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Abstract

We present a High-Resolution Transformer (HRFormer) that learns high-resolution
representations for dense prediction tasks, in contrast to the original Vision Trans-
former that produces low-resolution representations and has high memory and
computational cost. We take advantage of the multi-resolution parallel design
introduced in high-resolution convolutional networks (HRNet [46]), along with
local-window self-attention that performs self-attention over small non-overlapping
image windows [21], for improving the memory and computation efficiency. In
addition, we introduce a convolution into the FFN to exchange information across
the disconnected image windows. We demonstrate the effectiveness of the High-
Resolution Transformer on both human pose estimation and semantic segmentation
tasks, e.g., HRFormer outperforms Swin transformer [27] by 1.3 AP on COCO
pose estimation with 50% fewer parameters and 30% fewer FLOPs. Code is
available at: https://github.com/HRNet/HRFormer.

1 Introduction

Vision Transformer (ViT) [13] shows promising performance on ImageNet classification tasks.
Many follow-up works boost the classification accuracy through knowledge distillation [42], adopting
deeper architecture [43], directly introducing convolution operations [16, 48], redesigning input image
tokens [54], and etc. Besides, some studies attempt to extend the transformer to address broader
vision tasks such as object detection [4], semantic segmentation [63, 37], pose estimation [51, 23],
video understanding [61, 2, 30], and so on. This work focuses on the transformer for dense prediction
tasks, including pose estimation and semantic segmentation.

Vision Transformer splits an image into a sequence of image patches of size 16× 16, and extracts the
feature representation of each image patch. Thus, the output representations of Vision Transformer
lose the fine-grained spatial details that are essential for accurate dense predictions. The Vision
Transformer only outputs a single-scale feature representation, and thus lacks the capability to handle
multi-scale variation. To mitigate the loss of feature granularity and model the multi-scale variation,
we present High-Resolution Transformer (HRFormer) that contains richer spatial information and
constructs multi-resolution representations for dense predictions.

The High-Resolution Transformer is built by following the multi-resolution parallel design that is
adopted in HRNet [46]. First, HRFormer adopts convolution in both the stem and the first stage
as several concurrent studies [11, 50] also suggest that convolution performs better in the early
stages. Second, HRFormer maintains a high-resolution stream through the entire process with parallel
medium- and low-resolution streams helping boost high-resolution representations. With feature
maps of different resolutions, thus HRFormer is capable to model the multi-scale variation. Third,
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Figure 1: Illustrating the HRFormer block. The HRFormer block is composed of (a) local-window self-
attentionm and (b) feed-forward network (FFN) with depth-wise convolution. The local-window self-attention
scheme is inspired by the interlaced sparse self-attention [56, 21].

HRFormer mixes the short-range and long-range attention via exchanging multi-resolution feature
information with the multi-scale fusion module.

At each resolution, the local-window self-attention mechanism is adopted to reduce the memory
and computation complexity. We partition the representation maps into a set of non-overlapping
small image windows and perform self-attention in each image window separately. This reduces
the memory and computation complexity from quadratic to linear with respect to spatial size. We
further introduce a 3× 3 depth-wise convolution into the feed-forward network (FFN) that follows
the local-window self-attention, to exchange information between the image windows which are
disconnected in the local-window self-attention process. This helps to expand the receptive field and
is essential for dense prediction tasks. Figure 1 shows the details of an HRFormer block.

We conduct experiments on image classification, pose estimation, and semantic segmentation tasks,
and achieve competitive performance on various benchmarks. For example, HRFormer-B gains
+1.0% top-1 accuracy on ImageNet classification over DeiT-B [42] with 40% fewer parameters
and 20% fewer FLOPs. HRFormer-B gains 0.9% AP over HRNet-W48 [41] on COCO val set
with with 32% fewer parameters and 19% fewer FLOPs. HRFormer-B + OCR gains +1.2% and
+2.0% mIoU over HRNet-W48 + OCR [55] with 25% fewer parameters and slightly more FLOPs on
PASCAL-Context test and COCO-Stuff test, respectively.

