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Abstract

Variational Autoencoders (VAEs) are powerful probabilistic models to learn rep-
resentations of complex data distributions. One important limitation of VAEs
is the strong prior assumption that latent representations learned by the model
follow a simple uni-modal Gaussian distribution. Further, the variational training
procedure poses considerable practical challenges. Recently proposed regular-
ized autoencoders offer a deterministic autoencoding framework, that simplifies
the original VAE objective and is significantly easier to train. Since these mod-
els only provide weak control over the learned latent distribution, they require
an ex-post density estimation step to generate samples comparable to those of
VAEs. In this paper, we propose a simple and end-to-end trainable deterministic
autoencoding framework, that efficiently shapes the latent space of the model
during training and utilizes the capacity of expressive multi-modal latent distri-
butions. The proposed training procedure provides direct evidence if the latent
distribution adequately captures complex aspects of the encoded data. We show
in experiments the expressiveness and sample quality of our model in various
challenging continuous and discrete domains. An implementation is available at
https://github.com/boschresearch/GMM_DAE.

1 Introduction

Variational autoencoders (VAEs) constitute one of the popular generative learning frameworks widely
used for applications such as image understanding and generation, sentence modeling, and optimizing
discrete data and graph-based structures [7, 23, 34, 40, 48]. The VAE framework elegantly combines
autoencoders with variational inference [24]. The encoder of the model maps the input data into
a lower-dimensional latent space according to a given inference model. The decoder provides a
mapping from the latent space back to the original input space. Both are jointly optimized by
maximizing a lower bound on the model evidence, regularizing the latent space towards a fixed
prior distribution, usually a uni-modal Gaussian. By sampling from the latent space prior, we can
utilize the decoder network to efficiently generate new samples from the training distribution. Due
to the variational formulation, optimizing the VAE training objective poses significant practical
challenges. Further, the over simplistic prior assumption often leads to an unsatisfying trade-off
between the quality of reconstructed samples and the prior regularization [2]. Recent work has shown
that choosing more flexible priors helps to improve the generative performance of VAEs [44].

Since the initial introduction of VAEs, various novel training objectives have been proposed. One line
of work focuses on different regularization techniques derived from alternative probabilistic metrics
to shape the latent space of the model during training, e.g. using the Wasserstein distance [43]. In
contrast to the KL-divergence, the Wasserstein distance measure induces a metric on probability
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distributions. Practically, this facilitates smoother convergence even for initially non-overlapping
distributions. Further, it overcomes the over-regularization effect in VAEs. To be precise, it prevents
the undesired behaviour of multiple data points being mapped to the same latent representation by the
encoder. Since closed-form solutions for metrics like the Wasserstein distance can only be derived
for very few prior distributions, these approaches rely on numerical approximations during training.

Recent work by Ghosh et al. [12] reinterprets deterministic autoencoders as variational models,
even when trained with a deterministic loss. During training, this approach maximizes the negative
log-marginal likelihood of the latent samples under a Gaussian normal distribution as a regularization
in addition to minimizing the reconstruction loss. Experimental results show that this regularization
alone does not suffice to generate high quality samples using the Gaussian prior. To overcome
this, Gosh et al. propose to use a multi-modal Gaussian mixture model (GMM) to fit arbitrary,
learned latent spaces. While this approach leads to good sampling efficiency and generalization if the
post-hoc fit is reasonable, sampling quality can suffer significantly if the learned latent space can not
be modeled well by a GMM.

In this work, we propose a deterministic training scheme for autoencoders that is applicable to
expressive priors and overcomes the necessity of a post-hoc density estimation step for deterministic
training. To be precise, we derive a deterministic regularization loss from the distance metric used
in the non-parametric Kolmogorov-Smirnov (KS) test for equality of probability distributions. The
resulting training objective can be derived in closed form for a class of expressive multi-modal prior
distributions and provides a strong signal to efficiently shape the latent space of the model during
training. We chose our experiments to evaluate the proposed approach in terms of sampling quality
and expressiveness. In the first line of experiments, we compare the quality of newly generated and
reconstructed samples from our model with those from a variety of other VAE variants. In the second
line, we investigate our method’s capability to model discrete and complex structured inputs such as
arithmetic expressions and molecules. In these domains, VAEs have recently been proposed as a tool
for dimensionality reduction in optimization. Applying our regularization scheme effectively utilizes
multi-modal prior distributions in this context and significantly improves optimization performance.

