
A Experimental Details and Ablation Studies for Language Modelling

A.1 Experimental Settings

All language models in Table 1 have the same Transformer configuration: a 16-layer model with a
hidden size of 128 with 8 heads, and a feed-forward dimension of 2048. We use a dropout [75, 76, 77]
rate of 0.1. The batch size is 96 and we train for about 120 epochs with Adam optimiser [78] with an
initial learning rate of 0.00025 and 2000 learning rate warm-up steps. All models are trained with
a back-propagation span of 256 tokens. During training, these segments are treated independently,
except for the + full context cases in Table 1 where the states (both recurrent states and fast weight
states) from a segment are used as initialisation for the subsequent segment. The models in +
full context cases are also evaluated in the same way by carrying over the context throughout the
evaluation text with a batch size of one. For all other cases, the evaluation is done by going through
the text with a sliding window of size 256 with a batch size of one. Transformer states are computed
for all positions in each window, but only the last position is used to compute perplexity (except in
the first segment where all positions are used for evaluation) [2]. We trained all models using two
GPUs (32 GB V100), and the longest training takes up to 10 days (see Sec. 4.1 in the main text for
speed comparison between models).

For readers interested in any further details, we refer to our code which is publicly available.

A.2 Ablation Studies

In this section, we specify the exact Delta LSTM and Delta MLP models used in Table 1, and provide
a few ablation studies for Delta RNN, Delta LSTM3, and Delta MLP models.

Table 4: Ablation studies for Delta LSTM, Delta RNN, and Delta MLP models. Language model
perplexities are shown and the setting is the same as in Table 1.

Version Valid Test #Prms

Delta RNN A 35.6 36.7 44.6
B 33.8 35.0

Delta LSTM A 38.5 39.9 47.3
B 34.2 35.2
C 33.5 34.7
D 32.6 33.8

Delta MLP A 36.8 37.9 44.3
B 35.8 36.8 44.3

Delta RNN. In Sec. 3.1, we argue for a version of fast RNN given by Eq. 12 as a natural augmenta-
tion of the linear Transformer with recurrent connections. Here we empirically support this choice by
comparing to another variant of Delta RNN given by:

y(t) = f(W (t)q(t) +R(t)y(t−1)) (19)

where f is again the softmax activation which makes y(t) a valid query vector (positive components
which sum up to one) for fast weights maintained by the delta update rule. We refer to this version
as Version A in this ablation study and the one given by Eq. 12 as Version B. As Table 4 shows,
Version B performs better, and this is the one we report in Table 1 in the main text.

Delta LSTM. We evaluate four versions of Delta LSTM for ablation. In all cases, we tie the input
and forget gates to reduce the total number of fast weights to be controlled by the slow net. All

3The numbers reported in Table 4 for the Delta LSTM models are better than those we presented in an earlier
version. In fact, we found that in our previous code, the slow weights for key and value generation were shared by
mistake between the forward and recurrent fast weight matrices (while the reported parameter count was that of
the correct model with separate slow weight matrices). Fixing this resulted in the corresponding improvements.
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models contain six fast weights and each of them is updated according to the delta update rule (Eq. 8).
The different versions differ in the location of the activation function and residual connections in the
LSTM architecture [14, 79], inspired by the Transformer.

Version A (analogous to Version A of Delta RNN above) is the one which is the closest to the original
LSTM with tied input and forget gate. The only architectural difference is the usual tanh on the cell
output c(t) which is replaced by a softmax f placed after the final output of the layer f(c(t) � o(t)),
such that it can directly be used as a delta rule compatible query for the next time step (we also use a
sigmoid instead of tanh for the main transformation u(t), but this is not crucial for any models here).

u(t) = σ(W (t)q(t) +R(t)y(t−1)) (20)

f (t) = σ(W
(t)
f q(t) +R

(t)
f y

(t−1)) (21)

o(t) = σ(W (t)
o q(t) +R(t)

o y
(t−1)) (22)

c(t) = f (t) � c(t−1) + (1− f (t))� u(t) (23)

y(t) = f(c(t) � o(t)) (24)

