confirmed the important design choices with the authors
to better reproduce FSBO.
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Table 2: The percentiles of simple regrets over 100 independent trials for all the AFs under synthetic
GP test functions. For 3-dimensional kernel functions, we report the percentiles measured at steps
25 and 50. For 5-dimensional kernel functions, we report the percentiles measured at steps 50 and
100. All the values displayed here are scaled by 100 for more compact notations. The best of each
percentile under each type of functions is highlighted in bold and underline.

AF P SM periods= SM periods= RBF 3D Matèrn-3/2 3D
[0.2,0.4,0.8] 3D [0.3,0.6,0.9] 3D

FSAF 25% 0.03, 0.00 0.01, 0.00 0.00, 0.00 0.00, 0.00
50% 7.80, 0.91 3.28, 0.12 0.00, 0.00 0.25, 0.03
75% 41.62, 38.81 24.78, 16.74 0.00, 0.00 3.87, 0.54
90% 70.97, 67.15 64.65, 62.63 0.55, 0.52 16.75, 9.67

MetaBO 25% 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.02, 0.00
50% 10.88, 0.99 2.19, 0.24 0.00, 0.00 1.10, 0.27
75% 46.07, 29.76 28.96, 17.16 0.19, 0.13 11.51, 5.77
90% 81.47, 75.46 72.62, 61.25 0.92, 0.84 25.12, 22.52

MetaBO-T 25% 0.09, 0.00 0.15, 0.00 0.00, 0.00 0.00, 0.00
50% 6.47, 0.72 3.97, 0.22 0.00, 0.00 0.65, 0.12
75% 46.25, 16.45 41.52, 18.71 0.25, 0.02 7.04, 4.93
90% 82.98, 51.48 78.32, 59.29 1.41, 0.84 24.48, 23.85

EI 25% 1.02, 0.50 0.93, 0.34 0.00, 0.00 0.00, 0.00
50% 4.57, 1.22 2.60, 1.20 0.00, 0.00 0.36, 0.00
75% 49.63, 6.27 29.60, 4.19 0.33, 0.02 5.31, 0.43
90% 88.47, 48.41 83.11, 38.15 1.22, 0.99 14.93, 1.38

PI 25% 5.93, 3.96 4.55, 3.54 1.06, 1.01 3.94, 3.21
50% 10.34, 8.16 8.76, 6.65 4.59, 3.76 7.26, 5.70
75% 40.42, 14.74 28.49, 12.45 8.04, 6.71 12.61, 9.13
90% 79.30, 42.57 74.08, 33.11 11.45, 8.93 19.77, 13.93

GP-UCB 25% 13.04, 11.71 11.18, 10.80 0.00, 0.00 6.06, 1.79
50% 23.83, 20.70 20.46, 16.71 0.00, 0.00 13.20, 5.11
75% 47.45, 33.06 35.04, 27.53 0.21, 0.00 26.47, 9.42
90% 73.17, 47.62 59.32, 34.97 1.11, 0.44 41.64, 16.09

MES 25% 5.70, 3.70 5.72, 2.66 0.03, 0.02 0.69, 0.21
50% 14.97, 8.18 10.69, 6.42 0.37, 0.29 3.05, 0.88
75% 37.36, 16.17 28.17, 10.70 1.81, 1.18 7.59, 2.88
90% 75.31, 36.15 67.86, 17.39 5.03, 3.75 11.78, 6.27

AF P SM periods= SM periods= RBF 5D Matèrn-3/2 5D
[0.2,0.4,0.8] 5D [0.3,0.6,0.9] 5D

FSAF 25% 8.10, 0.88 5.51, 1.75 0.00, 0.00 2.67, 0.00
50% 46.04, 12.03 25.44, 10.08 0.31, 0.00 15.40, 7.47
75% 67.89, 46.69 74.85, 41.58 2.67, 1.32 45.85, 23.46
90% 104.46, 71.09 98.25, 78.89 5.52, 4.00 72.67, 52.40

MetaBO 25% 22.55, 13.76 14.32, 6.84 0.00, 0.00 9.18, 3.44
50% 54.93, 43.24 58.90, 30.21 0.89, 0.75 31.69, 21.27
75% 80.30, 69.47 101.54, 78.60 7.02, 4.92 69.30, 48.99
90% 128.87, 96.96 156.15, 124.84 30.42, 17.31 86.73, 80.38