2 Related work

Vision Transformers. With the success of Vision Transformer (ViT) [13] and the data-efficient
image transformer (DeiT) [42], various techniques are proposed to improve the ImageNet classifica-
tion accuracy of Vision Transformer [12, 43, 48, 16, 54, 17, 5, 27, 22, 40]. Among the very recent
advancements, the community has verified several effective improvements such as multi-scale feature
hierarchies and incorporating convolutions.

For example, the concurrent works MViT [14], PVT [47], and Swin [27] introduce the multi-scale
feature hierarchies into transformer following the spatial configuration of a typical convolutional
architecture such as ResNet-50. Different from them, our HRFormer incorporates the multi-scale fea-
ture hierarchies through exploiting the multi-resolution parallel design inspired by HRNet. CvT [48],
CeiT [53], and LocalViT [25] propose to enhance the locality of transformer via inserting depth-wise
convolutions into either the self-attention or the FFN. The purpose of the inserted convolution within
our HRFormer is different, apart from enhancing the locality, it also ensures information exchange
across the non-overlapping windows.

Several previous studies [36, 19] have proposed similar local self-attention schemes for image
classification. They construct the overlapped local windows following the strided convolution,
resulting in heavy computation cost. Similar to [21, 44, 27], we propose to apply the local-window
self-attention scheme to divide the input feature map into non-overlapping windows. Then we apply
the self-attention within each window independently so as to improve the efficiency significantly.

There are several concurrently-developed works [63, 37] use the Vision Transformer to address the
dense predict tasks such as semantic segmentation. They have shown that increasing the spatial
resolution of the representations output by the Vision Transformer is important for semantic segmen-
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Figure 2: Illustrating the High-Resolution Transformer architecture. The multi-resolution parallel trans-
former modules are marked with light blue color areas. Each module consists of multiple successive multi-
resolution parallel transformer blocks. The first stage is constructed with convolution block and the remained
three stages are constructed with transformer block.

tation. Our HRFormer provides a different path to address the low-resolution problem of the Vision
Transformer via exploiting the multi-resolution parallel transformer scheme.

High-Resolution CNN for Dense Prediction. The high-resolution convolutional schemes have
achieved great success on both pose estimation and semantic segmentation tasks. In the development
of high-resolution convolutional neural networks, the community has developed three main paths in-
cluding: (i) applying dilated convolutions to remove some down-sample layers [6, 52], (ii) recovering
high-resolution representations from low-resolution representations with decoders [38, 1, 31, 32], and
(iii) maintaining high-resolution representations throughout the network [46, 15, 39, 64, 45, 59, 20].
Our HRFormer belongs to the third path, and retains the advantages of both vision transformer and
HRNet [46].

3 High-Resolution Transformer

Multi-resolution parallel transformer. We follow the HRNet [46] design and start from a high-
resolution convolution stem as the first stage, gradually adding high-to-low resolution streams one by
one as new stages. The multi-resolution streams are connected in parallel. The main body consists of
a sequence of stages. In each stage, the feature representation of each resolution stream is updated
with multiple transformer blocks independently and the information across resolutions is exchanged
repeatedly with the convolutional multi-scale fusion modules.

Figure 2 illustrates the overall HRFormer architecture. The design of convolutional multi-scale fusion
modules exactly follows HRNet. We illustrate the details of the transformer block in the following
discussion and more details are presented in Figure 1.

Local-window self-attention. We divide the feature maps X ∈ RN×D into a set of non-overlapping
small windows: X → {X1,X2, · · · ,XP }, where each window is of size K × K. We perform
multi-head self-attention (MHSA) within each window independently. The formulation of multi-head
self-attention on the p-th window is given as:

MultiHead(Xp) = Concat[head(Xp)1, · · · ,head(Xp)H ] ∈ RK2×D, (1)

head(Xp)h = Softmax

[
(XpW

h
q )(XpW

h
k)

T√
D/H

]
XpW

h
v ∈ RK2×D

H , (2)

X̂p = Xp +MultiHead(Xp)Wo ∈ RK2×D
H , (3)

where Wo ∈ RD×D, Wh
q ∈ RD

H×D, Wh
k ∈ RD

H×D, and Wh
v ∈ RD

H×D for h ∈ {1, · · · , H}.
H represents the number of heads, D represents the number of channels, N represents the input
resolutions, and X̂p represents the output representation of MHSA. We also apply the relative position
embedding scheme introduced in the T5 model [35] to incorporate the relative position information
into the local-window self-attention.

