
A Relation to Adaptive Submodularity

Submodularity is a property of set functions with far-reaching implications. Most importantly here,
it allows for efficient approximate optimization Nemhauser et al. [1978], given the additional condi-
tion of monotonicity. This fact has been exploited in many information gathering applications, see
Krause and Golovin [2014] for an overview.

In Golovin and Krause [2011], the authors extend the notion of submodularity to adaptive problems,
where decisions are based on information acquired online. This is precisely the setting we consider
in the present paper. However, as we will show shortly, our function maximization problem is not
submodular. Nevertheless, our proof is inspired by the notion of adaptive sumodularity.

Consider the following definitions, which we adapted to the notation in the present paper:

Definition 4. (Golovin and Krause [2011]) The Conditional Expected Marginal Benefit with respect
to some utility function u is defined as

∆u(a|a1:t, y1:t) = E [u(F,A1:t+1)− u(F,A1:t)|Y1:t = y1:t, A1:t = a1:t, At+1 = a] . (37)

Definition 5. (Golovin and Krause [2011]) Adaptive submodularity holds if for any t ≤ k ∈ N, any
a1:k, y1:k and any a we have

∆u(a|a1:t, y1:t) ≥ ∆u(a|a1:k, y1:k). (38)

Intuitively, in an adaptively submodular problem the expected benefit of any given action a decreases
the more information we gather. Golovin and Krause [2011] show that if a problem is adaptively
submodular (along with some other condition), then the greedy policy will converge exponentially
to the optimal policy.

A.1 Gaussian-Process Optimization is not Adaptively Submodular

In the following we make a simple argument why GP optimization is not generally adaptively sub-
modular. It is not entirely clear what is the right utility function u, but our argument holds for any
plausible choice.

Consider a function F1:N with all values mutually independent, except for F1 and F2 which are
negatively correlated. Further, suppose that we made an observation y1 which is far larger than the
upper confidence bounds on F1 and F2. Any reasonable choice of utility function would yield an
extremely small conditional expected marginal benefit for A2 = 2, since we would not expect this
to give us any information about the optimum. Now suppose we evaluate the function at A2 = 1
and observe a y2 such that the posterior mean of F2 is approximately equal to y1. Now, the condi-
tional expected marginal benefit of evaluating at A3 = 2 should be substantial for any reasonable
utility, since the maximum might lie at that point. More generally, through unlikely observations
the GP landscape can change completely and points which seemed uninteresting before can become
interesting, which violates the diminishing-returns property of adaptive submodularity Definition 5.

B Relation to GP-UCB

The bounds from Srinivas et al. [2010] are only meaningful if we are allowed to make a sufficient
number of evaluations to attain low uncertainty over the entire GP. The reason is that these bounds
depend on a term called the information gain γT , which represents the maximum information that
can be acquired about the GP with T evaluations. As long as the GP still has large uncertainty in
some areas, each additional evaluation may add a substantial amount of information (there is no
saturation) and γT , and hence the cumulative regret, will keep growing.

To see this, consider Lemma 5.3 in Srinivas et al. [2010] (we use a slightly different notation here):
The information gain of a set of points X = x1, ..., xT can be expressed as

G(X) := I(yX ; fX) =
1

2

T∑
t=1

log(1 + σ−2y σ2(xt|x1:t−1)) (39)
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where σ2(xt|x1:t−1) is the predictive variance after evaluating at x1:t−1 and σ2
y is the variance of

the observation noise2. Hence, we can write the information gain for T + 1 points as

G(X ∪ {xT+1}) = G(X) +
1

2
log(1 + σ−2y σ2(xT+1|x1:T )). (40)

Now let X∗ := maxX:|X|=T G(X) be the points that maximize the information gain. By definition
(see equation 7 in Srinivas et al. [2010]), we have

γT := G(X∗) (41)

that is, γT is the maximum information that can be acquired using T points. For T + 1 points we
have

γT+1 = max
X,xT+1

G(X ∪ {xT+1}) (42)

≥ max
xT+1

G(X∗ ∪ {xT+1}) (43)

where the inequality follows from the fact that maximizing over X,xT+1 jointly will at least yield
as high a value as just picking X∗ from the previous optimization and optimizing only over xT+1.
Plugging in (40), we have

γT+1 ≥ G(X∗) +
1

2
max
xT+1

log(1 + σ−2y σ2(xT+1|x∗1:T )) (44)

and hence

γT+1 ≥ γT +
1

2
max
xT+1

log(1 + σ−2y σ2(xT+1|x∗1:T )). (45)

This means that if T is not large enough to explore the GP reasonably well everywhere (i.e., there
are still x such that σ2(x|x∗1:T ) is large), then adding an observation can add substantial information,
i.e. γT+1 is substantially larger than γT (which means the regret grows substantially).

As a more concrete case, suppose we have a GP which a priori has a uniform variance σ2(x) =
s2 ∀x. In addition, suppose that the GP domain is large with respect to T , in the sense that it is
not possible to reduce the variance everywhere substantially by observing T (or less) points, i.e. we
have maxxt σ(xt|x1:t−1) ≈ s ∀x1:t−1, t ≤ T + 1. We hence have

γT = max
x1:T

1

2

T∑
t=1

log(1 + σ−2y σ2(xt|x1:t−1)) (46)

≈ 1

2
T log(1 + σ−2y s2). (47)

This linear growth will continue until T is large enough such that the uncertainty of the GP can be
reduced substantially everywhere.

Since the bound on the cumulative regret RT is of the form
√
TγT (see Theorem 1 in Srinivas et al.

[2010]) it will hence also grow linearly in T . Srinivas et al. [2010] then bound the suboptimality of
the optimization by the average regret RT /T (see the paragraph on regret in Section 2 of Srinivas
et al. [2010]), which does not decrease as long as RT grows linearly in T .

C The Continuous-Domain Setting

In the continuous setting, we characterize the GP by Lk and σ, which are properties of the kernel k:

|k(x, x)− k(x, y)| ≤ Lk ‖x− y‖∞ ∀x, y ∈ A (48)

k(x, x) ≤ σ2 ∀x ∈ A (49)

2Note that the information gain goes to infinity as the observation noise σy goes to zero, which is in fact
another reason why the results from Srinivas et al. [2010] are not directly applicable to our setting. However,
this is a technicality that can be resolved (in the most naive way, one could add artificial noise).
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where A is the D-dimensional unit cube (note that to use a domain other than the unit cube we can
simply rescale). The setting we are interested in is

T �
(
Lk
2σ2

)D
=: m(Lk, σ,D), (50)

which implies that a large part of the GP may remain unexplored, as will become clear in the fol-
lowing comparison to related work:

As discussed in the introduction and in Appendix B, the results from Srinivas et al. [2010] only
apply when we can reduce the maximum variance of the GP using T evaluations. This would
require that we can acquire information on each point x that has maximum prior variance k(x, x) =
maxzk(z, z) = σ2. In order to ensure that we gather nonzero information on such a point x, we have
to make sure to evaluate at least one point y such that k(x, y) > 0 (or, more realistically, k(x, y) > ε,
which would lead to a qualitatively similar result), which is equivalent to the condition

|k(x, x)− k(x, y)| < k(x, x) = σ2, (51)

which we can ensure by
Lk ‖x− y‖∞ < σ2 (52)

or equivalently by

‖x− y‖∞ <
σ2

Lk
. (53)

This statement says that x has to be within a cube centered at y with sidelength 2σ2/Lk. To ensure
that this holds for all x ∈ A (since in the worst case they all have prior variance σ2, which is typical),
we need to cover the domain with

T >

(
Lk
2σ2

)D
= m(Lk, σ,D) (54)

cubes and hence evaluations.

