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Abstract

We study the problem of learning to estimate the 3D object pose from a few labelled
examples and a collection of unlabelled data. Our main contribution is a learning
framework, neural view synthesis and matching, that can transfer the 3D pose
annotation from the labelled to unlabelled images reliably, despite unseen 3D views
and nuisance variations such as the object shape, texture, illumination or scene
context. In our approach, objects are represented as 3D cuboid meshes composed
of feature vectors at each mesh vertex. The model is initialized from a few labelled
images and is subsequently used to synthesize feature representations of unseen
3D views. The synthesized views are matched with the feature representations of
unlabelled images to generate pseudo-labels of the 3D pose. The pseudo-labelled
data is, in turn, used to train the feature extractor such that the features at each
mesh vertex are more invariant across varying 3D views of the object. Our model
is trained in an EM-type manner alternating between increasing the 3D pose
invariance of the feature extractor and annotating unlabelled data through neural
view synthesis and matching. We demonstrate the effectiveness of the proposed
semi-supervised learning framework for 3D pose estimation on the PASCAL3D+
and KITTI datasets. We find that our approach outperforms all baselines by a wide
margin, particularly in an extreme few-shot setting where only 7 annotated images
are given. Remarkably, we observe that our model also achieves an exceptional
robustness in out-of-distribution scenarios that involve partial occlusion. The code
is available at https://github.com/Angtian/Neural VS.

1 Introduction

Object pose estimation is a fundamentally important task in computer vision with a multitude of
real-world applications, e.g. in self-driving cars or augmented reality applications. Current deep
learning approaches to 3D pose estimation achieve a high performance, but they require large amounts
of annotated data to be trained successfully. However, the human annotation of an object’s 3D pose
is difficult and time consuming, therefore it is desirable to develop methods for learning 3D pose
estimation from as few labelled examples as possible.

A powerful approach for training models without requiring a large amount of labels is semi-supervised
learning (SSL). SSL mitigates the requirement for labeled data by providing a means of leveraging
unlabeled data. Since unlabeled data can often be obtained with low human labor, any performance
boost conferred by SSL often comes with low cost. This has led to a multitude of SSL methods,
for example for image classification [18, 44], object detection [40] and keypoint localization [31].
However, only limited attention was devoted to SSL for 3D pose estimation.
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Figure 1: Illustration of how we transfer the 3D pose annotation from one training image to a set of
unlabelled images. A detailed description of this process is given in the introduction section.

In this work, we introduce a semi-supervised learning framework for category-level 3D pose esti-
mation from very few annotated examples and a collection on unlabelled images. Intuitively, our
framework follows a spatial matching approach, in which we transfer the 3D pose annotation from
the labelled examples to the unlabelled data. In general, matching-based approaches aim at transfer-
ring annotations between training examples by estimating correspondences between the respective
images [29, 2, 26, 15, 8, 45, 19, 27]. However, those prior works mainly focused on transferring 2D
annotations, such as segmentation, part annotations, or keypoints, and mostly assume that the objects
in the spatially matched images have a similar 3D pose. In this work, we explore the spatial matching
of images with objects that have a largely varying 3D pose, in addition to nuisance variations in their
shape, color, texture, context and illumination.

3D pose transfer through Neural View Synthesis and Matching (NVSM). The intuition behind
our approach is illustrated in Figure | using a single annotated training image (but note that in
practice we use several images). Our method proceeds in two steps: (I) Neural view synthesis and (II)
Matching. During neural view synthesis, we start with (1.) extracting the feature map of a training
image with a convolutional backbone (CNN) that was pre-trained for image classification. (2.) A
mesh cuboid (purple mesh) is projected onto the extracted feature map using the ground-truth 3D
pose annotation to sample the corresponding feature vectors at each visible mesh vertex (indicated
by red arrows). (3.) The mesh cuboid is subsequently rotated into a novel pose + A . By rasterising
the sampled feature vectors at the mesh vertices we synthesize a feature map of the object in a novel
pose. Subsequently, (4.) we compute the feature maps of the unlabelled training images with the
CNN. (5.) We spatially match the synthesized feature map those feature maps of the unlabelled data,
resulting in a set of matching scores. (6.) Finally, we assign the 3D pose + A as pseudo-label to
those images with highest matching scores (marked in red).

As prior works have shown [41, 58, 5], the features in pre-trained convolutional networks are
surprisingly reliable in spatial matching tasks as they are invariant to small variations in nuisance
variables such as shape deformations, or changes in the object texture and illumination. This
invariance property enables the spatial matching of annotated training images with unlabelled data
across varying 3D poses. However, as we demonstrate in our experiments (Section 4.3), the features
of the classification pre-trained CNN are not invariant to large 3D pose variations. Therefore, this
pseudo-labelling process is initially only accurate for those objects in the unlabelled data that have a
similar pose as the object in the annotated training image. This raises the need for improving the 3D
pose invariance in the CNN features, to be able to annotate images with larger pose variability.