2 Related Work

Since the introduction of VAEs, many follow up works tried to overcome the practical and theoretical
limitations of the framework, e.g. [2, 43, 44], and make them applicable to specific applications such
as clustering [6, 39] or anomaly detection [49]. We first review some seminal examples of VAE
models with different priors and probability metrics for latent regularization. Since our proposed
regularization term structures the latent space to a Gaussian mixture model, we also compare it to
prior work on deep clustering. Lastly, we discuss VAEs in the context of black-box optimization
approaches such as Bayesian Optimization (BO).

VAEs In the standard VAE framework, the prior distribution is commonly assumed to be a Gaussian
normal distribution. This might lead to simplified representations learned by the model which is
unable to represent the rich semantics in the data distribution. Several methods were proposed to
introduce more flexible and expressive priors to the VAE formulation. Casale et al. [3] employ
Gaussian process priors to account for correlations between the data samples. In [15], a Bayesian
non-parametric prior is used with a hierarchical non-parametric variational autoencoder for video
representation learning. Chen et al. [4] use an auto-regressive prior to achieve improved generative
performance on image datasets. Berger et al. [2] propose to replace the standard spherical Gaussian
prior with a more general version with an arbitrary covariance matrix and learn the correlations by
optimizing the evidence lower bound of the model. Although the proposed methods offer competitive
performance, they often employ complex architectures [4] to achieve desired performance.

In another line of work, multi-modal priors were utilized in VAE models. Zong et al. [49] propose
to use a GMM prior in autoendocers for unsupervised anomaly detection by training an additional
network estimating the parameters of the GMM. Lee et al. [27] address unsupervised meta-learning
using a GMM prior in VAEs to shape the latent space by employing an extension of the evidence lower
bound to complex variational inference schemes. Tomczak et al. [44] propose to replace the GMM
prior by a coupling of the posterior and prior of the model. Adversarial autoencoders [31] improve
the generative performance of VAEs by incorporating adversarial learning into the VAE framework
and offer competitive performance in image generation at an increased computational complexity and
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decreased training stability. To account for the over regularization effect of the KL divergence term
in the standard VAE framework, [43] minimize the Wasserstein distance between the representations
learned by the model and the target prior. Recently introduced regularized autoencoders [12](RAEs),
question the variational framework adopted by the VAEs and propose a deterministic approach
to achieve comparable or better image generation performance. The authors use the negative log
likelihood for regularization, but require a post-hoc step to derive a strong sampling procedure from
the model. The state of the art VAE model for high fidelity image generation, VQ-VAE [37, 41],
can be also considered as a deterministic autoencoder. Similar to RAEs, training VQ-VAE involves
two stages of training relying on complex discrete autoregressive density estimators. Moreover, the
training loss of VQ-VAE is non-differentiable due to the quantization of the latent vector.

Our approach elegantly combines the idea of new training objectives with the extension to multi-
modal priors without increasing training complexity or compromising sampling quality. We derive a
strong training signal which can be derived in closed form for multimodal priors. This ensures stable
training and reliable regularization of the latent space, improving sampling quality.

Deep Clustering Deep Clustering approaches benefit from well structured latent spaces. Thus,
several methods employ Gaussian mixture VAEs for data encoding [6, 39] or establish a GMM-like
latent space structure through k-means models in the latent space. For example, Xie et al. [46] train
an autoencoder and apply a KL-divergence loss for better k-means clustering while Ghasedi et al. [8]
combine the autoencoder reconstruction loss with the relative cluster entropy. Similar approaches
have been proposed in the literature [8, 16, 18, 22, 42, 47]. Caron et al. [33] iteratively group points
using k-means during optimization. In the context of clustering, generative adversarial networks
have been considered in [11, 35]. While we are not considering the clustering task in this paper,
we hypothesise that the proposed regularization can be beneficial in this context since it implicitly
optimizes for mode assignments.