Version B is obtained by delaying the application of the softmax activation f in Version A.

u(t) = σ(W (t)q(t) +R(t)f(y(t−1))) (25)

f (t) = σ(W
(t)
f q(t) +R

(t)
f f(y(t−1))) (26)

o(t) = σ(W (t)
o q(t) +R(t)

o f(y(t−1))) (27)

c(t) = f (t) � c(t−1) + (1− f (t))� u(t) (28)

y(t) = c(t) � o(t) (29)

Version C is obtained from Version B by adding a residual connection from the feed-forward part
z
(t)
u of the main transformation u(t) to the output.

z(t)u = W (t)q(t) (30)

u(t) = σ(z(t)u +R(t)f(y(t−1))) (31)

f (t) = σ(W
(t)
f q(t) +R

(t)
f f(y(t−1))) (32)

o(t) = σ(W (t)
o q(t) +R(t)

o f(y(t−1))) (33)

c(t) = f (t) � c(t−1) + (1− f (t))� u(t) (34)

y(t) = c(t) � o(t) + z(t)u (35)

Finally, Version D is obtained from Version B by removing the sigmoid on the main transformation
u(t) which results in a highway net-like skip connection [53] from u(t) to the output. This version is
then analogous to Version B of the Delta RNN as a natural augmentation of the linear Transformer: a
recurrent term is added to the main transformation u(t) and gating components are added to make it
an LSTM architecture:

u(t) = W (t)q(t) +R(t)f(y(t−1)) (36)

f (t) = σ(W
(t)
f q(t) +R

(t)
f f(y(t−1))) (37)

o(t) = σ(W (t)
o q(t) +R(t)

o f(y(t−1))) (38)

c(t) = f (t) � c(t−1) + (1− f (t))� u(t) (39)

y(t) = c(t) � o(t) (40)

Corresponding performances can be found in Table 4. The best model, Version D, is the one we
report in Table 1 in the main text.

Delta MLP. We also conduct a few ablation studies for the Delta MLP (Sec. 3.1). As MLP archi-
tecture we used the feedforward block of the regular Transformer which consists of two feedforward
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layers: one with the size of the inner feedforward layer (2048 here) and another one with the size
of hidden dimension (128 here). We test two variants which result in a similar number of param-
eters: Version A with 8 overall Transformer layers where each self-attention layer contains 4 fast
MLP layers (i.e. a total of 48 feedforward layers with 32 fast ones), and Version B with 11 over-
all Transformer layers where each self-attention layer contains 2 fast MLP layers (i.e. a total of 44
feedforward layers with 22 fast ones). As shown in Table 4, Version B which has fewer fast layers
controlled by the same slow net performs better, and, as already mentioned in Sec. 4, they do not
outperform the baseline Delta Net which has only one fast feedforward layer (Table 1).

A.3 Dimensionality of Delta-Delta Net vs. Delta Net

Here we describe how the dimensionality of Delta-Delta Net scales with the size of the Delta Net. We
assume a Delta Net with a dimension d for all query, key, value and input vectors. Then its slow weight
matrix (the projection matrix) is of size d× (3d+ 1) as it projects a d-dimensional input to query,
key, value vectors (3d) and a scalar beta (+1) which are needed to maintain a d×d fast weight matrix
using the delta rule. Now we can express the dimensionality of a Delta-Delta Net in terms of d, whose
fast network is a Delta Net with the dimensionality above. The size of its fast weight matrix is thus
d× (3d+ 1). In order to maintain a fast weight matrix of this dimension using the delta rule, we need
key and query vectors of size d, a value vector of size 3d+ 1, and a scalar beta (+1). The slow weight
matrix has to produce all these variables with a total dimension of (5d+ 2) from the input of size d.
Therefore, the size of the slow weight matrix in the Delta-Delta Net is d×(5d+2). Such a Delta-Delta
Net would have to store two fast weight matrices: one of size d×(3d+1) and another one of size d×d.