D A Note on Observation Noise

Our goal here was to focus on the issue of large domains, without the added difficulty of noisy
observations, such as to allow a clearer view of the core problem. Interestingly, the proofs apply
practically without any changes to the setting with observation noise. The caveat is that the re-
gret bounds are on the largest noisy observation Ŷ rather than the largest retrieved function value
maxt FAt (the two are identical in the noise-free setting).

As a naive way of obtaining regret bounds on maxt FAt , one could simply evaluate each point n
times and use the average observation as a pseudo observation. Choosing n large enough, all pseudo
observations Y1:T will be close to their respective function values FA1:T

with high probability. To
guarantee that all T pseudo observations are within ε of the true function values with probability
δ, we would need n = log(T/δ)f(σy, ε) (this follows from union bound over T observations),
where f is some function that is not relevant here and σy is the noise standard deviation. We can
now simply replace T with T/ (log(T/δ)f(σy, ε)) in all the theorems (to be precise, we would also
have to add ε to the regret, but it can be made arbitrarily small). While this solution is impractical,
it is interesting to note that the dependence of the resulting regret-bounds on the domain size N
and Lipschitz constant Lk does not change. The dependence on T is also identical, up to a log
factor. This suggests that the relations we uncovered in this paper between the regret, the number
of evaluations T , the domain size N , the Lipschitz constant Lk remain qualitatively the same in the
presence of observation noise.

E Definitions of Standard EI/UCB

Definition 6 (EI). An agent follows the EI strategy when it picks its actions according to

At+1 = argmax
n∈[N ]

ei
(
Ŷt|Mn

t ,
√
Cnnt

)
(55)

with the expected improvement ei as defined in Definition 1.
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Figure 4: The empirical expected regret as a function of the number of evaluations T .

Definition 7 (UCB). An agent follows the UCB strategy when it picks its actions according to

At+1 = argmax
n∈[N ]

(
Mn
t +

√
Cnnt 2 logN

)
. (56)

F Empirical Comparison between EI/UCB and EI2/UCB2

We conducted a number of within-model experiments, where the ground-truth function is a sample
drawn from the GP. The continuous-domain experiments use the GPy [since 2012] library and the
discrete-domain experiments use scikit-learn (Pedregosa et al. [2011]). The code for all the experi-
ments is publicly accessible3.

F.1 Continuous Domain

We defined a GP G on a D-dimensional unit cube with a squared-exponential kernel with length
scale l. The smaller the length-scale and the larger the dimensionality, the harder the problem. For
the experiments that follow, we chose the ranges of D, l such that we cover the classical setting
(where the global optimum can be identified) as well as the large-domain setting (where this is not
possible). To make this scenario computationally tractable, we discretize the domain using a grid
with 1000 points, and we allow the algorithm to evaluate at T = 50 points.

The true expected regret

E
[

sup
a∈A

G(a)− Ŷ
]

= r(l,D, T ) (57)

is a function of the length-scale l, the dimension D, and the number of function evaluations T .
We compute this quantity empirically using 1000 samples (i.e. 1000 randomly-drawn ground-truth
functions). In Figure 4, for instance, we plot this empirical expected regret as a function of the
number of evaluations T . In this example, EI performs slightly better than EI2. To gain a more
quantitative understanding, it is instructive to look at how many evaluations T are required to attain
a given regret R = r(l,D, T ):

T = t(R, l,D). (58)

We can then compare the required number of steps for EI and EI2:

tei(R, l,D)

tei2(R, l,D)
, (59)

which we report in Table 1. In one entry EI2 appears to perform slightly better, we have tei2 =
1.06tei. This is may be due to the variance of the empirical estimation. In all other entries, we
have 0.5tei2 ≤ tei ≤ tei2, which means that EI always reaches the given expected regret R faster
than EI2, but not more than twice as fast. This is what we intuitively expected: EI should do

3
https://github.com/mwuethri/regret-Bounds-for-Gaussian-Process-Optimization-in-Large-Domains
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Table 1: Fraction tei(R,l,D)
tei2(R,l,D) for continuous domains. NaN entries correspond to the case where the

given regret was not attained after T = 50 evaluations.
2.5 2.0 1.5 1.0 0.5

D l

1 0.003 1.00 1.00 0.87 0.84 NaN
0.010 1.00 1.00 0.80 0.80 0.74
0.030 1.00 1.00 1.00 1.00 0.78
0.100 1.00 1.00 1.00 1.00 0.75
0.300 1.00 1.00 1.00 1.00 1.00

2 0.003 1.00 1.00 1.00 1.00 NaN
0.010 1.00 0.86 1.00 NaN NaN
0.030 0.67 1.00 0.91 0.71 NaN
0.100 1.00 1.00 0.80 0.78 0.75
0.300 1.00 1.00 1.00 1.00 0.83

3 0.003 1.00 1.00 1.00 1.00 NaN
0.010 1.00 1.00 1.00 NaN NaN
0.030 1.00 1.00 1.06 NaN NaN
0.100 1.00 1.00 0.73 0.69 NaN
0.300 1.00 1.00 0.75 0.86 0.73

4 0.003 1.00 1.00 1.00 NaN NaN
0.010 1.00 1.00 1.00 NaN NaN
0.030 1.00 1.00 1.00 NaN NaN
0.100 1.00 1.00 0.84 NaN NaN
0.300 1.00 0.75 0.86 0.71 0.70

better than EI2, because it does not waste evaluations on minimization, but not much better, since
in expectation every second evaluation of EI2 is a maximization. Note that the entries which are
1, i.e. both algorithms perform equally well, correspond to i) particularly simple settings (large l,
low D) where both algorithms find good values in just a handful of evaluations or ii) particularly
hard settings where there is no essentially no correlation between different points in the discretized
domain.

For UCB and UCB2 (where we used a fixed confidence level) we obtain similar results, see Table 2.

F.2 Band Covariance Matrices

Next, we compare EI/UCB with EI2/UCB2 in the discrete setting with N = 100. We use band
covariance matrices, where the diagonal elements are equal to 1 and there are a number of nonzero
elements to the right and the left of the diagonal. We vary width of this band and the value the
off-diagonal elements take, we report the results in Table 3 for EI vs EI2 and in Table 4 for UCB
vs UCB2. Similarly to the case of continuous domains, we see that 0.5tei2 ≤ tei ≤ tei2 (and the
equivalent for UCB).