Structural VAEs and optimization High-dimensional optimization problems in structured discrete
input domains are ubiquitous. VAEs have been used in this context to learn low dimensional, continu-
ous representations of high dimensional, structured data like molecules or arithmetic expressions.
Recent work proposes to use such representations to perform efficient optimization by running BO in
the latent space of VAEs [25, 30]. In this setting, prior knowledge of the structure of the latent space
is crucial to allow for an efficient exploration and generation of valid samples. Yet, as discussed
above, VAEs can suffer from simplistic prior assumptions. Thus, sampling from the latent space of
such models can result in invalid samples, reducing the sampling efficiency of BO [17]. Kusner et
al. [25] overcome this issue if data follows a specific grammar. Lu et al. [30] propose a VAE that
directly works on parse trees from context-free grammars to represent discrete data. Yet, those only
work with unimodal priors which limits the generalization capabilities. Our approach can be readily
used to extend these models to better encode structural data and improve BO performance.

3 Method

We introduce a novel loss function to regularize the latent representation learned by deterministic
autoencoders towards a given prior distribution. The definition of our loss builds on the non-parametric
statistical Kolmogorov-Smirnov (KS) test for equality of one-dimensional probability distributions.
We propose a multivariate variant of the distance measure used in the KS test, that allows for gradient
based optimization and can easily be applied to expressive multi-modal prior distributions. For
ease of exposition, we start with introducing our regularization loss for unimodal Gaussian priors in
section 3.1 and extend the formulation to expressive multi-modal Gaussian mixture models in Section
3.2. Finally, in Section 3.3, we provide an explicit way to estimate the weighting parameters of our
loss.

3.1 Uni-Modal latent regularization

The KS test can be used to determine whether a collection of N , one-dimensional samples follow
a given reference distribution. It compares the cumulative distribution function (CDF) of the ref-
erence distribution with the empirical CDF �F (N) of the samples. It is often applied to the class of
one-dimensional Gaussian distributions, which has important analytical properties. For spherical
Gaussians, the one-dimensional KS test quantifies a distance between the empirical distribution
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function of the data and the cumulative distribution function

�( z) =
1

�
p

2�

Z x

�1
exp

� (t � � )2

2� 2 dt (1)

of the univariate GaussianZ � N (�; � ) assupz2 R j �F (N ) (z) � �( z)j. Extending thisKS distance
to higher dimension is particularly challenging, since it requires matchingjoint CDFs [10, 14, 38].
Especially in higher dimensions this becomes infeasible [29]. The continuous ranked probability
score [13] shares the same theoretical basis as the KS distance. However it tests whether two sets
of samples are consistent with each other, i.e., they could originate from the same distribution, and
is thus not suitable to regularize a collection of latent samples towards a given prior distribution.
Alternative multi-variate normality tests, like the Mardia test [32] and the BEHP test [1] suffer from
slow convergence rates.

To derive a regularization loss from the KS distance, we propose to overcome this issue by taking
into consideration themarginalCDFs and correlations in the prior distribution separately. Given
d-dimensional latent samplesz1; : : : ; zN , the empirical marginal CDF in dimensionj is given by

�F (N )
j (z) =

1
n

NX

n =1

1[zn ]j � z : (2)

We aim to regularize the latent space of our models by comparing the empirical marginal CDFs
with the one-dimensional CDFs of the marginal distributions of the prior. To strengthen the training
signal of our regularization scheme and make it suitable for gradient-based optimization, we replace
the supremum in the original KS distance by a smoother MSE loss, that compares the distances
between those functions at the latent representations. For a uni-modal Gaussian prior with mean�
and covariance matrix� , this results in

L KS (z1;:::;N ) =
1
d

dX

j =1

MSE
�

�F (N )
j (zj ); �( �zj )

�
; �zj =

zj � � j

[� ]j;j
: (3)

