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Abstract

We revisit first-order optimization under local information constraints such
as local privacy, gradient quantization, and computational constraints lim-
iting access to a few coordinates of the gradient. In this setting, the opti-
mization algorithm is not allowed to directly access the complete output of
the gradient oracle, but only gets limited information about it subject to
the local information constraints.
We study the role of adaptivity in processing the gradient output to obtain
this limited information from it. We consider optimization for both con-
vex and strongly convex functions and obtain tight or nearly tight lower
bounds for the convergence rate, when adaptive gradient processing is al-
lowed. Prior work was restricted to convex functions and allowed only
nonadaptive processing of gradients. For both of these function classes and
for the three information constraints mentioned above, our lower bound im-
plies that adaptive processing of gradients cannot outperform nonadaptive
processing in most regimes of interest. We complement these results by
exhibiting a natural optimization problem under information constraints
for which adaptive processing of gradient strictly outperforms nonadaptive
processing.
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1 Introduction

Distributed optimization has emerged as a central tool in federated learning for building
statistical and machine learning models for distributed data. In addition, large scale opti-
mization is typically implemented in a distributed fashion over multiple machines or multiple
cores within the same machine. These distributed implementations fit naturally in the ora-
cle framework of first-order optimization (see [23]) where in each iteration a user or machine
computes the gradient oracle output. Due to practical local constraints such as commu-
nication bandwidth, privacy concerns, or computational issues, the entire gradient cannot
be made available to the optimization algorithm. Instead, the gradients must be passed
through a mechanism which, respectively, ensures privacy of user data (local privacy con-
straints); or compresses them to a small number of bits (communication constraints); or only
computes a few coordinates of the gradient (computational constraints). Motivated by these
applications, we consider first-order optimization under such local information constraints
placed on the gradient oracle.
When designing a first-order optimization algorithm under local information constraints, one
not only needs to design the optimization algorithm itself, but also the algorithm for local
processing of the gradient estimates. Many such algorithms have been proposed in recent
years; see, for instance, [12], [1], [6], [15], [31], [16], and the references therein for privacy
constraints; [30], [7], [32], [18], [14], [26], [19], [4], [11], [17], [21], [20], [29], and the references
therein for communication constraints; [25, 27] for computational constraints. However,
these algorithms primarily consider nonadaptive procedures for gradient processing (with
the exception of [14]): that is, the scheme used to process the gradients at any iteration
cannot depend on the information gleaned from previous iterations. As a result, the following
question remains largely open:

Can adaptively processing gradients improve convergence in information-constrained
optimization?

In this paper, we study this question for optimization over both convex and strongly convex
function families and under the three different local constraints mentioned above: local pri-
vacy, communication, and computational. For each of these constraints, we establish lower
bounds on convergence rates which hold even when the gradients are adaptively processed.
In the next few sections, we discuss prior related work and elaborate on our results and
techniques.

1.1 Prior work

The framework we consider can be viewed as an extension of the classical query complexity
model in [23]. Without information constraints, [5] provide a general recipe for proving
convex optimization lower bounds for different function families in this model. Specifically,
they reduce optimization problems with a first-order oracle to a mean estimation problem
whose probability of error is lower bounded using Fano’s method (cf. [33]). While our work,
too, relies on a reduction to mean estimation, we deviate from the prior approach, using
instead Assouad’s method to prove lower bounds for various function families. This different
approach in turn enables us to derive lower bounds for adaptive processing of gradients.
In the information-constrained setting, motivated by privacy concerns, [12] consider the
problem where the gradient estimates must pass through a locally differentially private
(LDP) channel. However, in their setting the LDP channels for all time steps are selected
at the start of optimization algorithm – in other words, the channel selection strategy is
nonadaptive. Similarly, [21] and [20] consider a similar problem and impose the constraint
that the gradient estimates be quantized to a fixed number of bits. They, too, fix the
quantization channels used at each time step at the start of optimization algorithm. In
contrast, in this paper, we allow for adaptive channel selection strategies; as a result, the
lower bounds established in these papers do not apply to our setting, and are more restrictive
than our bounds.
The results of Duchi and Rogers [13] for Bernoulli product distributions could be combined
with our construction to obtain tight lower bounds for optimization in p ∈ [1, 2] under