With MHSA aggregates information within each window, we merge them to compute the output
XMHSA:

{X̂1, X̂2, · · · , X̂P }
Merge−−−−→ XMHSA. (4)

The left part of Figure 1 illustrates how local-window self-attention updates the 2D input representa-
tions, where the multi-head self-attention operates within each window independently.
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Table 1: The architecture configuration of HRFormer. LSA: local-window self-attention, FFN-DW:
feed-forward network with a 3 × 3 depth-wise convolution, (M1,M2,M3,M4): the number of modules,
(B1, B2, B3, B4): the number of blocks, (W1,W2,W3,W4): the size of windows, (H1, H2, H3, H4): the
number of heads, (R1, R2, R3, R4): the MLP expansion ratios.

Res. Stage 1 Stage 2 Stage 3 Stage 4

4×

 1× 1,64
3× 3,64
1× 1,256

×B1×M1

[
LSA,W1,H1

FFN-DW,R1

]
×B2×M2

[
LSA,W1,H1

FFN-DW,R1

]
×B3×M3

[
LSA,W1,H1

FFN-DW,R1

]
×B4×M4

8×
[

LSA,W2,H2

FFN-DW,R2

]
×B2×M2

[
LSA,W2,H2

FFN-DW,R2

]
×B3×M3

[
LSA,W2,H2

FFN-DW,R2

]
×B4×M4

16×
[

LSA,W3,H3

FFN-DW,R3

]
×B3×M3

[
LSA,W3,H3

FFN-DW,R3

]
×B4×M4

32×
[

LSA,W4,H4

FFN-DW,R4

]
×B4×M4

Table 2: HRFormer instances. HRFormer-T, HRFormer-S, and HRFormer-B represents tiny, small, and base
HRFormer model, respectively.

Model #modules
(M1,M2,M3,M4)

#blocks
(B1, B2, B3, B4)

#channels
(C1, C2, C3, C4)

#heads
(H1, H2, H3, H4)

HRFormer-T (1, 1, 3, 2) (2, 2, 2, 2) (18, 36, 72, 144) (1, 2, 4, 8)
HRFormer-S (1, 1, 4, 2) (2, 2, 2, 2) (32, 64, 128, 256) (1, 2, 4, 8)
HRFormer-B (1, 1, 4, 2) (2, 2, 2, 2) (78, 156, 312, 624) (2, 4, 8, 16)

FFN with depth-wise convolution. Local-window self-attention performs self-attention over the
non-overlapping windows separately. There is no information exchange across the windows. To
handle this issue, we add a 3× 3 depth-wise convolution between the two point-wise MLPs that form
the FFN in Vision transformer: MLP(DW-Conv.(MLP())). The right part of Figure 1 shows an
example of how FFN with 3× 3 depth-wise convolution updates the 2D input representations.

Representation head designs. As shown in Figure 2, the output of HRFormer consists of four
feature maps of different resolutions. We illustrate the details of the representation head designs for
different tasks as following: (i) ImageNet classification, we send the four-resolution feature maps into
a bottleneck and the output channels are changed to 128, 256, 512, and 1024 respectively. Then, we
apply the strided convolutions to fuse them and output a feature map of the lowest resolution with 2048
channels. Last, we apply a global average pooling operation followed by the final classifier. (ii) pose
estimation, we only apply the regression head over the highest resolution feature map. (iii) semantic
segmentation, we apply the semantic segmentation head over the concatenated representations, which
are computed by first upsampling all the low-resolution representations to the highest resolution and
then concatenate them together.

Figure 3: Illustrating that FFN with 3× 3 depth-wise
convolution connects the non-overlapping windows.