MetaBO-T 25% 23.23, 15.84 12.31, 5.69 0.00, 0.00 4.82, 0.61
50% 57.05, 39.99 43.67, 27.00 0.85, 0.27 19.01, 10.17
75% 88.13, 69.88 75.39, 65.34 4.58, 3.12 55.67, 28.54
90% 123.23, 91.40 107.24, 92.93 23.03, 8.77 77.27, 55.63

EI 25% 6.35, 0.00 3.12, 0.00 0.00, 0.00 0.51, 0.00
50% 38.09, 10.12 27.56, 8.42 0.10, 0.00 8.68, 0.00
75% 79.77, 51.62 86.52, 57.03 3.39, 1.59 28.38, 7.36
90% 143.68, 92.64 123.61, 102.67 8.09, 5.56 68.32, 30.38

PI 25% 12.74, 4.36 6.76, 2.45 5.81, 4.80 8.54, 4.42
50% 46.90, 18.52 26.81, 9.55 9.76, 8.80 17.61, 9.13
75% 76.23, 53.18 74.40, 40.77 14.47, 12.75 30.70, 17.44
90% 110.59, 89.79 107.18, 70.79 20.94, 16.77 53.25, 27.73

GP-UCB 25% 24.86, 17.37 21.25, 15.13 12.79, 0.00 41.12, 19.84
50% 54.77, 37.94 37.17, 24.71 24.31, 2.06 64.86, 39.35
75% 88.69, 64.84 71.08, 46.74 37.09, 7.72 84.72, 56.06
90% 127.81, 92.97 105.94, 71.43 46.44, 13.06 111.00, 68.07

MES 25% 19.37, 4.40 11.08, 5.16 0.84, 0.43 9.31, 4.46
50% 42.62, 19.73 37.91, 21.55 4.17, 3.43 21.72, 15.95
75% 74.29, 46.93 73.01, 50.09 11.76, 9.91 40.49, 28.11
90% 109.83, 72.50 98.32, 85.27 18.17, 16.03 67.14, 59.04
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we use cosine annealing outer-loop learning rate from 10−3 to 10−5 and set the inner-loop learning
rate to be 10−2. The deep kernel is represented by a neural network with two hidden layers (with
128 hidden units per layer), and the degree of few-shot deep kernel learning is configured to be 4.
The spectral mixture kernel is configured to have 10 components. We test (i) the combination of
FSAF and FSBO as well as (ii) the combination of EI and FSBO on the XGBoost hyperparameter
optimization task described in Appendix C.3. As FSBO requires some data for obtaining an initial
model, we use 5 out of the 48 subsets of the HPOBench dataset to obtain an initial FSBO model
and evaluate the regret performance on the other 43 subsets. From Figure 8 and Table 3, we see that
FSBO can slightly improve the regret performance of the two AFs.

Table 3: The percentiles of simple regrets under the HPOBench dataset at steps 30 and 60. All the
values displayed here are scaled by 100 for more compact notations. The best of each percentile
under each type of functions is highlighted in bold and underline.

Dataset Percentile FSAF FSAF (w/i FSBO)
HPOBench XGB 25% 0.00, 0.00 0.00, 0.00

50% 0.07, 0.00 0.07, 0.00
75% 1.79, 0.90 0.99, 0.99
90% 4.51, 3.31 3.37, 3.37

Dataset Percentile EI EI (w/i FSBO)
HPOBench XGB 25% 0.00, 0.00 0.00, 0.00

50% 0.31, 0.04 0.31, 0.00
75% 2.50, 1.99 1.57, 1.13
90% 6.36, 6.27 5.18, 4.62

D.3 Additional Percentiles for Figure 3

In this section, we provide more detailed percentiles associated with the experiments of Figure 3 in
Table 4. We can see that FSAF is still among the best in terms of either lower or higher percentiles
under most of the real-world test functions.
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Table 4: The percentiles of simple regrets for all the AFs under different real-world test functions.
For PM2.5, and Electrical Grid Stability, we report the percentiles measured at steps 60 and 120. For
HPOBench XGB, Oil, and Asteroid, we report the percentiles measured at steps 30 and 60. All the
values displayed here are scaled by 100 for more compact notations. The best of each percentile
under each type of functions is highlighted in bold and underline.