B Experimental Details and Additional Results for Algorithmic Tasks

B.1 Task Details for Code Execution

In code execution tasks [29], models are trained to sequentially read the input code provided as
word-level text and to predict the results of the corresponding code execution. We adopt the task
setting from Fan et al. [57]. Each example is a sequence consisting of multiple statements — 100
in our experiments. A statement can be one of the following three basic statements: assign which
assigns a value to a variable (e.g. x = 2 ;), increment which increments or decrements an already
assigned variable (e.g. x ++ ;), or print which outputs the value of the variable (e.g. print x ;).
In addition to basic statements, there are also conditional comparisons on already defined variables
followed by a basic statement (e.g. if x < 3 : x ++ ;). The model reads the input word-level
code sequence from left to right in an auto-regressive manner, and makes a prediction at each position:
at the end of each print statement, the model has to predict the correct variable value, and for all
other positions, the no-output token.

Here is a short example (with N denoting the no-output token):

In: x = 3 ; y = 7 ; x ++ ; if y < 6 : print x ; print x ;
Out: N N N N N N N N N N N N N N N N N N N N N 4

In contrast to Fan et al. [57], we hard-code the last statement to be a print statement of a randomly
chosen variable such that the model always has to make a prediction at the end of the sequence. The
output vocabulary of the model is restricted to discrete values within a pre-determined range (here
between -8 and 16), and the code sequences are constructed such that the value to be printed does not
exceed this range by rejecting any statement which would result in such values. Like Fan et al. [57],
we randomly generate 10,000 sequences for training and 1,000 sequences each for validation and test.
With 100 statements per sequence, we obtain sequences with lengths varying from about 370 to 550,
with an average length of about 450 tokens for both 3 and 5 variable cases, and for train, valid, and test
sets. This code execution task requires models to maintain the values of multiple variables, which has
been previously shown to be a difficult task for Transformers with only feedforward connections [57].

B.2 Additional Results for Code Execution

Token level print accuracy. First of all, as mentioned in the main text, the test accuracies reported
in Table 2 are on the sequence-level, i.e., an output sequence is counted as correct only if all output
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tokens in the sequence match the ground truth. The sequence level accuracy is a good evaluation
measure here since for most positions in the sequence (except at the end of print statement) the
correct target is the no-output token. This results in 0% accuracy for the Linear Transformer, which
might be shocking at first glance at Table 2. Thus, we also provide the token accuracies following
the print statements. The results can be found in Table 5. There we can see that the accuracies for
the Linear Transformer are not zero: above 20% in both 3 and 5 variable cases. Nevertheless, they
clearly underperform other models.

Table 5: Token-level validation accuracies (%) for the print statements on code execution. Means
and stds are computed with three seeds for 3-variable and six seeds for 5-variable cases.

# Variables

3 5

LSTM 99.9 ± 0.0 99.6 ± 0.4
Transformer 98.6 ± 0.2 75.5 ± 31.0
Linear Transformer 24.6 ± 0.6 20.7 ± 1.4
Delta Net 99.5 ± 0.1 97.2 ± 2.0

Delta RNN 99.5 ± 0.0 99.3 ± 0.2
RDN 99.6 ± 0.1 98.6 ± 1.4

Model configurations. The Transformer architecture in Table 2 is adopted from Fan et al. [57]:
4 layers with a hidden dimension of 256 (where we use 16 heads instead of 4) and a feedforward
dimension of 1024, which yields 3.2 M parameters (like for Fan et al. [57]). We use a dropout rate
of 0.1. The regular Transformer makes use of sinusoidal positional encoding (as is likely the case
for Fan et al. [57]) while all other models in Table 2 don’t [80, 23]. All Transformer models use pre-
activation residual connections [52] and layer norm [54]. Our LSTM model in Table 2 has one LSTM
layer with a dimension of 256 and an input embedding of 128 which results in 405 K parameters.
We train all models with a batch size of 64 using the Adam optimiser with a learning rate of 3e-4
for Transformer-family models and a learning rate of 3e-3 for the LSTM. We clip the gradients in
the LSTM model at 0.1. To train the regular Transformers, gradient accumulation was necessary to
achieve the same batch size without hitting the GPU memory limit. This was not the case for space
efficient linear Transformer variants. All models are trained for 200 epochs which takes no more than
23 hours for any model on a single 16 GB P100 GPU.