Increasing 3D pose invariance in the feature extractor. We aim to increase the 3D pose invariance
in the CNN using the pseudo-labelled data obtained from the NVSM process. The pseudo-labels
enable us to extract the features vectors at corresponding mesh vertices in the data. To increase the
3D pose invariance in the CNN, we use a contrastive loss that encourages the feature vectors at a
particular mesh vertex to become more similar to each other, while at the same time making them
different from the features of other mesh vertices. This contrastive training improves the feature



representation by making it more invariant to changes in the 3D pose, as well as to category-specific
nuisance variables such as the object’s color, shape, illumination, while also reducing the ambiguity
between nearby feature vectors in the feature map, which benefits the spatial matching quality.

The improved CNN features enable us to increase the 3D pose scope A in the NVSM process,
and hence to increase the 3D pose variability in the pseudo-labelled data. The pose diversity in the
labelled data, in turn, enables us to improve the 3D pose invariance in the CNN feature extractor.
We proceed to iterate between pseudo-labelling training data and training the CNN feature extractor,
while continuously enlarging the 3D pose variation A of the synthesized views in NVSM. After
each update of the CNN, we also update the feature representations at the mesh vertices by computing
the moving average of the corresponding feature vectors in the pseudo-labelled images. In this way,
the feature representation on the mesh cuboid is continuously adapting to the trained feature extractor.

After the training, the trained CNN and mesh cuboid are used for 3D pose estimation. Given a test
image, we first compute the feature map using the CNN and subsequently optimize the 3D pose of the
mesh cuboid such that the distance between the features of the projected mesh vertices and the feature
map are minimized. We evaluate our model at 3D pose estimation on the Pascal3D+ [53] and KITTI
[13] datasets. Our approach proves highly effective in leveraging unlabeled data outperforming all
baselines by a wide margin, particularly in an extreme few-shot setting where only 7 or 20 annotated
images are given. Remarkably, we observe that our model also achieves an exceptional robustness in
out-of-distribution scenarios that involve partial occlusion.

2 Related Work

Object pose estimation. Object pose estimation is an important and well studied computer vision
task. [47] and [32] formulate the pose estimation problem as single step classification problem.
In contrast, [25, 35, 59] solve the object pose estimation problem via a two-step approach, which
involves keypoint detection and solving a Perspective-n-Point (PnP) process. Recently, [51, 56]
demonstrate the success of analysis-by-synthesis approaches for object pose estimation, which use a
differentiable renderer to generate a synthesised image and estimate the object pose by minimizing a
reconstruction loss. [49] extend the render-and-compare approach for pose estimation to the neural
feature level, which significantly decreases the difficulty of the optimization process during pose
estimation, while also improving the robustness. However, all of these approaches require a large
amount of data with annotated 3D object pose during training, which is time consuming and expensive.
In this work, we follow a matching-based approach, in which we transfer the 3D annotation form
a few labelled images to a collection of unlabelled data, thus leading to a largely enhanced data
efficiency.

Spatial Matching. Spatial image matching aims at estimating the correspondence between objects
in two different images. Traditional matching algorithms use features from corners [30, 16], blobs
[28], edges or lines [9, 43]. Recent works [42, 24, 4] demonstrate the advantage of utilizing deep
neural network features for image matching. [52, 6] leverage the 3D structure of objects as additional
constraint in the spatial matching process, for objects in similar poses. [2] demonstrate that neural
feature matching can help reducing the amount of training data required for semantic part detection.
In this work, we spatially match objects with largely varying 3D pose and leverage this ability for the
semi-supervised few-shot learning of a model for 3D pose estimation.

Semi-supervised Learning. Semi-supervised learning [10, 60, 48] aims at reducing the amount of
annotations by utilizing unlabelled data. Self-training [55, 46, 33] is one of the most widely used
semi-supervised learning approaches to create pseudo-labels, which are in turn used as supervision
during the learning process. Current works show the success of self-training in classification[ 18, 44],
detection[40], and keypoint localization[31]. However, self-training for object pose estimation has
not been well explored yet. In this work, we propose a semi-supervised pose estimation approach,
that can be trained using very few annotations, while also being highly robust to partial occlusion.

Robust Vision through Approximate Analysis-by-Synthesis. In a broader context, our work builds
on and extends a recent line of work that follows an approximate analysis-by-synthesis approach to
computer vision [49], which formulates vision as an inverse rendering process on the level of neural
network features. Several recent works demonstrate that approximate analysis-by-synthesis induces a
largely enhanced generalization in out-of-distribution situations such as when objects are partially
occluded in image classification [21-23, 57] and object detection [50], when images are modified



through adversarial patche&(], or when objects are viewed from unseen 3D podék [Our work
enables the learning of models for approximate analysis-by-synthesis with minimal supervision.

3 Method

In this section, we describe our approach for the semi-supervised learning of 3D pose from a few
labelled examples and a collection of unlabelled data. The central part of our framework is a novel
method for generating pseudo annotations of the 3D pose in unlabelled images through synthesizing
novel views of an object on the level of neural network features (Section 3.1) and matching those
synthesized views to the features of unlabelled images (Section 3.2). We discuss how this method
can be integrated into a semi-supervised learning pipeline for 3D pose estimation in Section 3.3.