F.3 Randomly-Sampled Covariance Matrices

Finally, we sample covariances (of size N = 200) randomly from an inverse Wishart distribution
(with 400 degrees of freedom and identity scale matrix). We report the results in Table 5 for EI vs EI2
and in Table 6 for UCB vs UCB2. As in the previous experiments, we see that 0.5tei2 ≤ tei ≤ tei2
(and the equivalent for UCB).
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Table 2: Fraction tucb(R,l,D)
tucb2(R,l,D) for continuous domains. NaN entries correspond to the case where

the given regret was not attained after T = 50 evaluations.
2.5 2.0 1.5 1.0 0.5

D l

1 0.003 1.00 1.00 0.89 0.86 NaN
0.010 1.00 1.00 0.80 0.90 0.81
0.030 1.00 1.00 1.00 1.00 0.90
0.100 1.00 1.00 1.00 1.00 1.00
0.300 1.00 1.00 1.00 1.00 1.00

2 0.003 1.00 1.00 1.00 1.00 NaN
0.010 1.00 0.86 1.00 NaN NaN
0.030 0.67 0.83 0.83 0.77 NaN
0.100 1.00 1.00 0.80 0.73 0.78
0.300 1.00 1.00 1.00 1.00 0.83

3 0.003 1.00 1.00 1.00 1.00 NaN
0.010 1.00 1.00 1.00 NaN NaN
0.030 1.00 1.00 1.00 NaN NaN
0.100 1.00 0.83 0.75 0.76 NaN
0.300 1.00 1.00 0.75 1.00 0.71

4 0.003 1.00 1.00 1.00 NaN NaN
0.010 1.00 1.00 1.00 NaN NaN
0.030 1.00 1.00 1.00 NaN NaN
0.100 1.00 0.86 0.83 NaN NaN
0.300 1.00 0.75 0.87 0.75 0.66

Table 3: Fraction tei(band size, band corr)
tei2(band size, band corr) for finite band covariance matrices. The covariance matries

are identity matrices with band size many elements with value band corr added to each side of the
diagonal. NaN entries correspond to the case where the given regret was not attained after T = 20
evaluations.

2.00 1.55 1.10 0.65 0.20
band size band corr

0 0.00 1.0 1.00 1.00 NaN NaN
2 -0.20 1.0 0.75 0.86 0.82 NaN
3 0.20 1.0 1.00 0.87 0.89 NaN
5 -0.10 1.0 1.00 1.00 0.94 NaN

0.20 1.0 1.00 1.00 0.88 NaN
10 0.10 1.0 1.00 1.00 0.94 NaN
40 0.05 1.0 1.00 0.87 0.94 NaN

Table 4: Fraction tucb(band size, band corr)
tucb2(band size, band corr) for finite band covariance matrices. The covariance matries

are identity matrices with band size many elements with value band corr added to each side of the
diagonal. NaN entries correspond to the case where the given regret was not attained after T = 20
evaluations.

2.00 1.55 1.10 0.65 0.20
band size band corr

0 0.00 1.0 1.0 1.00 NaN NaN
2 -0.20 1.0 1.0 0.86 0.87 NaN
3 0.20 1.0 1.0 0.87 0.89 NaN
5 -0.10 1.0 1.0 1.00 0.88 NaN

0.20 1.0 1.0 1.00 0.88 NaN
10 0.10 1.0 1.0 1.00 0.83 NaN
40 0.05 1.0 1.0 1.00 1.00 NaN
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Table 5: Fraction tei(wishart seed)
tei2(wishart seed) for covariance matrices drawn from a Wishart distribution. NaN

entries correspond to the case where the given regret was not attained after T = 30 evaluations.
0.20 0.15 0.10 0.05 0.00

wishart seed

1 1.0 0.67 0.83 0.78 NaN
2 1.0 1.00 0.83 0.87 NaN
3 1.0 1.00 0.83 0.83 NaN
4 1.0 1.00 1.00 0.82 NaN
5 1.0 1.00 1.00 0.82 NaN

Table 6: Fraction tucb(wishart seed)
tucb2(wishart seed) for covariance matrices drawn from a Wishart distribution. NaN

entries correspond to the case where the given regret was not attained after T = 30 evaluations.
0.20 0.15 0.10 0.05 0.00

wishart seed

1 1.0 1.0 0.83 0.82 NaN
2 1.0 1.0 0.83 0.87 NaN
3 1.0 1.0 0.83 0.88 NaN
4 1.0 1.0 1.00 0.87 NaN
5 1.0 1.0 1.00 0.81 NaN

G Proof of Theorem 1

In this section we prove Theorem 1. As we have seen in the previous section, our problem is not
adaptively submodular. Nevertheless, the following proof is heavily inspired by the proof in Golovin
and Krause [2011]. We derive a less strict condition than adaptive submodularity which is applicable
to our problem and implies that we converge exponentially to the optimum·β:

Lemma 3. For any problem of the type defined in Section 2.1, we have for any α, β > 0

βE
[

ˆ̌F
]
− E

[
ˆ̌Yt

]
≤ α

(
E
[

ˆ̌Yt+1

]
− E

[
ˆ̌Yt

])
∀t ∈ {1 : T − 1} (60)

⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
ˆ̌YT

]
. (61)

i.e. the first inequality implies the second inequality.

Proof. The proof is closely related to the adaptive submodularity proof by Golovin and Krause
[2011]. Defining δt := βE

[
ˆ̌F
]
− E

[
ˆ̌Yt

]
∀t ∈ {1 : T}, we can rewrite the first inequality as

δt ≤ α(δt − δt+1) ∀t ∈ {1 : T − 1}

δt+1 ≤ (1− 1

α
)δt ∀t ∈ {1 : T − 1}

Since the function ex is convex, we have ex ≥ 1 + x ∀x. Using this fact, we obtain the inequality

δt+1 ≤ e−
1
α δt ∀t ∈ {1 : T − 1}

δT ≤ e−
T−1
α δ1

Now we can substitute δT = βE
[

ˆ̌F
]
− E

[
ˆ̌YT

]
and δ1 = βE

[
ˆ̌F
]
− E

[
ˆ̌Y1

]
= βE

[
ˆ̌F
]

(since
ˆ̌Y1 = 0):
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βE
[

ˆ̌F
]
− E

[
ˆ̌YT

]
≤ e−

T−1
α βE

[
ˆ̌F
]

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
ˆ̌YT

]
.

Hence, if for some α, β > 0 we can show that (60) holds, Lemma 3 yields a lower bound on the
expected utility.

G.1 Specialization for the Extremization Problem

Lemma 4. For any problem of the type defined in Section 2.1 we have for any α, β > 0

E
[
β ˆ̌F − ˆ̌Yt|mt, ct, ŷt, y̌t

]
≤ αE

[
ˆ̌Yt+1 − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(62)

∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ≥ y̌t ∈ R
⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
ˆ̌Y
]
. (63)

Proof. It is easy to see that the implication

E
[
β ˆ̌F − ˆ̌Yt|mt, ct, ŷt, y̌t

]
≤ αE

[
ˆ̌Yt+1 − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(64)

∀t ∈ [T − 1],mt ∈ RN , ct ∈ SN+ , ŷt ≥ y̌t ∈ R
⇓

E
[
β ˆ̌F − ˆ̌Yt

]
≤ αE

[
ˆ̌Yt+1 − ˆ̌Yt

]
∀t ∈ {1 : T − 1}. (65)

holds, since taking the expectation with respect to Mt, Ct, Ŷt, Y̌t on both sides of the first line yields
the second line. Since (65) is identical to Lemma 3, the desired implication follows from these two
implications.

To prove that (62) holds, we will derive a lower bound for the right-hand side and an upper bound
for the left-hand side.