Model architecture ablation. Here we conduct a few additional experiments to understand the
models’ sensitivity to hyper-parameters. We restrict our analysis to the setting with 5 variables in
which the performance gap between models is large (Table 2). We train deeper but thinner models
with 8 layers: each with a hidden size of 128 using 8 heads and a feed-forward dimension of 256.
This yields a total of 1.1 M parameters for all Transformer models except for the Delta RNN which
has 1.3 M parameters. These deeper but thinner models can be trained within 10 hours using a
single 16 GB V100 GPU. We present the results in the bottom part of Table 6. We don’t report the
performance of the regular Transformer since the 8-layer variant learns very slowly and does not
improve over the initial 0% sequence-level accuracy within 200 epochs of training after which we
report the performance for all models4.

First, we observe that the Delta RNN with 8 layers can now match the performance of the baseline
LSTM with 256 nodes. However, increasing the LSTM hidden size to 512 (which gives a parameter
count of 1.3 M; equal to the Delta RNN’s) further improves the LSTM. Second, the Delta Net still
remains unstable. We tried several tricks to stabilise Transformers on algorithmic tasks [81], e.g.
embedding initialisation and scaling, but with little success. The problem seems intrinsically difficult
for Transformer models, though we note that one of six runs achieved a very good performance of
97.3%. Finally, we observe that the Recurrent Delta Net becomes more stable and performs better
with a deep architecture.

4Extra experiments with this 8-layer regular Transformer show that after 800 epochs with a dropout rate of
0.3, a test accuracy of 89.1± 2.2% is achieved. This is still worse than the performance of Delta RNN trained
for 200 epochs, although the comparison is not even fair due to the longer training and extra tuning.
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Table 6: Test accuracies (%) on code execution with 5 variables. Mean, standard deviation (std), the
lowest (min) and highest (max) accuracies are computed over six runs. The number of parameters
(Prms.) is given in millions.

width depth mean ± std min max Prms.

LSTM 256 1 93.2 ± 6.1 84.7 98.5 0.4
512 97.7 ± 1.1 96.1 98.7 1.3

Delta Net 256 4 61.4 ± 20.0 26.2 85.7 3.2
Delta RNN 85.1 ± 1.9 83.1 88.6 3.7
RDN 76.3 ± 17.6 40.2 92.5 3.2

Delta Net 128 8 62.7 ± 36.3 0.1 97.3 1.1
Delta RNN 94.1 ± 2.7 88.0 95.8 1.3
RDN 85.0 ± 3.8 78.9 89.0 1.1

B.3 Task Details for Sequential ListOps

The ListOps task [30] consists of list operation execution which is a typical test for hierarchical
structure learning. A list is constructed using elementary list-operations written in prefix notation
(typically one of six operations: maximum, minimum, median followed by floor operation, sum
modulo 10, first and last element retrieval) with a random number of random arguments chosen to be
either a single digit integer or a sub-list which itself has random arguments. While early research
comparing self-attention to RNNs [58] has shown some advantages of recurrence in hierarchical
structure learning, more recent work [59] reports Transformers to also outperform LSTMs on ListOps.
Also relevant here, Tay et al. [22] report linear Transformer variants (Linear Transformers and
Performers) to underperform other Transformer variants by a large margin on ListOps. It is thus
natural to evaluate our models on this task as models at the intersection of recurrent and self-attention
based models. We construct a simple variant of ListOps which only makes use of maximum MAX,
minimum MIN, and first element retrieval FIRST operations. This turns out to be hard enough to shed
light on the differences between our models. By construction, the targets are single digit integers.
The number of arguments in each list or sub-list is random but less than the pre-determined maximum
number (here set to five, following Nangia and Bowman [30]) and we control the difficulty of the
task by changing the problem depth. Here is a depth-two example:

In: [MAX 6 1 [FIRST 2 3 ] 0 [MIN 4 7 1] ]
Out: 6

In our setting, the task with depth 10 only contains sequences with depth 105. Here, we refer to the
task as “sequential ListOps”, as we let the model read the sequence only once from left to right in
an auto-regressive fashion. As for the code execution experiments, we randomly generate 10,000
sequences for training and 1,000 sequences each for validation and test. The lengths for the depth 10
case vary from 37 to 364 with an average length of 98 tokens. For the depth 15 case, the lengths are
between 61 and 676, with an average of about 190 tokens. All experiments were conducted using a
single 16 GB P100 GPU. We use the same experimental settings as in the code execution task, and
the experiments for depth 10 and 15 take less than 4 and 16 hours, respectively.

B.4 Ablation Study for the LSTM on Sequential ListOps

While the main goal of Table 2 (Sec. 4.3) was to compare different fast weight programmer variants
under the same model configurations, we also pointed out that the performance of the baseline LSTM
dramatically drops for the sequential ListOps task by increasing the list depth from 10 to 15. In
Sec. 4.3, we hypothesised the reason for the performance drop of the LSTM for the depth-15 case of
sequential ListOps to be the small hidden size of the LSTM and the increase of sequence lengths in

5However, here the depth is simply defined as the depth of nested operations. Since the used operations do
not always have to evaluate all arguments to obtain the result, the effective computation may be shallower. This
problem has been addressed in a better version of ListOps in our more recent work [82].
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the depth-15 case. Here we provide the corresponding ablation study. Table 7 shows the performance
of the LSTM with different hidden layer sizes. We find that increasing the hidden size effectively
help the LSTM on this task.

Table 7: Test accuracies (%) with standard deviations over three runs for the LSTM on the depth-15
case of Sequential ListOps.

Hidden size Mean accuracy ± std

256 24.4 ± 1.1
1,024 24.4 ± 0.7
2,048 35.9 ± 13.0
4,096 72.2 ± 1.6

C Experimental Details and Additional Results for RL in Atari 2600

Settings. We use the polybeast implementation from Torchbeast [67] with modifications lim-
ited to model architectures. We train all our models using RMSProp [83] with a learning rate of
0.0006, an epsilon of 0.01, and gradient clipping at 40. We use entropy regularisation with a weight of
0.01. The backpropagation span is 50 and the batch size is 32. The model architecture and evaluation
method is described in the main text. All Transformer variants make use of pre-activation residual
connections [52, 12] and layer norm [54]. The number of actors for IMPALA is 48. No action repeat
is used. No time limit is set for evaluation. Rewards are clipped between -1 and 1. The OpenAI Gym
implementation of the Atari learning environment [84] is used. The only source of stochasticity is the
default sticky action. We train expert models using the game specific action spaces (models for Ami-
dar and James Bond were trained with an action space size of 6, which is smaller than the full action
space but enough to play these games). We train on 2 GPUs (either 16 GB P100 or 32 GB V100). An
experiment for one game takes about 1.5 days. Evaluation is done at 50 M and 200 M environmental
steps, which are reported in Table 9 and 10. For cases where performance did not improve after 50 M
and 200 M, we report the performance at 50 M again in Table 10 (we experienced this for Bank Heist
and Robotank; for Pong 50 M steps are enough to consistently achieve the perfect score).

In what follows, we provide additional model comparisons.

Feedforward vs. LSTM. On Atari, models without recurrence are also known to perform well in
many environments [68]. Since it is not easy to compare RL systems across different settings [85],
we train our own feedforward baseline. The feedforward baseline is simply obtained by removing the
LSTM layer in the LSTM model, which corresponds to the model of Espeholt et al. [65]. At 50 M
steps (Figure 5; orange), there are 8 games in which the feedforward baseline clearly outperforms the
LSTM, and in 8 other games the trend is reversed. At 200 M steps (Figure 6; orange), the LSTM
performs clearly better in 10 games, whereas the feedforward net clearly dominates only in 4 games.