3



LDP constraints, but would not extend to the entire range of p. The work of Braverman,
Garg, Ma, Nguyen, and Woodruff [9] on communication constraints, also for p ∈ [1, 2], is
relevant as well; however, their bounds on mutual information cannot be applied directly,
as their setting (Gaussian distributions) would not satisfy our almost sure gradient oracle
assumption.
[14] provide adaptive quantization schemes for convex and `2 Lipschitz function family.
While the worst-case convergence guarantees for the quantizers in [14] are similar to those
in [7] and [21], it shows some practical improvements over the state-of-the-art for some
specific problem instances. This suggests that while adaptive quantization may not help in
the worst case for non-smooth convex optimization, it may be useful for a smaller subclass
of convex optimization problems.

1.2 Our contributions

We model the information constraints using a family of channels W; see Section 2.3 for a
description of the channel families corresponding to our constraints of interest. We consider
first-order optimization where the output of the gradient oracle must be passed through a
channel W selected from W. Specifically, the gradient is sent as input to this channel W ,
and the algorithm receives the output of the channel. In each iteration of the algorithm, the
channel to be used in that iteration can be selected adaptively based on previously received
channel outputs by the algorithm; or channels to be used throughout can be fixed upfront,
nonadaptively. The detailed problem setup is given in Section 2.1. We obtain general lower
bounds for optimization of convex and strongly convex functions using W, when adaptivity
is allowed. These bounds are then applied to the specific constraints of interest to obtain
our main results.
Our first contribution is in showing that adaptive gradient processing does not help for
some of the most typical optimization problems. Namely, we prove that for most regimes
of local privacy, communication, or computational constraints, adaptive gradient processing
has nearly the same convergence rate as nonadaptive gradient processing for both convex
and strongly convex function families. As a consequence, this shows that the nondaptive
LDP algorithms from [12] and nonadaptive compression protocols from [21], [20] are optimal
for private and communication-constrained optimization, respectively, even if adaptive gra-
dient processing is allowed. In another direction, under computational constraints, where
we are allowed to compute only one gradient coordinate, we show that standard Random
Coordinate Descent (cf. [10, Section 6.4]), which employs uniform (nonadaptive) sampling
of gradient coordinates, is optimal for both the convex and strongly convex function fam-
ilies. This proves that adaptive sampling of gradient coordinates does not improve over
nonadaptive sampling strategies.
As previously discussed, prior work in both the locally private and communication-
constrained settings concerned itself with the family of convex functions, with no lower
bounds known for the more restricted family of strongly convex functions, even for nonadap-
tive gradient processing protocols. The key obstacle is the fact that during the reduction
from optimization to mean estimation, the known hard instance for the strongly convex
family, even when analyzed for nonadaptive protocols, leads to an estimation problem using
adaptive protocols; and thus the lack of known lower bounds for adaptive information-
constrained estimation prevented this approach from succeeding. In more detail, this hard
instance has gradients that can depend on the query point which in turn can be chosen
based on previously observed channel outputs, an issue which does not arise in the case of
the convex family where the lower bounds are derived using affine functions for which the
gradients do not depend on the query point. We manage to circumvent this issue by relying
on a different reduction, which lets us capitalize on a recent lower bound for adaptive mean
estimation. Crucially, this recent lower bound does apply to adaptive estimation algorithms
as well. This lets us derive lower bounds for both convex Lipschitz and strongly convex
functions under adaptive gradient processing.
These lower bounds are seen to match the performance of existing algorithms in most
settings, even in settings which were not considered in prior works. For optimization of
convex Lipchitz functions over an `1 ball using r bits per gradient query, prior work was
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restricted to the case r = O(d) only. We show that a simple uniform quantizer used along
with repeated queries of the same point is rate-optimal.
The results discussed above show that adaptive processing of gradients does not help for
convex optimization over `p balls or even strongly convex optimization over `2 balls. This
raises the question of whether there are natural function families where adaptive gradient
processing can lead to significant savings. Our third contribution is to provide an example
of such a family. Specifically, we exhibit a natural optimization problem (entailing `2 mini-
mization) under computational constraints for which adaptive gradient processing provides
a polynomial factor improvement in convergence rates compared to nonadaptive processing.
The key feature of this optimization problem is that the resulting gradients have struc-
tured sparsity; adaptivity then allows for a two-phase optimization procedure, where the
algorithm first “explores” to find the structure before, in a second phase, “exploiting” it
to obtain more focused information about the function to minimize. However, nonadaptive
gradient processing protocols cannot exploit this hidden structure, as finding it is now akin
to locating a needle in a haystack; and thus exhibit much slower convergence rates.