G.2 Lower Bound for the Right-Hand Side

Lemma 5. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1, if we follow either
the EI2 (Definition 2) or the UCB2 (Definition 3) strategy, we have

E
[

ˆ̌Yt+1 − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(66)

≥ max

{
ei

(
ŷt

∣∣∣∣mnucb
t ,

√
cnucbnucbt

)
, ei

(
−y̌t

∣∣∣∣−mnucb
t ,

√
cnucbnucbt

)}
with ei as defined in Definition 1 and

nucb := argmax
n∈[N ]

max
{
−ŷt +mn

t +
√
cnnt 2 logN, y̌t −mn

t +
√
cnnt 2 logN

}
(67)

for any t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ≥ y̌t ∈ R.
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Proof. Developing the expectation on the left hand side of (62) we have

E
[

ˆ̌Yt+1 − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(68)

= E
[
max

{
FAt+1

− ŷt, 0
}

+ max
{
−FAt+1

+ y̌t, 0
} ∣∣∣∣mt, ct, ŷt, y̌t

]
(69)

= E
[
ei

(
ŷt

∣∣∣∣mAt+1

t ,

√
c
At+1At+1

t

)
+ ei

(
−y̌t

∣∣∣∣−mAt+1

t ,

√
c
At+1At+1

t

) ∣∣∣∣mt, ct, ŷt, y̌t

]
(70)

≥ E
[
max

{
ei

(
ŷt

∣∣∣∣mAt+1

t ,

√
c
At+1At+1

t

)
, ei

(
−y̌t

∣∣∣∣−mAt+1

t ,

√
c
At+1At+1

t

)} ∣∣∣∣mt, ct, ŷt, y̌t

]
(71)

where we have used Definition 1, and the inequality follows from the fact that the expected im-
provement (ei) is always ≥ 0. The action At+1 is a function of Mt, Ct, Ŷt, Y̌t. If we follow the EI2
strategy (Definition 2), we have

(71) = max
n∈[N ]

max
{

ei
(
ŷt|mn

t ,
√
cnnt

)
, ei
(
−y̌t| −mn

t ,
√
cnnt

)}
(72)

and if we follow the UCB2 (Definition 3) strategy, we have

(71) = max

{
ei

(
ŷt

∣∣∣∣mnucb
t ,

√
cnucbnucbt

)
, ei

(
−y̌t

∣∣∣∣−mnucb
t ,

√
cnucbnucbt

)}
. (73)

Clearly we have (72) ≥ (73), hence for both strategies it holds that (71) ≥ (73) which concludes the
proof.

G.3 Upper Bound for the Left-Hand Side

In analogy with Definition 1, we define
Definition 8 (Multivariate Expected Improvement). For a family of jointly Gaussian distributed
RVs (Fn)n∈[N ] with mean m ∈ RN and covariance c ∈ SN+ and a threshold τ ∈ R, we define the
multivariate expected improvement as

mei(τ |m, c) : = E
[
max

{
max
n∈[N ]

Fn − τ, 0
}]

(74)

=

∫
RN

max

{
max
n∈[N ]

fn − τ, 0
}
N (f |m, c)df. (75)

Lemma 6. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1, if we follow either
the EI2 (Definition 2) or the UCB2 (Definition 3) strategy, we have for any 0 < β ≤ 1

E
[
β ˆ̌F − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(76)

≤ β2 max {mei(0|mt − ŷt, ct),mei(0|y̌t −mt, ct)}+ (1− β)(−ŷt + y̌t)

for any t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ≥ y̌t ∈ R.

Proof. We have

E
[
β ˆ̌F − ˆ̌Yt|mt, ct, ŷt, y̌t

]
(77)

= βE
[
F̂ − F̌ − ŷt + y̌t|mt, ct

]
+ (1− β)(−ŷt + y̌t) (78)

= βE
[
F̂ − ŷt|mt, ct

]
+ βE

[
−F̌ + y̌t|mt, ct

]
+ (1− β)(−ŷt + y̌t) (79)

≤ βE
[
max{F̂ − ŷt, 0}|mt, ct

]
+ βE

[
max{−F̌ + y̌t, 0}|mt, ct

]
+ (1− β)(−ŷt + y̌t) (80)

= β (mei(0|mt − ŷt, ct) + mei(0|y̌t −mt, ct)) + (1− β)(−ŷt + y̌t) (81)
≤ β2 max {mei(0|mt − ŷt, ct),mei(0|y̌t −mt, ct)}+ (1− β)(−ŷt + y̌t) (82)
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where by mt − ŷt we mean that the scalar ŷt is subtracted from each element of the vector mt.

G.4 Upper Bound on the Regret

Theorem 4. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1, if we follow either
the EI2 (Definition 2) or the UCB2 (Definition 3) strategy, we have for any α > 0 and any 0 < β ≤
1− 1√

2π(2 logN)3/2

max
x

2
β
(√

2 logN + 1
2 logN

√
2π

)
− x

ei (x)

 ≤ α (83)

⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
ˆ̌Y
]

(84)

i.e. the first line implies the second.

Proof. According to Lemma 4, we have

(84)
⇑

E
[
β ˆ̌F − ˆ̌Yt|mt, ct, ŷt, y̌t

]
E
[

ˆ̌Yt+1 − ˆ̌Yt|mt, ct, ŷt, y̌t

] ≤ α
∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ≥ y̌t ∈ R. (85)

In the following, we will find a simpler expression which implies (85) and therefore (84). Then we
will simplify the new expression further, until we finally arrive at (83) through an unbroken chain of
implications.

Using the lower bound from Lemma 5 and the upper bound from Lemma 6 we can write

(85)
⇑
β2 max {mei(0|m− ŷ, c),mei(0|y̌ −m, c)}+ (1− β)(−ŷ + y̌)

max

{
ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

)
, ei

(
−y̌
∣∣∣∣−mnucb ,

√
cnucbnucb

)} ≤ α
∀m ∈ RN , c ∈ SN+ , ŷ ≥ y̌ ∈ R, (86)

nucb = argmax
n∈[N ]

max
{
−ŷ +mn +

√
cnn2 logN, y̌ −mn +

√
cnn2 logN

}
where we have dropped the time indices, since they are irrelevant here. It is easy to see that all
terms in (86) are invariant to a common shift in m, ŷ and y̌. Hence, we can impose a constraint on
these variables, without changing the condition. We choose the constraint ŷ = −y̌ to simplify the
expression

(86)
m

2
βmax {mei(0|m− ŷ, c),mei(0| − ŷ −m, c)} − (1− β)ŷ

max

{
ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

)
, ei

(
ŷ

∣∣∣∣−mnucb ,
√
cnucbnucb

)} ≤ α
∀m ∈ RN , c ∈ SN+ , ŷ ∈ R≥0, (87)

nucb = argmax
n∈[N ]

max
{
−ŷ +mn +

√
cnn2 logN,−ŷ −mn +

√
cnn2 logN

}
.
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Clearly, the denominator is invariant with respect to any sign flips in the elements of m. The nu-
merator is maximized if all elements of m have the same sign, no matter if positive or negative.
Hence, we can restrict the above conditions tom with positive entries, which means in all maximum
operators the left term is active

(87)
m

2
βmei(0|m− ŷ, c)− (1− β)ŷ

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ , ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
. (88)

Inserting the bound from Lemma 12 we have

(88)
⇑

2
β
(

max
{

maxn∈[N ](m
n − ŷ +

√
cnn2 logN), 0

}
+

maxn∈[N]

√
cnn

2
√
2π log(N)

)
− (1− β)ŷ

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ ,≤ α, ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
(89)

m

2
β
(

max
{
mnucb − ŷ +

√
cnucbnucb2 logN, 0

}
+

maxn∈[N]

√
cnn

2
√
2π log(N)

)
− (1− β)ŷ

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ ,≤ α, ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
. (90)

It holds for any n ∈ [N ] that mn ≥ 0 and

mnucb +
√
cnucbnucb

√
2 logN ≥ mn +

√
cnn2 logN,

from which it follows that

mnucb

√
2 logN

+
√
cnucbnucb ≥

√
cnn. (91)

Using this fact we can write

(90)
⇑

2
β
(

max{mnucb − ŷ +
√
cnucbnucb

√
2 logN, 0}+

√
cnucbnucb

2 logN
√
2π

+ mnucb√
2π(2 logN)3/2

)
− (1− β)ŷ

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ ,≤ α, ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
. (92)

23



For any β ≤ 1− 1
1+
√
2π(2 logN)3/2

≤ 1− 1√
2π(2 logN)3/2

we have

(92)
⇑

2
β
(

max{mnucb − ŷ +
√
cnucbnucb

√
2 logN, 0}+

√
cnucbnucb

2 logN
√
2π

)
− (1− β)(ŷ −mnucb)

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ ,≤ α, ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
. (93)

According to Definition 1, we have

ei

(
ŷ

∣∣∣∣µ,√cnucbnucb) =
√
cnucbnucb ei

(
ŷ −mnucb

√
cnucbnucb

)
.