Feedforward baseline with more parameters. In the comparison above, the LSTM baseline has
1.6 M parameters, more than the 1.1 M parameters of the feedforward baseline (while we note that the
RDN has slightly fewer parameters than the LSTM, namely, 1.5 M). To verify that the improvements
obtained by the LSTM are not due to the increased parameter count, we build a larger feedforward
baseline with 1.7 M parameters by replacing the LSTM layer by one feedforward highway-gated
layer [53] (to keep it as similar as possible to the LSTM baseline). Here the output from the vision
stem is first projected to a 320-dimensional vector which is followed by a 256-dimensional highway-
gated layer. We evaluate this model on four environments on which the LSTM outperforms the 1.1
M-param feedforward baseline. Table 8 shows the corresponding results. The extra parameters yield
improvements only on S. Invader, without matching LSTM’s performance. So we can confirm that
the dominance of LSTM over feedforward models in these games is not simply due to the higher
parameter count.

Recurrent Delta Net vs. Delta Net. We also compare the Recurrent Delta Net to a stronger
baseline, the Delta Net. The results are shown in Figures 7 and 8 (sky blue). While the RDN performs
equally well or better than the baseline Delta Net on 13 games at 200 M steps, there are also 7 games
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Table 8: Performance of feedforward baseline with more parameters.

Params. Berzerk Gopher Seaquest S. Invader

LSTM 1.5 M 1,150 ± 92 124,914 ± 22,422 12,643 ± 1,627 137,657 ± 2,276

FF 1.1 M 343 ± 23 61,350 ± 3,891 667 ± 1 53,455 ± 6,694
FF gated 1.7 M 320 ± 29 42,851 ± 7,653 660 ± 0 95,629 ± 11,991

where the Delta Net is better. We thus can not guarantee strict benefits of additional recurrence here.
Again we note that compared to other models, both the Delta Net and Recurrent Delta Net achieve
outstanding performance on Q*Bert.

Delta RNN vs. LSTM. We also evaluate the Delta RNN (Sec. 3.1) in this RL setting. We first
compare it to the LSTM baseline. As shown in Figures 9 and 10 (green), the Delta RNN clearly
outperforms the LSTM on a few games at 50 M steps. However, the performance gaps reduce across
all games after 200 M steps. Overall, the performance is close in 7 games, in favour of the LSTM in
8 games, and in favour of the Delta RNN in 5 games.

Recurrent Delta Net vs. Delta RNN. Finally, we also compare the Recurrent Delta Net to the
Delta RNN. Figures 11 and 12 (grey) present our results. In 16 games, the relative performance gap
is within 50%. In one game (Seaquest), the Delta RNN outperforms the RDN. In 3 games, the RDN
clearly outperforms the Delta RNN at 200 M steps.

Overall, the Recurrent Delta Net tends to yield decent performance compared to all baselines. While
the performance gaps between the Recurrent Delta Net and the Delta RNN are rather close, the
Recurrent Delta Net performs particularly well in a few games. As mentioned in the main text, trying
deeper architectures might be a straight-forward way to obtain better scores.

D Comments on Nomenclature

To simplify references to specific Fast Weight Programmers, we gave short names to all of them, such
as Delta RNN or Recurrent Delta Net. We did not cover, however, many other possible combinations
of slow and fast networks as well as update rules (which are the elementary programming instructions
of FWPs). This calls for a systematic nomenclature to specify the various FWP types. For a given
FWP, one could use “slow-net/update-rule" as a prefix and "fast-net" architecture as a suffix. For
example, the Delta RNN is an FWP with a fast RNN and a feedforward slow net using the delta rule
as elementary programming instruction. Therefore, using the convention above, the full name of
the Delta RNN would be “Feedforward/Delta fast RNN." The full name of the Recurrent Delta Net
would be “Recurrent/Delta fast Linear Net," and so on. This is also compatible with the baseline
Delta Net, whose full name would be “Feedforward/Delta fast Linear Net."
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Figure 5: Rel. improvements in test scores
obtained by the feedforward baseline com-
pared to LSTM after 50 M env. steps.
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Figure 6: Rel. improvements in test scores
obtained by the feedforward baseline com-
pared to LSTM after 200 M env. steps.
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Figure 7: Rel. improvements in test scores ob-
tained by the Recurrent Delta Net compared
to the Delta Net after 50 M env. steps.
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Figure 8: Rel. improvements in test scores ob-
tained by the Recurrent Delta Net compared
to the Delta Net after 200 M env. steps.
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Figure 9: Rel. improvements in test scores
obtained by the Delta RNN compared to the
LSTM after 50 M env. steps.
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Figure 10: Rel. improvements in test scores
obtained by the Delta RNN compared to the
LSTM after 200 M env. steps.
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Figure 11: Rel. improvements in test scores
obtained by the Recurrent Delta Net com-
pared to the Delta RNN after 50 M env. steps.
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Figure 12: Rel. improvements in test
scores obtained by the Recurrent Delta Net
compared to the Delta RNN after 200 M
env. steps.