Instantiation. We illustrate the overall architec-
ture configuration of HRFormer in Table 1. We
use (M1,M2,M3,M4) and (B1, B2, B3, B4)
to represent the number of modules and the
number of blocks of {state1, stage2, stage3,
stage4}, respectively. We use (C1, C2, C3, C4),
(H1, H2, H3, H4) and (R1, R2, R3, R4) to rep-
resent the number of channels, the number of
heads and the MLP expansion ratios in trans-
former block associated with different resolu-
tions. We keep the first stage unchanged fol-
lowing the original HRNet and use the bottle-
neck as the basic building block. We apply the
transformer blocks in the other stages and each
transformer block consists of a local-window
self-attention followed by an FFN with 3 × 3
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Figure 4: Example results of HRFormer-B on COCO pose estimation val: containing occlusion,
multiple persons, viewpoint and appearance change.

Figure 5: Example results of HRFormer-B + OCR on Cityscapes val (left one), COCO-Stuff test
(middle two), and PASCAL-Context test (right two).

depth-wise convolution. We have not included the convolutional multi-scale fusion modules in Table 1
for simplicity. In our implementation, we set the size of the windows on four resolution streams
as (7, 7, 7, 7) by default. Table 2 illustrates the configuration details of three different HRFormer
instances with increasing complexities, where the MLP expansion ratios (R1, R2, R3, R4) are set as
(4, 4, 4, 4) for all models and are not shown.

Analysis. The benefits of 3× 3 depth-wise convolution are twofold: one is enhancing the locality and
the other one is enabling the interactions across windows. We illustrate how the FFN with depth-wise
convolution is capable to expand the interactions beyond the non-overlapping local windows and
model the relations between them in Figure 3. Therefore, based on the combination of the local-
window self-attention and the FFN with 3× 3 depth-wise convolution, we can build the HRFormer
block that improves the memory and computation efficiency significantly.

4 Experiments

4.1 Human Pose Estimation

Training setting. We study the performance of HRFormer on the COCO [26] human pose estimation
benchmark, which contains more than 200K images and 250K person instances labeled with 17
keypoints. We train our model on COCO train 2017 dataset, including 57K images and 150K
person instances. We evaluate our approach on the val 2017 set and test-dev 2017, containing 5K
images and 20K images, respectively.

We follow most of the default training and evaluation settings of mmpose [8]2, and change the
optimizer from Adam to AdamW. For the training batch size, we choose 256 for HRFormer-T and
HRFormer-S and 128 for HRFormer-B due to limited GPU memory. Each HRFormer experiment on
COCO pose estimation task takes 8× 32G-V100 GPUs.

Results. Table 3 reports the comparisons on COCO val set. We compare HRFormer to the
representative convolutional method such as HRNet [41] and several recent transformer methods,
including PRTR [23], TransPose-H-A6 [51], and TokenPose-L/D24 [24]. HRFormer-B gains 0.9%
with 32% fewer parameters and 19% fewer FLOPs when compared to HRNet-W48 with an input
size of 384 × 288. Therefore, our HRFormer-B already achieves 77.2% w/o using any advanced
techniques such as UDP [20] and DARK[59]. We believe that our HRFormer-B could achieve better
results by exploiting either UDP or DARK scheme. We also report the comparisons on COCO
test-dev set in Table 4. Our HRFormer-B outperforms HRNet-W48 by around 0.7% with fewer
parameters and FLOPs. Figure 4 shows some example results of human pose estimation on COCO
val set.

2https://github.com/open-mmlab/mmpose, Apache License 2.0
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Table 3: Comparison on the COCO pose estimation val set. The number of parameters and
FLOPs for the pose estimation network are measured w/o considering neither human detection nor
keypoint grouping. All results are based on ImageNet pretraining. − means the numbers are not
provided in the original paper.