Using this fact, we obtain

(93)
m

2
β
(

max
{

mnucb−ŷ√
cnucbnucb

+
√

2 logN, 0
}

+ 1
2 logN

√
2π

)
− (1− β) ŷ−mnucb√

cnucbnucb

ei
(

ŷ−mnucb√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ ,≤ α, ŷ ∈ R≥0, nucb = argmax
n∈[N ]

(
mn +

√
cnn2 logN

)
. (94)

Defining x := ŷ−mnucb√
cnucbnucb

we can simplify this condition as

(94)
m

2
β
(

max
{√

2 logN − x, 0
}

+ 1
2 logN

√
2π

)
− (1− β)x

ei (x)
≤ α ∀x ∈ R. (95)

For any x ≥
√

2 logN the numerator of the left hand side is negative

β

(
1

2 logN
√

2π

)
− (1− β)x ≤ β

(
1

2 logN
√

2π

)
− (1− β)

√
2 logN (96)

≤ (1− 1
√

2π (2 logN)
3/2

)

(
1

2 logN
√

2π

)
− 1√

2π (2 logN)
(97)

= − 1

2 logN
√

2π

(
1

2 logN
√

2π

)
(98)

≤ 0 (99)

and since α and the denominator are both positive, (95) is satisfied. Hence, we only need to consider
the case where x ≤

√
2 logN and can therefore write

(95)
m

2
β
(√

2 logN + 1
2 logN

√
2π

)
− x

ei (x)
≤ α ∀x ≤

√
2 logN. (100)

From this chain of implications and Lemma 4 the result of Theorem 4 follows.

Finally, using the previous results, we can obtain the desired bound on the regret (Theorem 1), which
we restate here for convenience:
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Theorem 1. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1 withN ≥ T ≥ 500,
if we follow either the EI2 (Definition 2) or the UCB2 (Definition 3) strategy, we have

E
[

ˆ̌F
]
− E

[
ˆ̌Y
]

E
[

ˆ̌F
] ≤ 1−

(
1− T−

1
2
√
π

)√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

. (14)

This guarantees that the expected difference between the maximum and minimum retrieved function
value achieves a certain ratio with respect to the expected difference between the global maximum
and the global minimum.

Proof. We can rewrite Theorem 4 as

1− e

− T

maxx

2

β

(√
2 logN+ 1

2 logN
√

2π

)
−x

ei(x)


β ≤

E
[

ˆ̌Y
]

E
[

ˆ̌F
] (101)

∀N ≥ T ≥ 500, µ,Σ,0 < β ≤ 1− 1
√

2π (2 logN)
3/2

where we have restricted the inequality to N ≥ T ≥ 500, a condition we need later . What is left to
be done is to simplify this bound, such that it becomes interpretable. We can rewrite the above as1− e

− T

maxx

2

β

(
1√

2πa2
+a

)
−x

ei(x)


β ≤

E
[

ˆ̌Y
]

E
[

ˆ̌F
] (102)

∀N ≥ T ≥ 500, µ,Σ,0 < β ≤ 1− 1√
2πa3

, a =
√

2 logN.

Choosing a β

We choose

β=
b− ei(b)

ei′(b)
1√
2πa2

+ a
(103)

where ei′ is the derivative of ei, and

b =

√√
2 log T

2
− 2 log

(
3 2−3/2

√
2 log T

3
)
. (104)

Before we can continue, we need to show that this β satisfies the condition in (102). First of all,
from (104) and the conditions in (102) we can derive some relations which will be useful later on

2.17 ≤ b ≤
√
a2 − 2 log

(
3 2−3/2a3

)
≤ a. (105)

It is easy to see that 0 < β holds, it remains to be shown that

β ≤ 1− 1√
2πa3

. (106)

Inserting the definition of β (103) and simplifying we have

b− ei(b)
ei′(b)

1√
2πa2

+ a
≤ 1− 1√

2πa3
(107)

b− ei(b)
ei′(b)

≤ a− 1

2πa5
. (108)
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Using Definition 1 and the lower bound in Lemma 10, we obtain a sufficient condition

b3

b2 − 1
≤ a− 1

2πa5
. (109)

Since we have b ≤ a (see (105)) we obtain the sufficient condition

1

2πb5
+

b3

b2 − 1
≤ a. (110)

From 2.17 ≤ b (see (105)) it follows that 2πb5 ≥ b2−1, and hence we can further simplify to obtain
a sufficient condition

b+
1

b− 1
≤ a. (111)

Given (105) it is easy to see that both sides are positive, hence we can square each side to obtain

b2 +
2b

b− 1
+

1

(b− 1)2
≤ a2. (112)

Now we will show that this condition is satisfied by (104). We have from (105)

b ≤
√
a2 − 2 log

(
3 2−3/2a3

)
(113)

2 log
(

3 2−3/2a3
)

+ b2 ≤ a2 (114)

and since b ≤ a, we have
2 log

(
3 2−3/2b3

)
+ b2 ≤ a2. (115)

This implies (112), to see this we use the above inequality to bound a2 in (112)

b2 +
2b

b− 1
+

1

(b− 1)2
≤ 2 log

(
3 2−3/2b3

)
+ b2 (116)

2b

b− 1
+

1

(b− 1)2
≤ 2 log

(
3 2−3/2b3

)
. (117)

It is easy to verify that for any b ≥ 2.17, the left-hand side is decreasing and the right-hand side
is increasing. Hence, it is sufficient to show that it holds for b = 2.17 which is easily done by
evaluating at that value. This concludes the proof that our choice of β (103) satisfies the conditions
in (102). We can now insert this value to obtain

1− e

− T

maxx

2
b− ei(b)

ei′(b)−x

ei(x)


 b− ei(b)

ei′(b)
1√
2πa2

+ a
≤

E
[

ˆ̌Y
]

E
[

ˆ̌F
] (118)

∀N ≥ T ≥ 500, µ̄,Σ, a =
√

2 logN,b =

√√
2 log T

2
− 2 log

(
3 2−3/2

√
2 log T

3
)

Optimizing for x

Here we show that

max
x

2
b− ei(b)

ei′(b) − x
ei (x)

 ≤ − 2

ei′(b)
. (119)

We have

max
x

2
b− ei(b)

ei′(b) − x
ei (x)

 = max
δ

2
b− ei(b)

ei′(b) − b− δ
ei (b+ δ)

 (120)

= max
δ

(
2

ei(b) + δei′(b)
−ei′(b) ei (b+ δ)

)
. (121)
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Since the ei function is convex, we have ei(b) + δei′(b) ≤ ei(b+ δ). Using this and the fact that the
denominator is positive (since ei is always positive and ei′ is always negative), we have

max
x

2
b− ei(b)

ei′(b) − x
ei (x)

 ≤ − 2

ei′(b)
. (122)

Inserting this result into (118), we obtain

(
1− e

T ei′(b)
2

) b− ei(b)
ei′(b)

1√
2πa2

+ a
≤

E
[

ˆ̌Y
]

E
[

ˆ̌F
] (123)

∀N ≥ T ≥ 500, µ,Σ, a =
√

2 logN,b =

√√
2 log T

2
− 2 log

(
3 2−3/2

√
2 log T

3
)
.