Here, �F (N )
j (zj ) denotes the vector with entries�F (N )

j ([zi ]j ) and�( �zj ) is de�ned accordingly. This
loss is minimized, if the empirical marginal CDFs of the latent samples match those of the uni-modal
Gaussian prior. Using the above loss alone will not account for correlations between different
latent dimensions. In the case of a spherical Gaussian prior with identity covariance matrix for
example, samples with perfectly correlated Gaussian components[zi ]j = [ zi 0]j , will also minimize
this objective, see Figure 1. To overcome this problem, we equip our loss with an additional term, that
matches covariances between different latent distributions explicitly. Following a similar reasoning
to the MSE above, we de�ne an additional loss term,

L CV (z1;:::;N ) =
1
d2

dX

l;j =1

�
[ �� ]l;j � [� ]l;j

� 2
; (4)

where�� is the empirical covariance matrix of the latent representations and� stands for the prior
covariance. Compared to the negative log marginal regularization proposed in [12], our loss will
actually enforce the latent representations to be spread across the entire support of the Gaussian prior,
instead of being minimal when all latent collapse to the origin.

3.2 Multi-Modal latent regularization

One advantage of our approach is the applicability to more expressive, multi-modal prior distribu-
tions. While the Gaussian distribution has important analytical properties, it suffers from signi�cant
limitations when modelling real data sets. In contrast, a linear combination of Gaussians can give rise
to very complex densities while still allowing for closed form computations of important quantities,
like CDFs and covariances. Ad-dimensionalK -modal Gaussian mixture model is a weighted super-
position ofK Gaussian distributions inRd, that are often referred to as the modes of the model. For
k � K , let � k and� k be the mean and covariance matrix of thek-th mode in the model. Further, let
pk > 0 be the weight of thek-th mode. Then, the marginal CDFs of a GMM model can be computed

4



0 50 100 150 200 250

0

1

2

3

4

5

0 50 100 150 200 250
0

1

2

3

4

5

0 50 100 150 200 250
8

7

6

5

4

3

2

1

0 50 100 150 200 250

8

7

6

5

4

3

2

1

uncorrelated Gaussian perfectly correlated Gaussian uniform

w
ei

gh
te

d
la

te
nt

re
gu

la
riz

at
io

n
K

S
di

st
an

ce

Figure 1: Uni-modal latent regularization in one and two dimensions for varying numbers of samples
(x-axis) from different distributions: In two dimensions (right), the simplistic KS distance can not
differentiate the target prior (blue) from other probability distributions. By contrast, our proposed
regularization scheme successfully matches correlations across different dimensions.

from the CDFs of univariate Gaussians as follows

FGMM ;j (z) =
KX

k=1

pk �
�

z � [� k ]j
[� ]j;j

�
; (5)

i.e. the marginal CDFs in the GMM are weighted sums of CDFs of one-dimensional Gaussians. The
covariance matrix of the GMM can be computed as

� GMM =
KX

k=1

pk � k +
KX

k=1

pk (� k � �� ) ( � k � �� )T ; �� =
1
k

KX

k=1

� k : (6)

Extending our proposed regularization scheme to multimodal GMMs is straight forward. Our �rst
loss term is de�ned as

L KS ;K (z1;:::;N ) =
1
d

dX

j =1

MSE
�

�F (N )
j (zj ); FGMM ;j (zj )

�
: (7)

Similarly, the second loss term is de�ned to be

L CV ;K (z1;:::;N ) =
1
d2

dX

l;j =1

�
[ �� ]l;j � [� GMM ]l;j

� 2
: (8)

The total loss of the model is a combination of the reconstruction loss and a regularization loss,
that enforces the latent representations of the encoded data to match a prede�ned multi-modal prior
distribution. The reconstruction lossL REC (x0

1;:::;N ) equals the mean squared error between inputs
x i and their reconstructionsx0

i . Given positive weights� KS and� CV , our �nal loss is given by

L (x1;:::;N ) = � REC L REC (x0
1;:::;N ) + � KS L KS ;K (z1;:::;N ) + � CV L CV ;K (z1;:::;N ): (9)

Formally, the weights� KS ; � CV and� REC are hyperparameters of the model. Nevertheless, we
propose an explicit way to set� KS and� CV and a simple heuristic to estimate� REC to avoid an
extensive optimization of these weights.