1.3 Organization.

The rest of the paper is organized as follows. After formally introducing in Section 2 the
setting, the function classes considered (convex and strongly convex), and the information
constraints we are concerned with, we state and discuss our lower bounds in Section 3.
In more detail, Section 3.1 focuses on locally differentially private (LDP) optimization, and
contains our theorems for convex functions (Theorems 1 and 2 for p ∈ [1, 2) and p ∈ [2,∞],
respectively), as well as our lower bound for strongly convex functions (Theorem 3). Sec-
tion 3.2 contains the analogous results for optimization under communication constraints
(Theorems 4 and 5 for convex functions, and Theorem 6 for strongly convex functions). Sec-
tion 3.3 focuses on optimization with `2 loss under computational constraints (i.e., RCD-type
schemes), with the lower bound of Theorem 7 for convex functions and that of Theorem 8
for strongly convex functions. Proofs of these lower bounds are given in Section 4.
Finally, Section 5 discusses our example for which adaptive gradient processing does help,
with Theorem 12 stating the lower bound for nonadaptive schemes and Theorem 13 provid-
ing an upper bound (significantly smaller) for adaptive ones.

Notation. Throughout the paper, q denotes the Hölder conjugate of p (that is, 1
p+ 1

q = 1).
We write a ∨ b and a ∧ b for max{a, b} and min{a, b}, respectively. We use log for the
binary logarithm and ln for the natural logarithm. Information-theoretic quantities, such
as mutual information and Kullback–Leibler (KL) divergence, are defined using ln. The
iterated logarithm ln∗(a) is defined as the number of times ln must be iteratively applied to
a before the result is at most 1. Finally, we write {e1, . . . , ed} for the standard basis of Rd.

2 Setup and preliminaries

2.1 Optimization under information constraints

We consider the problem of minimizing an unknown convex function f : X → R over its
domain X using oracle access to noisy subgradients of the function. That is, the algorithm
is not directly given access to the function but can get subgradients of the function at
different points of its choice. This class of optimization algorithms includes various descent
algorithms, which often provide optimal convergence rate among all the algorithms in this
class (cf. [23]).
In our setup, gradient estimates supplied by the oracle must pass through a channel W ,5
chosen by the algorithm from a fixed set of channels W, and the optimization algorithm π

5A channel W with input alphabet X and output alphabet Y, denoted W : X → Y, represents
the conditional distribution of the output of a randomized function given its input. In particular,
W (· | x) is the conditional distribution of the channel given that the input is x ∈ X .
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only has access to the output of this channel. The channel family W represents information
constraints imposed in our distributed setting. In detail, the framework is as follows:

1. At iteration t, the first-order optimization algorithm π makes a query for point xt
to the oracle O.

2. Upon receiving the point xt, the oracle outputs ĝ(xt), where E [ĝ(xt) | xt] ∈ ∂f(xt)
and ∂f(xt) is the subgradient set of function f at xt.

3. The subgradient estimate ĝ(xt) is passed through a channelWt ∈ W and the output
Yt is observed by the first-order optimization algorithm. The algorithm then uses
all the messages {Yi}i∈[t] to further update xt to xt+1.