Simplifying the bound further

Now, all that is left to do is to simplify this bound a bit further.

Bounding the left factor

First of all, we show that the left factor satisfies

1− e 1
2T ei′(b) ≥ 1− T−

1
2
√
π . (124)

Using Definition 1 and the lower bound from Lemma 10, we obtain

1− e 1
2T ei′(b) ≥ 1− e−

(b2−1)e−
b2

2 T

2
√

2πb3 (125)

≥ 1− e−
e
− b

2

2 T
3
√

2πb (126)

where the second inequality is easily seen to hold true, since we have b ≥ 2.17. Inserting (104), and
bounding further we obtain

1− e−
e
− b

2

2 T
3
√

2πb = 1− e

− log
3
2 (T )

2
√
π

√√√√log(T )−log

(
3 log

3
2 (T )

)
(127)

≥ 1− e
− log

3
2 (T )

2
√
π
√

log(T ) (128)

= 1− T−
1

2
√
π (129)

from which (124) follows.

Bounding the right factor

Now we will show that the right factor from (123) satisfies

b− ei(b)
ei′(b)

1√
2πa2

+ a
≥

√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

. (130)

Using Definition 1 and the upper bound from Lemma 10, we obtain

b− ei(b)
ei′(b)

1√
2πa2

+ a
≥ 2

√
πa2b5(

2
√
πa3 +

√
2
)

(b4 − b2 + 3)
. (131)

Now, to lower bound this further, we show that(
2
√
πa3 +

√
2
) (
b4 − b2 + 3

)
≤
(
2
√
πa3
)
b4. (132)
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Equivalently, we can show that

− 2
√
πa3b2 + 6

√
πa3 +

√
2b4 −

√
2b2 + 3

√
2 ≤ 0. (133)

Since b ≥ 2.17, we have 3
√

2−
√

2b2 ≤ 0, and hence

− 2
√
πa3b2 + 6

√
πa3 +

√
2b4 ≤ 0 (134)

is a sufficient condition. The derivative of the left-hand side

4
√

2b2 − 4
√
πa3 ≤ 4

√
2a2 − 4

√
πa3 (135)

= (4
√

2− 4
√
πa)a2 (136)

is always negative (since a ≥ 2.17). Hence, it is sufficient to show that (134) holds for the minimal
b = 2.17, which can easily be verified to hold true for any a ≥ 2.17. Hence, we have shown that
(132) holds, and inserting it into (131), we obtain

b− ei(b)
ei′(b)

1√
2πa2

+ a
≥ 2

√
πa2b5

(2
√
πa3) b4

(137)

=
b

a
(138)

=

√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

. (139)

Final bound

Finally, inserting (124) and (130) into (123), we obtain

(
1− T−

1
2
√
π

)√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

≤
E
[

ˆ̌Y
]

E
[

ˆ̌F
] ∀N ≥ T ≥ 500, µ,Σ. (140)

This implies straightforwardly the bound on the regret

E
[

ˆ̌F
]
− E

[
ˆ̌Y
]

E
[

ˆ̌F
] ≤ 1−

(
1− T−

1
2
√
π

)√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

∀N ≥ T ≥ 500, µ,Σ.

(141)

H Proof of Theorem 3

The proof of Theorem 3 is very similar to the one of Theorem 1 in Appendix G. Here we discuss the
parts that are different.
Lemma 7. For any problem of the type defined in Section 2.1, we have for any α, β > 0

βE
[

ˆ̌F
]
− E

[
Ŷt − F̌

]
≤ α

(
E
[
Ŷt+1 − Ŷt

])
∀t ∈ {1 : T − 1} (142)

⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
ŶT − F̌

]
. (143)

i.e. the first inequality implies the second inequality.

Proof. This result is obtained from Lemma 3 by replacing ˆ̌Yt with Ŷt − F̌ . It is easy to see that the
proof of Lemma 3 goes through with this change.
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Hence, if for some α, β > 0 we can show that (142) holds, Lemma 7 yields a lower bound on the
expected utility.
Lemma 8. For any problem of the type defined in Section 2.1 we have for any α, β > 0

E
[
β ˆ̌F − (Ŷt − F̌ )|mt, ct, ŷt

]
≤ αE

[
Ŷt+1 − Ŷt|mt, ct, ŷt

]
(144)

∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ∈ R
⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
Ŷ − F̌

]
. (145)

Proof. The proof follows the same logic as the one from Lemma 4.

Theorem 5. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1, if we follow either
the EI (Definition 6) or the UCB (Definition 7) strategy, we have for any α > 0 and any 0 < β ≤
1− 1√

2π(2 logN)3/2

max
x

2
β
(√

2 logN + 1
2 logN

√
2π

)
− x

ei (x)

 ≤ α (146)

⇓

(1− e−
T−1
α )βE

[
ˆ̌F
]
≤ E

[
Ŷ − F̌

]
(147)

i.e. the first line implies the second.

Proof. According to Lemma 8, we have

(147)
⇑

E
[
β ˆ̌F − (Ŷt − F̌ )|mt, ct, ŷt

]
E
[
Ŷt+1 − Ŷt|mt, ct, ŷt

] ≤ α

∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ∈ R. (148)

Rearranging terms and plugging in the known variable ŷt we have

(148)
m (149)

βE
[
F̂ − ŷt|mt, ct

]
− (1− β)E

[
ŷt − F̌ |mt, ct

]
E
[
Ŷt+1 − ŷt|mt, ct, ŷt

] ≤ α

∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ∈ R. (150)

Since the expected minimum function value F̌ is no larger than the smallest mean m̌t, we have

(150)
⇑ (151)

βE
[
F̂ − ŷt|mt, ct

]
− (1− β)(ŷt − m̌t)

E
[
Ŷt+1 − ŷt|mt, ct, ŷt

] ≤ α

∀t ∈ {1 : T − 1},mt ∈ RN , ct ∈ SN+ , ŷt ∈ R. (152)
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Since these terms are invariant to a common shift in all variables, we can assume m̌t = 0 without
loss of generality, and hence

(152)
m (153)

βE
[
F̂ − ŷt|mt, ct

]
− (1− β)ŷt

E
[
Ŷt+1 − ŷt|mt, ct, ŷt

] ≤ α

∀t ∈ {1 : T − 1},mt ∈ RN≥0, ct ∈ SN+ , ŷt ∈ R≥0. (154)

We have

E
[
F̂ − ŷt|mt, ct

]
≤ E

[
max{F̂ − ŷt, 0}|mt, ct

]
(155)

= E
[
max{F̂ , 0}|mt − ŷt, ct

]
(156)

= mei(0|mt − ŷt, ct) (157)

with mei as defined in Definition 8. In addition, we have

E
[
Ŷt+1 − ŷt|mt, ct, ŷt

]
= E

[
max

{
Ŷt+1 − ŷt, 0

}
|mt, ct, ŷt

]
(158)

≥ ei
(
ŷt|mnucb

t ,
√
cnucbnucbt

)
(159)

with ei as defined in Definition 1. The equality follows from the fact that we know that Ŷt+1 ≥ ŷt.
The inequality follows due to a similar argument as the one in the proof of Lemma 5.

