Supplementary of "HRT: High-Resolution Transformer for Dense Prediction"

Anonymous Author(s) Affiliation Address email

1 **Comparison with the SOTA on semantic segmentation task.**

We add the comparison with the co-current SOTA methods such as Swin [2] and DPT-Hybrid [3] on 2 more datasets. Above all, we show that increasing the window size of the local-window attention 3 within HRT-B from 7×7 to 15×15 gains 0.6%, 1.2%, 0.8%, and 2.4% on Cityscapes val, PASCAL-4 Context test, COCO-Stuff test, and ADE20K val with slightly more parameters and FLOPs. The 5 reason for using the large window size is that the depth of our HRT-B is relatively small. For example, 6 HRT-B consists of only 10 transformer encoder layers (on the deepest network branch) while both 7 8 Swin-S and Swin-B [2] consist of 24 transformer encoder layers. Compared to the co-current SOTA transformer methods, HRT-B + OCR (15×15) performs better 9

on both Cityscapes and COCO-Stuff. For PASCAL-Context, the DPT-Hybrid [3] achieves the best

performance via pre-training their models on the ADE20K. For ADE20K, HRT-B + OCR (15×15)

 $_{12}$ outperforms Swin-B + UpperNet by 0.3% with 50% fewer parameters, and SETR-MLA achieves the

best performance on ADE20K with nearly $2 \times$ more FLOPs and $5 \times$ more parameters.

Table 1: Comparison with the recent SOTA on semantic segmentation tasks. We report the mIoUs on Cityscapes val, PASCAL-Context test, COCO-Stuff test, and ADE20K val. The number of parameters and FLOPs are measured on the image size of 1024×1024 , and the output label map size of $19 \times 1024 \times 1024$. All results are evaluated with multi-scale testing. \ddagger : the results are obtained with extra pre-training on ADE20K. 7×7 and 15×15 marks the window size.

Method	#params.	FLOPs	Cityscapes	PASCAL-Context	COCO-Stuff	ADE20K
Transformer as backbone						
SETR-PUP [6]	317.8M	2326.7G	82.2	55.3	_	50.1
SETR-MLA [6]	309.5M	2138.6G	—	55.8	_	50.3
Swin-S + UperNet [2]	81.16M	1036.50G	_	—	—	49.5
Swin-B + UperNet [2]	121.18M	1187.90G	—	_	_	49.7
CNN as backbone						
Deeplabv3 [1]	87.1M	1394.0G	80.7	54.1	_	_
PSPNet [5]	68.0M	1028.8G	80.0	54.0	43.3	_
HRNet-W48 + OCR [4]	74.5M	924.7G	—	56.2	40.5	45.7
CNN+Transformer as backbone						
DPT-Hybrid [3]	124.0M	1231.5G	_	60.5^{\ddagger}	_	49.0
HRT-B + OCR (7×7)	56.0M	1051.6G	82.0	57.3	42.5	47.6
HRT-B + OCR (15×15)	56.2M	1119.9G	82.6	58.5	43.3	50.0

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Figure 1: Visualization of the pose estimation results based on HRT-B on COCO val.

14 **2** More Visualization Results.

¹⁵ We present additional visualizations of the example results of our method on both pose estimation

and semantic segmentation tasks. Figure 1 shows more pose estimation results of HRT-B on COCO

17 val. Figure 2 shows more semantic segmentation results on Cityscapes val, PASCAL-Context test

18 and COCO-Stuff test.

19 References

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
 convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587*, 2017.

[2] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. *arXiv preprint arXiv:2103.14030*, 2021.

- [3] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 ArXiv preprint, 2021.
- [4] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual representations for semantic segmentation. *arXiv preprint arXiv:1909.11065*, 2019.
- [5] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2881–2890, 2017.
- [6] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
 Fu, Jianfeng Feng, Tao Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic segmentation
- from a sequence-to-sequence perspective with transformers. In *CVPR*, 2021.

Figure 2: Visualization of the semantic segmentation results based on HRT-B + OCR on Cityscapes val, PASCAL-Context test, and COCO-Stuff test.