Method input size #param. FLOPs AP AP50 AP75 APM APL AR

HRNet-W32 [41] 256× 192 28.5M 7.1G 74.4 90.5 81.9 70.8 81.0 78.9

HRNet-W32 [41] 384× 288 28.5M 16.0G 75.8 90.6 82.7 71.9 82.8 81.0

HRNet-W48 [41] 256× 192 63.6M 14.6G 75.1 90.6 82.2 71.5 81.8 80.4

HRNet-W48 [41] 384× 288 63.6M 32.9G 76.3 90.8 82.9 72.3 83.4 81.2

PRTR [23] 512× 384 57.2M 37.8G 73.3 89.2 79.9 69.0 80.9 80.2

TransPose-H-A6 [51] 256× 192 17.5M 21.8G 75.8 − − − − 80.8

TokenPose-L/D24 [24] 256× 192 27.5M 11.0G 75.8 90.3 82.5 72.3 82.7 80.9

HRFormer-T 256× 192 2.5M 1.3G 70.9 89.0 78.4 67.2 77.8 76.6

HRFormer-T 384× 288 2.5M 1.8G 72.4 89.3 79.0 68.2 79.7 77.9

HRFormer-S 256× 192 7.8M 2.8G 74.0 90.2 81.2 70.4 80.7 79.4

HRFormer-S 384× 288 7.8M 6.2G 75.6 90.3 82.2 71.6 82.5 80.7

HRFormer-B 256× 192 43.2M 12.2G 75.6 90.8 82.8 71.7 82.6 80.8

HRFormer-B 384× 288 43.2M 26.8G 77.2 91.0 83.6 73.2 84.2 82.0

Table 4: Comparison on the COCO pose estimation test-dev set. The number of parameters
and FLOPs for the pose estimation network are measured w/o considering neither human detection
nor keypoint grouping. All results are based on ImageNet pretraining.

Method input size #param. FLOPs AP AP50 AP75 APM APL AR

HRNet-W32 [41] 384× 288 28.5M 16.0G 74.9 92.5 82.8 71.3 80.9 80.1

HRNet-W48 [41] 384× 288 63.6M 32.9G 75.5 92.5 83.3 71.9 81.5 80.5

PRTR [23] 512× 384 57.2M 37.8G 72.1 90.4 79.6 68.1 79.0 79.4

TransPose-H-A6 [51] 256× 192 17.5M 21.8G 75.0 92.2 82.3 71.3 81.1 −
TokenPose-L/D24 [24] 384× 288 29.8M 22.1G 75.9 92.3 83.4 72.2 82.1 80.8

HRFormer-S 384× 288 7.8M 6.2G 74.5 92.3 82.1 70.7 80.6 79.8

HRFormer-B 384× 288 43.2M 26.8G 76.2 92.7 83.8 72.5 82.3 81.2

4.2 Semantic Segmentation

Cityscapes. The Cityscapes dataset [9] is for urban scene understanding. There are a total of 30
classes and only 19 classes are used for parsing evaluation. The dataset contains 5K high-quality
pixel-level finely annotated images and 20K coarsely annotated images. The finely annotated 5K
images are divided into 2, 975 train images, 500 val images and 1, 525 test images. We set the
initial learning rate as 0.0001, weight decay as 0.01, crop size as 1024× 512, batch size as 8, and
training iterations as 80K by default. Each HRFormer + OCR experiment on Cityscapes takes 8×
32G-V100 GPUs.

Table 5 reports the results on Cityscapes val. We choose to use HRFormer + OCR as our semantic
segmentation architecture. We compare our method with several well-known Vision Transformer
based methods [63, 37] and CNN based methods [6, 62, 55]. Specifically, SETR-PUP and SETR-
MLA use the ViT-Large [13] as the backbone. DPT-Hybrid uses the ViT-Hybrid [13] that consists of
a ResNet-50 followed by 12 transformer layers. Both ViT-Large and ViT-Hybrid are initialized with
the weights pre-trained on ImageNet-21K, where both of them achieve around 85.1% top1 accuracy
on ImageNet. DeepLabv3 [6] and PSPNet [62] are based on dilated ResNet-101 with output stride 8.
According to the fourth column of Table 5, HRFormer + OCR achieves competitive performance
overall. For example, HRFormer-B + OCR achieves comparable performance with SETR-PUP while
saving 70% parameters and 50% FLOPs.
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Table 5: Comparison with the recent SOTA on semantic segmentation tasks. We report the
mIoUs on Cityscapes val, PASCAL-Context test, COCO-Stuff test, and ADE20K val. The
number of parameters and FLOPs are measured on the image size of 1024× 1024, and the output
label map size of 19× 1024× 1024. All results are evaluated with multi-scale testing. ‡: the results
are obtained with extra pre-training on ADE20K.
Method #params. FLOPs Cityscapes PASCAL-Context COCO-Stuff ADE20K