Substituting these terms and dropping the time index, we have

(154)
⇑
βmei(0|m− ŷ, c)− (1− β)ŷ

ei

(
ŷ

∣∣∣∣mnucb ,
√
cnucbnucb

) ≤ α

∀m ∈ RN≥0, c ∈ SN+ , ŷ ∈ R≥0 (160)

nucb = argmax
n∈[N ]

max
(
mn +

√
cnn2 logN

)
. (161)

Note that this condition is implied by (88), hence the rest of the proof is identical to the one from
Theorem 4.

Finally, using the previous results, we can obtain the desired bound on the regret (Theorem 3), which
we restate here for convenience:

Theorem 3. For any instance (N,T, µ,Σ) of the problem defined in Section 2.1 withN ≥ T ≥ 500,
if we follow either the EI (Definition 6) or the UCB strategy (Definition 7) we have

E
[

ˆ̌F
]
− E

[
Ŷ − F̌

]
E
[

ˆ̌F
] ≤ 1−

(
1− T−

1
2
√
π

)√√√√ log(T )− log
(

3 log
3
2 (T )

)
log(N)

. (33)

Proof. The proof is identical to the one from Theorem 1. We simply substitute ˆ̌Y with Ŷ − F̌ and
the proof goes through unchanged otherwise.
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I Proof of Lemma 1

For convenience, we restate Lemma 1 before the proof:

Lemma 1 (Lower Bound). For the instance of the problem defined in Section 2.1 with µ = 0 and
Σ = I, the following lower bound on the regret holds for the optimal strategy: ∀ε > 0 ∃K : ∀N ≥
T ≥ K :

normreg ≥ 1−
√

log T√
logN

− ε. (22)

Proof. Since the bandits are i.i.d., an optimal strategy is to select arms uniformly at random (without
replacement), which means that at each step we observe an i.i.d. sample. It is known that for i.i.d.
standard normal random variables X1, ..., XK , we have asymptotically

E[max{X1, ..., XK}] ∼
√

2 logK (K →∞), (162)

see e.g. Massart [2007] page 66. It follows that ∀ε > 0 ∃K : ∀N ≥ T ≥ K :

E[Ŷ ]

E[F̂ ]
≤
√

2 log T√
2 logN

+ ε (163)

from which the desired result follows straightforwardly.

J Proof of Lemma 2

For convenience, we restate Lemma 2 before the proof:

Lemma 2. For any optimization policy which does not depend on the prior (µ,Σ), there exists an
instance of the problem defined in Section 2.1 where

normreg ≥ 1− T

N
, (24)

which is clearly worse for T � N than the bound in Corollary 1.

Proof. Suppose we have an optimization policy, and the prior mean µ and covariance Σ are both
zero, i.e. the GP is zero everywhere. This will induce a distribution over the actions A1:T taken by
the policy. Since there are N possible actions and the policy is allowed to pick T of them, there is
at least one action K which has a probability of no more than T/N of being chosen. Now suppose
that we set the prior covariance ΣKK to a nonzero value, while maintaining everything else zero.
Note that this will not change the distribution over the actions taken by the policy unless it happens
to pick K, hence the probability of action K being selected does not change. Since the observed
maximum Ŷ is F̂ if action K is selected by the policy and zero otherwise, we have

E[Ŷ ] ≤ E[F̂ ]
T

N
(164)

from which (24) follows straightforwardly.

K Proof of Theorem 2

For convenience, we restate Theorem 2 before the proof:

Theorem 2. For any centered Gaussian Process (Ga) a∈A, where A is the D-dimensional unit
cube, with kernel k such that

|k(x, x)− k(x, y)| ≤ Lk ‖x− y‖∞ ∀x, y ∈ A (30)√
k(x, x) ≤ σ ∀x ∈ A (31)
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we obtain the following bound on the regret, if we follow the EI2 (Definition 2) or the UCB2 (Defi-
nition 3) strategy:

E
[

sup
a∈A

G(a)− Ŷ
]
≤
√

2 log(Lk)

T 1/D

2

√√√√log

(
2

⌈
Lk

log(Lk)
T 1/D

⌉D)
+ 15
√
D

+

√
2σ

√D log

(⌈
Lk

log(Lk)
T 1/D

⌉)
−
(

1− T−
1

2
√
π

)√√√√log

(
T

3 log
3
2 (T )

) . (32)

This bound also holds when restricting EI2 or UCB2 to a uniform grid on the domainA, where each
side is divided into

⌈
Lk

log(Lk)
T 1/D

⌉
segments. Finally, this bound converges to 0 as T →∞.

Proof. The idea here is to pre-select a set ofN points at locationsX1:N on a grid and then sub-select
points from this set during runtime using EI2 (Definition 2) or UCB2 (Definition 3). The regret of
this strategy can be bounded by

E
[

sup
a∈A

G(a)− Ŷ
]
≤ E

[
sup
a∈A

G(a)− max
i∈[N ]

GXi

]
+ E

[
max
i∈[N ]

GXi − Ŷ
]
. (165)

A bound on the first term is given by the main result in Grünewälder et al. [2010]:

E
[

sup
a∈A

G(a)− max
i∈[N ]

GXi

]
≤
√

2Lk⌊
N1/D

⌋ (2
√

log (2N) + 15
√
D
)
. (166)

A bound on the second term can be derived straightforwardly from Corollary 1:

E
[

max
i∈[N ]

GAi − Ŷ
]
≤

1−
(

1− T−
1

2
√
π

)
√√√√√ log

(
T

3 log
3
2 (T )

)
log(N)

max
i∈[N ]

GAi (167)

≤
√

2σ

√log(N)−
(

1− T−
1

2
√
π

)√√√√log

(
T

3 log
3
2 (T )

) . (168)

where we have used the inequality maxi∈[N ]GAi ≤ σ
√

2 log(N) (see Massart [2007], Lemma
2.3).

Choosing N =
⌈

Lk
log(Lk)

T 1/D
⌉D

we obtain

E
[

sup
a∈A

G(a)− max
i∈[N ]

GXi

]
≤
√√√√ 2Lk⌈

Lk
log(Lk)

T 1/D
⌉
2

√√√√log

(
2

⌈
Lk

log(Lk)
T 1/D

⌉D)
+ 15
√
D


(169)

≤
√

2 log(Lk)

T 1/D

2

√√√√log

(
2

⌈
Lk

log(Lk)
T 1/D

⌉D)
+ 15
√
D

 (170)

and

E
[

max
i∈[N ]

GAi − Ŷ
]
≤
√

2σ

√D log

(⌈
Lk

log(Lk)
T 1/D

⌉)
−
(

1− T−
1

2
√
π

)√√√√log

(
T

3 log
3
2 (T )

) .