Table 9: Performance after 50 M environmental steps. Reported scores are mean and std of 5 mean-
scores obtained over 30 episodes (total of 150 different test episodes). We remind the reader that we
denote the Linear Transformer [19] as LT, and our Recurrent Delta Network as RDN. The numbers
of parameters are: 1.1 M for the feedforward model, 1.6 M for the LSTM, 1.5 M for the Linear
Transformer, the Delta Net, and the Recurrent Delta Net, and finally 1.6 M for the Delta RNN.

Feedforward LSTM LT Delta Net RDN Delta RNN

Alien 1,985 ± 90 846 ± 81 2,135 ± 184 4,704 ± 452 1,754 ± 48 3,420 ± 834
Amidar 208 ± 11 233 ± 10 320 ± 16 339 ± 28 368 ± 23 216 ± 14
Assault 4,658 ± 2,147 7,551 ± 1,774 2,764 ± 380 5,710 ± 2,643 8,088 ± 2,851 7,503 ± 2,794
Battlezone 12,267 ± 620 6,327 ± 380 933 ± 351 6,780 ± 461 7,373 ± 431 7,040 ± 1,098
Berzerk 326 ± 21 474 ± 17 323 ± 6 331 ± 24 336 ± 27 305 ± 8
B. Heist 323 ± 13 327 ± 11 309 ± 11 321 ± 8 316 ± 10 324 ± 10
B. Rider 9,932 ± 1,592 13,638 ± 1,571 6,695 ± 941 9,185 ± 630 18,156 ± 1,522 13,429 ± 884
D. Attack 36,255 ± 3,566 31,447 ± 1,850 8,939 ± 950 31,359 ± 3,362 41,726 ± 6,308 36,807 ± 3,700
Gopher 10,356 ± 378 13,765 ± 808 8,197 ± 1,720 8,707 ± 2,381 19,775 ± 1,448 25,445 ± 1,963
James Bond 2,942 ± 56 3,020 ± 68 2,425 ± 174 3,338 ± 137 2,979 ± 176 2,929.3 ± 408
Kung-fu 5,449 ± 82 15,216 ± 818 3,722 ± 330 8,095 ± 240 9,201 ± 384 7,388 ± 491
MsPacman 1,737 ± 53 1,676 ± 86 1,647 ± 101 2,116 ± 30 2,584 ± 121 2,287 ± 32
Pong 21 ± 0 21 ± 0 21 ± 0 21 ± 0 21 ± 0 21 ± 0
Q*Bert 4,967 ± 266 3,905 ± 252 4,693 ± 195 6,248 ± 204 5,897 ± 357 6,626 ± 240
Robotank 7.1 ± 0.7 7.6 ± 0.7 4.8 ± 0.3 7.2 ± 0.7 7.5 ± 0.8 7.0 ± 0.5
Seaquest 469 ± 1 708 ± 1 1,812 ± 61 8,853 ± 937 686 ± 1 5,123 ± 335
S. Invaders 48,150 ± 7,233 12,461 ± 1,624 2,345 ± 74 25,769 ± 10,156 27,213 ± 3,359 2,847 ± 10
Stargunner 9,397 ± 2,193 8,337 ± 1,094 8,915 ± 713 11,599 ± 3,454 9,737 ± 1,396 9,523 ± 2,214
Up’n down 185,632 ± 16,490 155,847 ± 15,318 57,435 ± 2,283 120,806 ± 16,261 126,140 ± 19,078 148,759 ± 28,492
Zaxxon 4863 ± 872 2,737 ± 121 2,719 ± 701 4,265 ± 263 5,285 ± 504 3,903 ± 648
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Table 10: Performance after 200 M environment steps. Reported scores are mean and std of 5 mean-
scores obtained over 30 episodes (total of 150 different test episodes). We remind the reader that we
denote the Linear Transformer [19] as LT, and our Recurrent Delta Network as RDN. In cases where
performance did not improve after 50 M, we report the performance at 50 M.