Let ΠT be the set of all first-order optimization algorithms that are allowed T queries to
the oracle O and after the tth query gets back the output Yt with distribution Wt(· | ĝ(xt)).
Our goal is to select gradient processing channels Wts and an optimization algorithm π to
guarantee a small worst-case optimization error. Two classes of channel selection strategies
are of interest: adaptive and nonadaptive.

Adaptive gradient processing. Under adaptive gradient processing, the channel Wt selected
at time t may depend on the previous outputs of channels {Wi}i∈[t−1]. Specifically, denoting
by Yt the output of the channel used at time t, which takes values in the output alphabet
Yt, the adaptive channel selection strategy S := (S1, . . . , ST ) over T iterations consists of
mappings St : Yt−1 → W that take Y1, . . . Yt−1 as input and output a channel Wt ∈ W as
output. We write SW,T for the collection of all such channel selection strategies.

Nonadaptive gradient processing. Under nonadaptive selection, all the channels {Wt}t∈[T ]
through which the gradient estimates must pass are decided at the start of the optimization
algorithm. In other words, the Wts are independent of the t − 1 gradient observations
received by the optimization algorithm until step t. Denote the class of all nonadaptive
strategies by SNA

W,T .

We measure the performance of an optimization protocol π and a channel selection strategy
S for a given function f and oracle O using the metric E(f,O, π, S) defined as

E(f,O, π, S) = E
[
f(xT )−min

x∈X
f(x)

]
, (1)

where the expectation is over the randomness in xT .
For various function and oracle classes, denoted by O, the channel constraint familyW, and
the number of iterations T , we will characterize the adaptive minmax optimization error

E∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SW,T

sup
(f,O)∈O

E(f,O, π, S) , (2)

and the corresponding nonadaptive minmax optimization error

ENA∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SNA

W,T

sup
(f,O)∈O

E(f,O, π, S) . (3)

Since the adaptive channel selection strategies include the nonadaptive ones, we have
ENA∗(X ,O, T,W) ≥ E∗(X ,O, T,W).

2.2 Function classes

We now define the function classes and the corresponding oracles that we consider.

Convex and `p Lipschitz function family. Our first set of function families are pa-
rameterized by a number p ∈ [1,∞]. Throughout, we restrict ourselves to convex functions
over a domain X , i.e., functions f satisfying

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X , ∀λ ∈ [0, 1]. (4)
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Further, for a family parameterized by p, we assume that the subgradient estimates returned
by the first-order oracle for a function f satisfy the following two assumptions:

E [ĝ(x) | x] ∈ ∂f(x), (Unbiased estimates) (5)
Pr
(
‖ĝ(x)‖2q ≤ B2 | x

)
= 1, (Bounded estimates) (6)

where ∂f(x) is the set of subgradient for f at x and q := p/(p− 1) is, as mentioned earlier,
the Hölder conjugate of p. We denote by Oc,p the set of all pairs of functions and oracles
satisfying Assumptions (4), (5), and (6).
We note that (5) is standard in stochastic optimization literature (cf. [23], [22], [10], [5]).
To prove convergence guarantees on first-order optimization in the classic setup (without
any information constraints on the oracle), it is enough to assume E

[
‖ĝ(x)‖2q

]
≤ B2. We

make a slightly stronger assumption in this case since the more relaxed assumption leads to
technical difficulties in finding unbiased quantizers for gradients; see [21, 20].
Note that by (5) and (6) for every x ∈ X there exists a vector g ∈ ∂f(x) such that
‖g‖q ≤ B. Further, since f is convex, f(x)− f(y) ≤ gT (x− y) for every g ∈ ∂f(x), whereby
|f(x)− f(y)| ≤ B‖x− y‖p. Namely, f is B-Lipschitz continuous in the `p norm.6
Remark 1 (Convergence rate for convex functions). Without any information constraints
(when gradient estimates are directly observed), upper bounds of c1DB

√
log d√

T
and c1DBd

1/2−1/p
√
T

on the error are achievable for `1 and `p, p ∈ [2,∞], convex family, respectively. Moreover,
these rates are orderwise optimal. In particular, from [5, Appendix C] we have the following
result: For p = 1, stochastic mirror descent algorithm with mirror map Φa(x) = 1

a−1‖x‖
2
a,

where a = 2 log d
2 log d−1 , achieves the orderwise convergence rate; for p ∈ [2,∞], stochastic

gradient descent achieves the orderwise optimal convergence rate.