AF P Electrical PM2.5 HPOBench Oil Asteroid
Grid Stability XGB

FSAF 25% 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
50% 4.48, 0.00 6.00, 1.00 0.14, 0.00 16.59, 0.00 2.85, 0.00
75% 11.92, 5.76 19.00, 11.00 3.16, 2.03 40.82, 16.59 11.16, 0.00
90% 15.03, 11.78 28.80, 22.20 8.42, 6.29 50.89, 22.89 18.90, 0.00

MetaBO 25% 2.42, 0.00 20.00, 9.00 0.00, 0.00 0.00, 0.00 16.66, 0.00
50% 7.43, 2.70 26.00, 17.00 1.38, 0.28 20.28, 1.96 40.58, 10.54
75% 11.15, 6.86 39.00, 26.00 3.15, 1.51 43.34, 25.69 50.32, 19.76
90% 17.59, 13.61 44.40, 35.00 6.62, 5.79 60.52, 37.25 58.37, 35.71

MetaBO-T 25% 2.81, 0.00 23.00, 12.00 0.00, 0.00 15.96, 0.00 0.00, 0.00
50% 6.86, 3.74 30.00, 16.00 1.38, 0.61 31.71, 0.00 2.58, 0.00
75% 12.17, 9.72 39.00, 28.00 3.46, 2.47 49.05, 15.75 22.93, 0.00
90% 14.76, 13.89 43.60, 36.00 8.27, 6.62 63.61, 31.67 32.49, 0.00

EI 25% 0.30, 0.00 12.00, 5.00 0.00, 0.00 15.10, 0.00 0.00, 0.00
50% 5.72, 0.00 16.00, 15.00 0.60, 0.04 25.60, 0.00 0.00, 0.00
75% 9.84, 7.12 29.00, 21.00 3.16, 2.70 43.43, 15.63 8.73, 0.00
90% 14.66, 12.72 36.00, 33.60 8.03, 8.03 63.95, 25.83 21.64, 0.00

PI 25% 0.00, 0.00 6.00, 0.00 0.00, 0.00 0.27, 0.00 0.00, 0.00
50% 5.72, 1.30 17.00, 8.00 0.60, 0.03 18.76, 1.66 2.85, 0.00
75% 9.84, 7.30 33.00, 15.00 3.16, 2.14 29.18, 15.75 17.60, 0.00
90% 15.31, 12.48 37.40, 32.20 8.03, 4.92 53.95, 27.49 23.13, 0.00

GP-UCB 25% 1.49, 0.00 11.00, 8.00 0.00, 0.00 14.11, 0.00 0.00, 0.00
50% 8.05, 2.87 18.00, 15.00 0.60, 0.04 21.54, 13.27 0.00, 0.00
75% 14.55, 9.84 28.00, 20.00 3.16, 2.53 30.98, 21.83 4.84, 0.00
90% 17.93, 12.83 38.20, 30.40 8.03, 4.92 49.56, 30.39 20.66, 1.97

MES 25% 1.49, 0.00 11.00, 8.00 0.00, 0.00 1.95, 0.00 0.00, 0.00
50% 6.81, 2.89 15.00, 14.00 0.61, 0.04 20.28, 1.95 1.36, 0.00
75% 13.61, 9.17 32.00, 16.00 3.16, 2.73 28.83, 20.93 7.62, 0.00
90% 16.83, 13.22 37.00, 37.00 8.03, 6.29 33.85, 30.42 14.82, 3.12

TAF-ME 25% 9.18, 9.18 4.00, 2.00 0.06, 0.02 0.27, 0.27 0.00, 0.00
50% 15.86, 15.86 9.00, 6.00 2.50, 2.48 16.59, 14.63 3.75, 2.58
75% 19.78, 19.56 18.00, 15.00 8.09, 6.98 25.60, 20.28 13.17, 12.31
90% 23.84, 23.84 22.60, 21.00 15.77, 14.00 45.90, 26.82 21.58, 20.25

Spearmint 25% 8.48, 8.48 29.50, 29.50 0.00, 0.00 22.16, 14.21 20.12, 20.12
50% 13.80, 13.80 40.50, 38.50 1.13, 0.84 41.53, 28.84 37.53, 34.25
75% 20.33, 18.62 45.00, 44.25 4.28, 2.94 60.31, 42.30 51.65, 51.65
90% 29.43, 24.28 60.60, 60.60 11.93, 11.34 65.12, 65.12 64.66, 64.66

HEBO 25% 2.33, 1.54 16.00, 16.00 0.00, 0.00 25.98, 18.04 10.07, 5.25
50% 7.97, 6.04 23.00, 22.00 2.60, 0.85 52.46, 43.98 22.56, 21.52
75% 14.31, 11.36 39.00, 37.50 4.80, 3.69 64.06, 52.93 39.62, 34.04
90% 18.69, 16.99 45.00, 45.00 9.44, 9.44 72.56, 65.57 46.62, 42.54
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