3.3 Loss weight estimation

Balancing the two regularization losses appropriately poses a key challenge as they potentially vary on
very different scales. For example, if modes of the GMM prior are far spread, the covarianceL CV ;K
loss will dominate the marginal CDFL KS ;K loss by far. Nevertheless, given a target GMM prior, the
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dimension of the latent space and the batch sizen used during training, there is a concise way to �x
those hyperparameters beforehand. To be precise, form = 1 ; : : : ; M samplesz(m )

1 ; : : : ; z(m )
N from

the prior GMM, we propose to set

� � 1
KS =

1
M

L KS

�
z(m )

1;:::;N

�
; � � 1

CV =
1

M
L CV

�
z(m )

1;:::;N

�
: (10)

Formally, we can not overcome the necessity of tuning the weight of the reconstruction loss, which
has signi�cant impact on performance of the model. Nevertheless, a reasonable approximation to it
can be obtained by training an autoencoder model and using the inverse of the best obtained loss for
� REC . Using this scaling, all loss terms in our regularization loss will ultimately converge to one if
the target prior is matched successfully.

4 Experiments

With our experiments we strive to investigate the potential of the proposed model when compared to
other VAE variants in generating new samples, analyse the effect of the de�ned prior to effectively
cluster the latent space and to shape the latent space ef�ciently in highly structured domains such as
discrete spaces. We provide all the experimental settings and hyperparameters used in the Appendix.
All experiments were run on a GPU cluster, with single GPU per individual experiments. Since the
cluster is part of a carbon-neutral framework, these experiments did not contribute to climate change.

4.1 Image generation

We consider four dataset, MNIST [26], FASHIONMNIST [45], SVHN [36] and CELEBA [28]
to evaluate the proposed method in image generation experiments. The qualitative analysis of the
generated samples for MNIST, SVHN amd CELEBA images are shown in Figure 2 along with
the reconstructed samples and interpolated samples in the latent space of the trained model. In
order to assess the quality of the generated images, we evaluate the Fréchet Inception Distance
(FID) [19] for each dataset, see Table 1. For baseline comparison, we evaluate the following
models: vanilla variational autoencoder (VAE [24]), Gaussian mixture variational autoencoder
(GMVAE) [6], Wasserstein autoencoder (WAE) [43] with MMD loss, 2stage VAEs (2s-VAE) [5],
constant variance-VAE (CV-VAE) [12] and regularized autoencoders (RAEs) [12]. We consider the
following evaluation metrics: 1. Sampling FID (Samp.) - FID score of the generated random samples
(evaluated by generating random samples from the prior distribution of the respective models and by
�tting a Gaussian distribution to models trained without any prior assumptions), 2. reconstruction
FID (Rec.) - measured by computing the FID between the test samples and their corresponding
reconstructions by the model and 3. interpolation FID (Inter.) - measured by computing the FID
between the interpolated samples in the latent space and test samples. As pointed out by [12], �tting
an ex-post density estimator on the learned embedding after training of VAEs further improves the
generation quality. Hence, we also report the FID values by �tting a GMM in the learned latent space
of the trained model (GMM column in Table 1, not evaluated for 2s-VAE as they perform ex-post
density estimation using another VAE).

As shown in Table 1, our method achieves better FIDs (Samp.) on all datasets considered, when
compared to all considered baselines sampled by �tting a single Gaussian in the latent space. We also
improved the generation quality as argued above by �tting a mixture of Gaussians in the latent space
and achieve better FIDs in MNIST, FASHION MNIST and CELEBA images, whereas for SVHN,
WAEs achieved the overall best score. It is also important to note that the proposed method performs
comparably or even better without employing the ex-post density estimation. The proposed method
also achieves better reconstruction quality than the other VAEs except for SVHN images where RAEs
performs better. The interpolation FID indicates the overall structure of the learned latent space and
the obtained FID values show that the proposed method shapes the latent space better than the other
approaches except for the CELEBA images where RAEs performs slightly better than our method.
For a fair comparison, we use the same architecture and experimental settings in all the considered
baseline evaluations. Please refer to the Appendix for more details on the experimental settings.

4.2 Unsupervised image clustering

We evaluate the potential of our method to naturally cluster the data points in the learned latent
space in two dataset, MNIST and FASHION-MNIST. The Gaussian mixture model prior withk
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