Strongly convex and `2 Lipschitz function family. We now consider a special subset
of the convex and `2 Lipschitz family described above, where the functions are strongly
convex. Recall that for α > 0, a function f is α-strongly convex on X if the following
function h is convex:

h(x) = f(x)− α

2 ‖x‖
2
2, ∀x ∈ X . (7)

We denote by Osc the set of all pairs of functions and oracles satisfying (4), (5), (7), and
(6) for q = 2.
The strong convexity parameter α is related to the parameter B, the upper bound on the
`2 norm of the gradient estimate. We state a relation between them when the domain X
contains an `∞ ball of radius D centered at the origin; this property will be used when we
derive lower bounds.
Lemma 1. For any X ⊇ {x : ‖x‖∞ ≤ D}, we have B

α ≥
Dd1/2

4 .

Remark 2 (Convergence rate for strongly convex functions). Without information con-
straints, stochastic gradient descent achieves an upper bound of 2B2

T+1 ([22]) for the strongly
convex family, and this rate is optimal; see [5].

2.3 Information constraints

We describe three specific constraints of interest to us: local privacy, communication, and
computation. The first two are well-studied; the third is new and arises in procedures such
as random coordinate descent.

Local differential privacy. To model local privacy, we define the ε-locally differentially
private (LDP) channel family Wpriv,ε.
Definition 1. A channel W : Rd → Rd is ε-locally differentially private (ε-LDP) if for all
x, x′ ∈ Rd,

W (Y ∈ S | X = x)
W (Y ∈ S | X = x′) ≤ e

ε

6The same could be said under the weaker assumption E
[
‖ĝ(x)‖2

q

]
≤ B2.
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for all Borel measurable subsets S of Rd. We denote byWpriv,ε the set of all ε-LDP channels.

When operating under local privacy constraints, the oracle’s subgradient estimates are
passed through an ε-LDP channel, and only the output is available to the optimization
algorithm. Thus, the resulting process which handles the data of individual users, accessed
in each oracle query, is overall differentially private, a notion of privacy extensively studied
and widely used in practice.

Communication constraints. To model communication constraints, we define the
Wcom,r, the r-bit communication-constrained channel family, as follows.
Definition 2. A channel W : Rd → {0, 1}r constitutes an r-bit communication-constrained
channel. We denote by Wcom,r the set of all r-bit communication-constrained channels.

Computational constraints. For high-dimensional optimization, altogether computing
the subgradient estimates can be computationally expensive. Often in such cases, one
resorts to computing only a few coordinates of the gradient estimates and using only them
for optimization ([25, 27]). This motivates the oblivious sampling channel family Wobl,
where the optimization algorithm gets to see only one randomly chosen coordinate of the
gradient estimate.
Definition 3. An oblivious sampling channel W is a channel W : Rd → Rd specified by
a probability vector (pi)i∈[d], i.e., a vector p such that pi ≥ 0 for all i and

∑
i∈[d] pi = 1.

For an input g ∈ Rd, the output distribution of W is given by W (g(i)ei | g) = pi,∀i ∈ [d],
where e1, . . . , ed denote the standard basis vectors. We denote byWobl the set of all oblivious
sampling channels.

Therefore, at most one coordinate of the oracle’s the gradient estimate can be used by the
optimization algorithm. Further, this coordinate is sampled obliviously to the input gradient
estimate itself. We note that the special case of pi = 1

d ∀ i ∈ [d] corresponds to sampling
employed by standard Random Coordinate Descent (RCD) (cf . [10, Section 6.4]), where at
each time step only one uniformly random coordinate of the gradient is used by the gradient
descent algorithm.