3.1 Neural View Synthesis

A key requirement for an ef cient semi-supervised learning is the ability to generate reliable pseudo
labels for the unlabelled data using only few labelled images. The challenge when generating pseudo-
labels of an objects 3D pose is that it requires generalizing to situations where an object is depicted in
a previously unseen 3D pose, which has proven to be a challenging problem for discriminative models
[1, 37]. In this work, we generate pseudo-labels by synthesizing novel views of an object on the level
of neural network feature activations. In the following, we explain the details of this process based on
a single labelled training image, and we discuss later how this is extended to multiple images.

Feature extraction. Our approach starts with an imaband the corresponding 3D pose annotation
2 R3. We use a convolutional neural networkto extract a feature map = ( 1) 2 R W €

with C being the number of channels. To start with, we use an Imagel¥epfe-trained neural

network as feature extractor and we discuss how the feature extractor is trained in Section 3.3.

Mesh cuboid and feature sampling.We aim to synthesize the object in the feature rRafsom
a novel view. To achieve this, we represent the object as a 3D cuboid mesh composed of a set of

us to change the 3D pose of the object as described in the following. Given an anchot ievajthe
corresponding feature mé&p, we sample the mesh featuredrom the feature map using the ground
truth pose annotation. For this, we project the mesh verticesnto the feature map by multiplying
the vertices with a weak perspective projection mafix

(= F(P x): (1)

where | is the sampled feature vector at the position ofrthik projected mesh vertex. Note that

the mesh cuboid does not represent the object shape in detail and therefore also feature vectors at
the background will be sampled. But intuitively the model will learn that some features are coherent
across views and therefore will be able to focus more on the foreground region.

Synthesizing feature maps in novel views with rasterisation.Given the mesh cuboid and the
sampled feature vectors, we can synthesize novel views of the object, by rotating the mesh cuboid
into a novel 3D pose®= + . Subsequently, we generate a feature map of the object in this
novel view through rasterisation:

Fo=<(; ;%2R W © )

where< denotes the rasterisation process of the cuboid meslth the vertex features in the

3D pose ° Note that rasterisation is a standard technique in computer graphics to draw 3D models
into 2D images 38]. However, instead of drawing images with RGB pixels, in our usecase we draw
feature maps. The rasterisation resolves two problems. First, when projecting a 3D mesh into an
image, some of the vertices will become occluded due to self-occlusion, and rasterisation accounts
for this effect. Second, some pixels in an image might not be covered by a projected vertex and to |l
these holes in the image, rasterisation interpolates between the features of the mesh vertices.

3.2 Spatially Matching Synthesized Views to Unlabelled Images

We generate pseudo-labels of an object's 3D pose by spatially matching synthesized object views



Figure 2: Spatial matching results of synthesized views. We synthesize novel views of the anchor
image using the ground-truth posend varying azimuth angles+ (here we sample along
azimuth). We spatially match the synthesized views with all images in the data and retrieve those
with highest matching scores. We also report the pose difference of the retrieved images. The car
CAD model is only used for visualization purposes and is not used in our method. Note how the
retrieval results are much more accurate after our proposed semi-supervised training, compared to
when using pre-trained features.

betweenF o and the feature map of an unlabelled im&ge = ( Iy) as the sum of the cosine
distancesl( ; ) between their corresponding feature vectors:

1
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We retrieve those images with highest spatial matching similarities that greater than a pre-de ned
threshold , and pseudo-label them with the 3D pose of the mesh culfoid

The role of pose invariance on the spatial matching qualityThe main challenge when spatially
matching a synthesized view .  to a set of unlabelled images is to achieve a reliable spatial
matching result when is large, and hence when the novel view is very different from the original

3D pose of the object in the labelled training image. Figure 2 illustrates this problem. In our work,
we start with an ImageNet pre-trained CNN as feature extractd/e observe that these features

have some invariance to 3D pose and other nuisances, therefore the retrieved images are consistent
with the pseudo-labelled pose when is relatively small. However, with an increased value of

the objects in the retrieved images are inconsistent with the 3D pose of the mesh cuboid (refer to
section 4.3 for more details). Therefore, we keepsmall in the initial neural view synthesis and
matching process. This allows us to collect additional data with reliable 3D pose annotation, although
with limited pose variability. To increase the pseudo annotation to larger unseen pose angles, we
subsequently train the feature extractor to become more pose invariant, using the pseudo-labelled
data as described in the following section.

3.3 Semi-Supervised Learning of 3D pose

Neural view synthesis (Section 3.1) and matching (Section 3.2) process enables us to annotate the 3D
pose in unlabelled data, but this requires features that are invariant to 3D pose. However, the training

of a feature extractor with higher 3D pose invariance requires amount of annotated data. To resolve

this chicken-and-egg problem, we iterate between annotating data and training the feature extractor
in an Expectation-Maximization-type manner.

Training the feature extractor. After a rst pass of neural view synthesis and matching with an
ImageNet pre-trained feature extractor we obtain a set of annotated dd&a= f(l;; )ji =

with a contrastive training strateg$,[11]. Speci cally, given dataP and the mesh cuboid, we use
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