Transformer backbone
SETR-PUP [63] 317.8M 2326.7G 82.2 55.3 − 50.1

SETR-MLA [63] 309.5M 2138.6G − 55.8 − 50.3

Swin-S + UperNet [27] 81.16M 1036.50G − − − 49.5

Swin-B + UperNet [27] 121.18M 1187.90G − − − 49.7

PVT-Large + Semantic FPN [47] 65.1M −G − − − 43.5

CNN backbone
Deeplabv3 [7] 87.1M 1394.0G 80.7 54.1 − −
PSPNet [62] 68.0M 1028.8G 80.0 54.0 43.3 −
HRNet-W48 + OCR [55] 74.5M 924.7G − 56.2 40.5 45.7

CNN+Transformer backbone
DPT-Hybrid [37] 124.0M 1231.5G − 60.5‡ − 49.0

HRFormer-B + OCR 56.2M 1119.9G 82.6 58.5 43.3 50.0

HRFormer-B + OCR + SegFix [57] 56.2M 1119.9G 83.2 − − −

PASCAL-Context. The PASCAL-Context dataset [29] is a challenging scene parsing dataset that
contains 59 semantic classes and 1 background class. The train set and test set consist of 4, 998
and 5, 105 images respectively. We set the initial learning rate as 0.0001, weight decay as 0.01,
crop size as 520 × 520, batch size as 16, and training iterations as 60K by default. We report the
comparisons on the fifth column of Table 5. Accordingly, HRFormer-B + OCR gains 1.1%, 1.5%
over HRNet-W48 + OCR, SETR-MLA with fewer parameters and FLOPs, respectively. Notably,
DPT-Hybrid achieves the best performance through extra pre-training the models on ADE20K in
advance. Each HRFormer + OCR experiment on PASCAL-Context takes 8× 32G-V100 GPUs.

COCO-Stuff. The COCO-Stuff dataset [3] is a challenging scene parsing dataset that contains 171
semantic classes. The train set and test set consist of 9K and 1K images respectively. We set the
initial learning rate as 0.0001, weight decay as 0.01, crop size as 520× 520, batch size as 16, and
training iterations as 60K by default. We report the comparisons on the last column of Table 5 and
HRFormer-B + OCR outperforms the previous best-performing HRNet-W48 + OCR by nearly 2%.
Each HRFormer + OCR experiment on COCO-Stuff takes 8× 32G-V100 GPUs. Figure 5 shows
some example results on Cityscapes, PASCAL-Context, and COCO-Stuff.

4.3 ImageNet Classification

Training setting. We conduct the comparisons on ImageNet-1K, which consists of 1.28M train
images and 50K val images with 1000 classes. We train all models with batch size 1024 for 300
epochs with AdamW [28] optimizer, cosine decay learning rate schedule, weight decay as 0.05,
and a bag of augmentation policies, including rand augmentation [10], mixup [60], cutmix [58],
and so on. HRFormer-T and HRFormer-S require 8× 32G-V100 GPUs and HRFormer-B requires
32× 32G-V100 GPUs.

Results. We compare HRFormer to some representative CNN methods and vision transformer
methods in Table 6, where all methods are trained on ImageNet-1K only. The results of ViT-Large
with larger dataset such as ImageNet-21K not included for fairness. According to Table 6, HRFormer
achieves competitive performance. For example, HRFormer-B gains 1.0% over DeiT-B while saving
nearly 40% parameters and 20% FLOPs.
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Table 6: Comparisons on ImageNet-1K val.
Method image size #param. FLOPs Top-1 acc.
ResNet-18 [18] 224× 224 11M 1.8G 69.8