3 Main results: average information lower bounds for
optimization

For p ∈ [1,∞] and D > 0, let Xp(D) := {X ⊆ Rd : maxx,y∈X ‖x − y‖p ≤ D} be the
collection of subsets of Rd whose `p diameter is at most D. In stating our results, we will fix
throughout the parameter B > 0, the almost sure bound on the gradient magnitude defined
in (6), as well as the strong convexity parameter α > 0 defined in (7) (which, implicitly,
is required to satisfy Lemma 1). Throughout this section, our lower bounds on minmax
optimization error focus on tracking the convergence rate for large T , a standard regime of
interest for the stochastic optimization setting.

3.1 Lower bounds for locally private optimization under adaptive gradient
processing

Throughout, we consider ε ∈ [0, 1], namely the high-privacy regime.

Convex function family. For the convex function family, we prove the following lower
bounds.
Theorem 1. Let p ∈ [1, 2), ε ∈ [0, 1], and D > 0. There exist absolute constants c0, c1 > 0
such that, for T ≥ c0 d

ε2 ,

sup
X∈Xp(D)

E∗(X ,Oc,1, T,Wpriv,ε) ≥
c1DB√

T
·
√

d

ε2 .

(Moreover, one can take c0 := 1
2e(e−1)2 and c1 := 1

36(e−1)
√

2e .)
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See Section 4.5 for the proof.
Theorem 2. Let p ∈ [2,∞], ε ∈ [0, 1], and D > 0. There exist absolute constants c0, c1 > 0
such that, for T ≥ c0 d

2

ε2 ,

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥
c1DBd

1/2−1/p
√
T

·
√

d

ε2 .

(Moreover, one can take c0 and c1 as in Theorem 1.)

See Section 4.6 for the proof.
Remark 3 (Tightness of bounds for convex functions and LDP constraints). [12, Theorem
4 and 5] provide nonadaptive LDP algorithms which show that Theorem 1 is tight up to
logarithmic factors for p = 1 and Theorem 2 is tight up to constant factors for all p ∈ [2,∞]
(to the best of our knowledge, no non-trivial upper bound is known for p ∈ (1, 2).). Therefore,
adaptive processing of gradients under LDP cannot significantly improve the convergence rate
for convex function families.

Interestingly, for p = 1, [12] also provide a slightly stronger lower bound of c0DB√
T
·
√

d log d
ε2

for nonadaptive protocols, which matches the performance of their nonadaptive protocols up
to constant factors. This points to a minor gap in our understanding of adaptive protocols:
Can we establish a stronger lower bound for adaptive protocols to match the performance of
the nonadaptive algorithm of [12], or does there exist a better adaptive protocol? We believe
that the latter option is correct, and conjecture that the

√
d log d dependence is tight even

for adaptive protocols.

From Remark 1, the standard optimization error for `1 and `p, p ∈ [2,∞], convex family
blows up by a factor of

√
d/ε2 when the gradient estimates are passed through an ε-LDP

channel.

Strongly convex family. We prove the following result for strongly convex functions.
Theorem 3. Let ε ∈ [0, 1], and D > 0. There exist absolute constants c0, c1 > 0 such that,
for T ≥ c0 · B2

α2D2 · dε2 ,

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥
c1B

2

αT
· d
ε2 .

See Section 4.7 for the proof.
Remark 4 (Tightness of bounds for strongly convex functions and LDP constraints). One
can use stochastic gradient descent with the nonadaptive protocol from [12, Appendix C.2]
to obtain a nonadaptive protocol with convergence rate matching the lower bound in Theo-
rem 3 up to constant factors, establishing that adaptivity does not help for strongly convex
functions.

From Remark 2, the standard optimization error for strongly convex functions blows up by
a factor of d

ε2 when the gradient estimates are passed through an ε-LDP channel.

3.2 Lower bounds on communication-constrained optimization

Convex function family. For convex functions, we prove the following lower bounds.
Theorem 4. Let p ∈ [1, 2), and D > 0. There exists an absolute constant c0 > 0 such that,
for r ∈ N, and T ≥ d

6r ,

sup
X∈Xp(D)

E∗(X ,Oc,1, T,Wcom,r) ≥
c0DB√

T
·
√

d

d ∧ r
.