(171)

Substituting these terms in (165) yields (32).
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So far, we have only shown that (32) holds when preselecting a grid as proposed in Grünewälder
et al. [2010] and then restricting our optimization policies to this preselected domain. However, it is
easy to show that the result also holds when allowing EI2 (Definition 2) or the UCB2 (Definition 3)
to select from the entire domain A. The proof of Corollary 1 is based on bounding the expected
increment of the observed maximum at each time step (60). It is clear that by allowing the policy to
select from a larger set of points, the expected increment cannot be smaller.

Convergence

In the following, we show that the bound converges to 0 as T → ∞. Clearly, the first term in (32)
converges to zero. The second term can be written (without the factor

√
2σ, as it is irrelevant) as

√
D log

(⌈
Lk

log(Lk)
T 1/D

⌉)
−

√√√√log

(
T

3 log
3
2 (T )

)
+ T

− 1
2
√
π

√√√√log

(
T

3 log
3
2 (T )

)
. (172)

Clearly, the last of these terms converges to zero. For the other two terms we have√
D log

(⌈
Lk

log(Lk)
T 1/D

⌉)
−

√√√√log

(
T

3 log
3
2 (T )

)
(173)

≤

√
D log

(
Lk

log(Lk)
T 1/D + 1

)
−

√√√√log

(
T

3 log
3
2 (T )

)
(174)

=

D log
(

Lk
log(Lk)

T 1/D + 1
)
− log

(
T

3 log
3
2 (T )

)
√
D log

(
Lk

log(Lk)
T 1/D + 1

)
+

√
log

(
T

3 log
3
2 (T )

) (175)

=
D log

(
Lk

log(Lk)
+ T−1/D

)
+ log (3) + 3

2 log (log(T ))√
D log

(
Lk

log(Lk)
T 1/D + 1

)
+

√
log

(
T

3 log
3
2 (T )

) . (176)

The numerator grows with log log T , while the denominator grows faster, with
√

log T , which means
that these terms also converge to 0.

L Some Properties of Expected Improvement and Related Functions

Here we prove some properties of the expected improvement ei (Definition 1) and related functions,
such that we can use them in the rest of the proof.
Lemma 9 (Convexity of expected improvement). The standard expected improvement function
ei(x) (Definition 1) is convex on R.

Proof. This is easy to see since the second derivative

d2 ei(x)

dx2
=
e−

x2

2

√
2π

(177)

is positive everywhere.

Lemma 10 (Bounds on normal CCDF). We have the following bounds on the complementary cu-
mulative density function (CCDF) of the standard normal distribution(

τ−1 − τ−3
)
N (τ) ≤ Φc(τ) ≤

(
τ−1 − τ−3 + 3τ−5

)
N (τ) ∀τ > 0. (178)
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The normal CCDF is defined as

Φc(τ) :=

∫ ∞
τ

N (x)dx. (179)

Proof. Using integration by parts, we can write for any τ > 0

Φc(τ) =

∫ ∞
τ

N (x)dx (180)

= τ−1N (τ)−
∫ ∞
τ

x−2N (x)dx (181)

=
(
τ−1 − τ−3

)
N (τ) + 3

∫ ∞
τ

x−4N (x)dx (182)

=
(
τ−1 − τ−3 + 3τ−5

)
N (τ)− 15

∫ ∞
τ

x−6N (x)dx. (183)

From this the bounds straightforwardly follow

Lemma 11 (Bounds on the expected improvement). We have the following bound for the expected
improvement (Definition 1)(

τ−2 − 3τ−4
)
N (τ) ≤ ei(τ) ≤ τ−2N (τ) ∀τ > 0. (184)

Proof. From Definition 1 we have that

ei(τ) = N (τ)− τΦc(τ). (185)

The desired result follows straightforwardly using the bounds from Lemma 10.

Lemma 12 (Upper bound on the multivariate expected improvement). For a family of jointly Gaus-
sian distributed RVs (Fn)n∈[N ] with mean m ∈ RN and covariance c ∈ SN+ and a threshold τ ∈ R,
we can bound the multivariate expected improvement (Definition 8) as follows

mei(τ |m, c) = E
[
max

{
max
n∈[N ]

Fn − τ, 0
}]

(186)

≤ max

{
max
n∈[N ]

(mn − τ +
√
cnn2 logN), 0

}
+

maxn∈[N ]
√
cnn

2
√

2π log (N)
. (187)

Proof. Defining Z := maxn∈[N ] Fn, we can write

mei(0|m, c) = E [max {Z, 0}] (188)

=

∫ ∞
−∞

max{z, 0}p(z)dz (189)

=

∫ ∞
0

zp(z)dz (190)

b≥0
=

∫ b

0

zp(z)dz +

∫ ∞
b

zp(z)dz (191)

=

∫ b

0

zp(z)dz +

∫ ∞
0

∫ ∞
b

[x ≤ z]p(z)dzdx (192)

=

∫ b

0

zp(z)dz +

∫ ∞
0

P (Z ≥ max(x, b))dx (193)

=

∫ b

0

zp(z)dz + bP (Z ≥ b) +

∫ ∞
b

P (Z ≥ x)dx. (194)
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Since
∫ b
0
zp(z)dz ≤

∫ b
0
bp(z)dz for any b ≥ 0, we can bound this as

(194) ≤ bP (0 ≤ Z ≤ b) + bP (Z ≥ b) +

∫ ∞
b

P (Z ≥ x)dx (195)

= bP (0 ≤ Z) +

∫ ∞
b

P (Z ≥ x)dx (196)

≤ b+

∫ ∞
b

P (Z ≥ x)dx (197)

= b+

∫ ∞
b

P (∨n∈[N ](Fn ≥ x))dx (198)

where we have used the fact that the event Z ≥ x is identical to the event ∨n∈[N ](Fn ≥ x). Using
the union bound we can now write

(198) ≤ b+
∑
n∈[N ]

∫ ∞
b

P (Fn ≥ x)dx (199)

= b+
∑
n∈[N ]

∫ ∞
b

∫ ∞
−∞

[fn ≥ x]p(fn)dfndx (200)

= b+
∑
n∈[N ]

∫ ∞
−∞

max{fn − b, 0}p(fn)dfn. (201)

Noticing that the summands in the above term match the definition of expected improvement (Defi-
nition 1), we can write

(201) = b+
∑
n∈[N ]

ei (b|mn,
√
cnn) (202)

≤ b+N max
n∈[N ]

ei (b|mn,
√
cnn) (203)

= b+N max
n∈[N ]

√
cnn ei

(
b−mn√
cnn

)
(204)

where we have used (11) in the last line. Using Lemma 11 we obtain for any b > maxnmn

(204) ≤ b+N max
n∈[N ]

(
√
cnn

(
b−mn√
cnn

)−2
N
(
b−mn√
cnn

))
. (205)

This inequality hence holds for any b which satisfies b > maxnmn and b ≥ 0 (from (191)). We
pick the following value which clearly satisfies these conditions

b = max

{
max
n∈[N ]

(
mn +

√
cnn2 logN

)
, 0

}
(206)

from which it follows that
b−mn√
cnn

≥
√

2 logN ∀n ∈ [N ]. (207)

Given this fact it is easy to see that

(205) ≤ b+N max
n∈[N ]

(√
cnn
√

2 logN
−2
N
(√

2 logN
))

(208)

= b+
1

2
√

2π logN
max
n∈[N ]

√
cnn (209)

= max

{
max
n∈[N ]

(
mn +

√
cnn2 logN

)
, 0

}
+

maxn∈[N ]
√
cnn

2
√

2π logN
. (210)

It is easy to see that mei(τ |m, c) = mei(0|m− τ, c), which concludes the proof.
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