ResNet-50 [18] 224× 224 26M 4.1G 78.5

ResNet-101 [18] 224× 224 45M 7.9G 79.8

HRNet-W18 [46] 224× 224 21.3M 4.0G 76.8

HRNet-W32 [46] 224× 224 41.2M 8.3G 78.5

HRNet-W48 [46] 224× 224 77.5M 16.1G 79.3

RegNetY-4G [34] 224× 224 21M 4.0G 80.0

RegNetY-8G [34] 224× 224 39M 8.0G 81.7

RegNetY-16G [34] 224× 224 84M 16.0G 82.9

ViT-B/16 [13] 224× 224 86M 55.4G 77.9

ViT-L/16 [13] 224× 224 307M 190.7G 76.5

DeiT-T [42] 224× 224 5M 1.3G 72.2

DeiT-S [42] 224× 224 22M 4.6G 79.8

DeiT-B [42] 224× 224 86M 17.5G 81.8

DeiT-B⚗ [42] 384× 384 86M 55.4G 83.4

Conformer-T [33] 224× 224 23.5M 5.2G 81.3

Conformer-S [33] 224× 224 37.7M 10.6G 83.4

Conformer-B [33] 224× 224 83.3M 23.3G 84.1

PVT-T [47] 224× 224 13.2M 1.9G 75.1

PVT-S [47] 224× 224 24.5M 3.8G 79.8

PVT-M [47] 224× 224 44.2M 6.7G 81.2

PVT-L [47] 224× 224 61.4M 9.8G 81.7

Swin-T [27] 224× 224 29M 4.5G 81.3

Swin-S [27] 224× 224 50M 8.7G 83.0

Swin-B [27] 224× 224 88M 15.4G 83.5

Swin-B [27] 384× 384 88M 47G 84.5

HRFormer-T 224× 224 8.0M 1.8G 78.5

HRFormer-S 224× 224 13.5M 3.6G 81.2

HRFormer-B 224× 224 50.3M 13.7G 82.8

Table 7: Study of the 3×3 depth-wise convolution in FFN. We report the top1 acc., mIoU, and AP
on ImageNet val, PASCAL-Context test, and COCO pose estimation val, respectively. Results on
PASCAL-Context are evaluated with single-scale testing. The number of parameters and FLOPs are
measured on ImageNet.

Method #param. FLOPs ImageNet PASCAL-Context COCO

FFN w/o 3×3 DW-Conv. 7.9M 1.76G 77.83 46.84 66.88

FFN w/ 3× 3 DW-Conv. 8.0M 1.83G 78.48 49.74 70.92

4.4 Ablation Experiments

Influence of 3× 3 depth-wise convolution within FFN We study the influence of the 3× 3 depth-
wise convolution within FFN based on HRFormer-T in Table 7. We observe that applying 3 × 3
depth-wise convolution in FFN significantly improves the performance on multiple tasks, including
ImageNet classification, PASCAL-Context segmentation, and COCO pose estimation. For example,
HRFormer-T + FFN w/ 3× 3 depth-wise convolution outperforms HRFormer-T + FFN w/o 3× 3
depth-wise convolution by 0.65%, 2.9% and 4.04% on ImageNet, PASCAL-Context and COCO,
respectively.

Influence of shifted window scheme & 3×3 depth-wise convolution within FFN based on Swin-
T. We compare our method with the shifted windows scheme of Swin transformer [27] in Table 8.
For fair comparisons, we construct a Intra-Window transformer architecture following the same
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Table 8: Influence of shifted window scheme & 3×3 depth-wise convolution within FFN based on
Swin-T.

Method 3× 3 depth-wise convolution in FFN #param. FLOPs ImageNet top1 acc.
Swin-T 7 28.3M 4.5G 81.3

Swin-T 3 28.5M 4.6G 82.2

IntraWin-T 7 28.3M 4.5G 80.2

IntraWin-T 3 28.5M 4.6G 82.3

Table 9: Shifted window scheme v.s. 3× 3 depth-wise convolution within FFN based on HRFormer-T.
shifted

window scheme
3×3 depth-wise

convolution within FFN #param. FLOPs ImageNet
top1 acc.