Feedforward LSTM LT Delta Net RDN Delta RNN

Alien 3,816 ± 139 6,184 ± 558 4,751 ± 530 15,133 ± 1,122 11,220 ± 621 12,177 ± 968
Amidar 433 ± 27 349 ± 22 646 ± 32 432 ± 27 832 ± 11 269 ± 17
Assault 6,407 ± 3,430 7,977 ± 2,611 6,465 ± 1,437 7,525 ± 1,703 8,647 ± 3,061 7,670 ± 952
Battlezone 60,527 ± 12,345 24,873 ± 1,240 2,667 ± 386 19,907 ± 1,409 10,980 ± 1,104 17,180 ± 1,493
Berzerk 343 ± 23 1,150 ± 92 480 ± 38 333 ± 7 348 ± 17 332 ± 17
B. Heist 331 ± 10 327 ± 11 317 ± 8 321 ± 8 328 ± 10 328 ± 8
B. Rider 21,873 ± 2,000 18,024 ± 933 22,444 ± 755 28,594 ± 5,508 23,934 ± 2,292 28,973 ± 3,663
D. Attack 74,904 ± 10,941 69,750 ± 9,593 57,715 ± 5,009 78,601 ± 16,907 67,039 ± 5,714 92,205 ± 17,933
Gopher 61,350 ± 3,891 124,914 ± 22,422 48,261 ± 7,727 86,168 ± 5,069 86,008 ± 11,815 101,974 ± 10,200
James Bond 56,459 ± 7,292 25,106 ± 5,889 16,223 ± 1,118 54,336 ± 7,165 32,923 ± 7,968 53,344 ± 4,768
Kung-fu 12,292 ± 613 24,447 ± 407 13,969 ± 803 15,064 ± 929 20,319 ± 363 15,068 ± 513
MsPacman 2,499 ± 141 3,431 ± 197 3,052 ± 128 4,180 ± 139 4,168 ± 585 3,500 ± 205
Pong 21 ± 0 21 ± 0 21 ± 0 21 ± 0 21 ± 0 21 ± 0
Q*Bert 8,655 ± 371 11,513 ± 910 8,389 ± 349 521,839 ± 36,192 987,275 ± 0 10,381 ± 1,259
Robotank 7.8 ± 0.8 7.6 ± 0.7 7.7 ± 0.9 7.5 ± 0.4 7.9 ± 0.6 7.5 ± 0.5
Seaquest 667 ± 1 12,643 ± 1,627 12,425 ± 1,910 12,790 ± 1,512 4,373 ± 504 13,898 ± 1,674
S. Invaders 53,455 ± 6,694 137,657 ± 2,276 2,333 ± 110 86,132 ± 5,483 170,871 ± 80 58,181 ± 14,987
Stargunner 11,564 ± 4,598 12,194 ± 7,038 12,035 ± 6,995 11,734 ± 6,827 13,026 ± 6,431 11,635 ± 6,065
Up’n down 185,632 ± 16,490 231,157 ± 10,603 252,555 ± 16,331 208,563 ± 22,803 240,003 ± 26,849 159,296 ± 25,013
Zaxxon 11,960 ± 538 11,619 ± 663 7,371 ± 932 1,0523 ± 568 9,126 ± 313 11,365 ± 678
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