PASCAL-Context
mIoU

COCO
AP

7 3 8.0M 1.8G 78.5 49.7 70.9

3 7 7.9M 1.6G 76.6 43.3 67.3

architecture configurations of Swin-T [27] except that we do not apply shifted windows scheme.
We see that applying 3×3 depth-wise convolution within FFN improves both Swin-T and Intrawin-
T. Surprisingly, when equipped with 3× 3 depth-wise convolution within FFN, Intrawin-T even
outperforms Swin-T.

Shifted window scheme v.s. 3×3 depth-wise convolution within FFN based on HRFormer-
T. In Table 9, we compare the 3 × 3 depth-wise convolution within FFN scheme to the shifted
window scheme based on HRFormer-T. According to the results, we see that applying 3×3 depth-
wise convolution within FFN significantly outperforms applying shifted window scheme across all
different tasks.

Comparison to ViT, DeiT & Swin on pose estimation. We report the COCO pose estimation
results based on the two well-known transformer models, including ViT-Large [13], DeiT-B⚗ [42] and
Swin-B [27] in Table 10. Notably, both ViT-Large and Swin-B‡ are pre-trained on ImageNet21K in
advance and then finetuned on ImageNet1K and achieve 85.1% and 86.4% top-1 accuracy respectively.
DeiT-B⚗ is trained on ImageNet1K for 1000 epochs and achieves 85.2% top-1 accuracy. We
apply deconvolution modules to upsample the output representations of the encoder following the
SimpleBaseline [49] for three methods. The number of parameters and FLOPs are listed on the fourth
and fifth columns of Table 10. According to the results in Table 10, we see that our HRFormer-B
achieves better performance than all three methods with fewer parameters and FLOPs.

Comparison to HRNet. We compare our HRFormer to the convolutional HRNet with almost the
same architecture configurations via replacing all the transformer blocks with the conventional basic
block consisting of two 3 × 3 convolutions. Table 11 shows the comparison results on ImageNet,
PASCAL-Context, and COCO. We observe that HRFormer significantly outperforms HRNet under
various configurations with much less model and computation complexity. For example, HRFormer-T
outperforms HRNet-T by 2.0%, 1.5%, and 1.6% on three tasks while requiring only around 50%
parameters and FLOPs, respectively. In summary, HRFormer achieves better performance via
exploiting the benefits of transformers such as content-dependent dynamic interactions.

5 Conclusion

In this work, we present the High-Resolution Transformer (HRFormer), a simple yet effective trans-
former architecture, for dense prediction tasks, including pose estimation and semantic segmentation.
The key insight is to integrate the HRFormer block, which combines local-window self-attention
and FFN with depth-wise convolution to improve the memory and computation efficiency, with
the multi-resolution parallel design of the convolutional HRNet. Besides, HRFormer also benefits
from adopting convolution in the early stages and mixing short-range and long-range attention with
multi-scale fusion scheme. We empirically verify the effectiveness of our HRFormer on both pose
estimation and semantic segmentation tasks.
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Table 10: Comparisons to ViT & DeiT on COCO pose estimation val. ‡ marks the methods
pretrained on ImageNet-22K.

Method image size #param. FLOPs COCO
ViT-Large‡ 256× 192 308.5M 60.1G 69.2

DeiT-B⚗ 256× 192 90.0M 17.9G 69.0

Swin-B‡ 256× 192 93.2M 17.6G 74.3

HRFormer-B 256× 192 43.2M 12.2G 75.6

Table 11: Comparisons to HRNet. We report the top1 acc., mIoU, and AP on ImageNet val,
PASCAL-Context test, and COCO pose estimation val, respectively. Results on PASCAL-Context
are based on single-scale testing. The number of parameters and FLOPs are measured on ImageNet.

Method #param. FLOPs ImageNet PASCAL-Context COCO

HRNet-T 15.6M 2.7G 76.5 47.8 69.3

HRFormer-T 8.0M 1.8G 78.5 49.3 70.9

HRNet-S 24.5M 5.0G 78.7 52.3 73.1

HRFormer-S 13.5M 3.6G 81.2 53.8 74.0

HRNet-B 85.3M 20.3G 81.4 55.2 75.1

HRFormer-B 50.3M 13.7G 82.8 58.5 75.6
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