(Moreover, one can take c0 := 1
12
√

58 .)
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See Section 4.7 for the proof.
Theorem 5. Let p ∈ [2,∞], and D > 0. There exists an absolute constant c0 > 0 such
that, for r ∈ N, and T ≥ 1

4 ·
d2

2r∧d , we have

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r) ≥
(
c0DBd

1/2−1/p
√
T

·
√

d

d ∧ 2r

)
∨

(
c0DB√

T
·
√

d

d ∧ r

)

(Moreover, one can take c0 := 1
12
√

58 .)

See Section 4.6 for the proof.
Remark 5 (Tightness of bounds for convex functions and communication constraints). In
Appendix B, we provide a scheme which matches the lower bound in Theorem 4 for p = 1
up to constant factors for any r. Since each coordinate of oracle output is bounded by B
for p = 1, we simply can use an unbiased 1-bit quantizer for each coordinate. The proposed
scheme uses such a quantizer for each coordinate and makes d/r repeated queries to the
oracle for the same point, but gets 1-bit information about r different coordinates in each
query.
In general, there are two obstacles in extending this scheme to other cases: First, the uniform
bound of B for each coordinate is too loose. Second, we cannot assume that repeated queries
for the same point give identically distributed outputs (we only assume that their means
are subgradients and they have bounded moments). We were able to circumvent the second
difficulty for p = 1 using convexity of the set of subgradients. However, in general, it remains
an obstacle. Nonetheless, if we make the assumption that repeated queries yield i.i.d. outputs,
we can even attain the lower bound Theorem 5 for p =∞ up to a constant factor as follows.
We can use the quantizer SimQ from [20] to obtain an unbiased estimator of the common
mean (a subgradient) of the repeated query outputs, which takes only d distinct values. We
can then apply the simulate-and-infer approach from [3] to obtain samples from this d-ary
distribution using r bits per query and O(d/2r) queries per sample. This results in an O(d/r)
factor blow-up in the standard convergence rate, which when used with appropriate mirror
descent algorithms matches our lower bound in Theorem 5 for p =∞.
In general, without making any additional assumptions about the oracle, we can use the
quantizer SimQ+ from [20] with k = r and appropriate mirror descent algorithms to get
upper bounds that match the lower bounds in Theorem 5 for p ∈ [2,∞], up to an additional
O(log d) factor. For p = 2, we can use the quantizer RATQ from [21] to improve this match
to an O(ln ln∗ d) factor. However, as was the case in the privacy setting, to the best of our
knowledge no non-trivial upper bound is known for p ∈ (1, 2).

From Remark 1, the standard optimization errors for `1 and `p, p ∈ [2,∞], convex family
blow up by a factor of

√
d
d∧r and

√
d

d∧2r ∨
√

d2/p

d∧r , respectively, when the gradient estimates
are compressed to r bits.

Strongly convex family. We prove the following result for strongly convex functions.
Theorem 6. Let D > 0. There exist absolute constants c0, c1 > 0 such that, for r ∈ N and
T ≥ c0 · B2

α2D2 · dr ,

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
c1B

2

αT
· d

d ∧ r
.

See Section 4.7 for the proof.
Remark 6 (Tightness of bounds for strongly convex functions and communication con-
straints). We note that the nonadaptive scheme RATQ in [21] along with stochastic gradient
descent matches the lower bound in Theorem 6 up to a ln ln∗ d factor for r = Ω(ln ln∗ d).

From Remark 2, the standard optimization error for strongly convex functions blows up by
a factor of dr when the gradient estimates are compressed to r bits.
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3.3 Lower bounds on computationally-constrained optimization

We restrict to the case of Euclidean geometry (p = 2) for the oblivious sampling channel
family Wobl. Our motivation for introducing this class was to study the optimality of
standard RCD, which is proposed to work in the Euclidean setting alone. Furthermore, if
we consider a slightly larger family of channels where the sampling probabilities can depend
on the input itself, the resulting family will be similar to the 1-bit communication family,
which we have addressed in Section 3.2.

Convex family. For convex functions, we establish the following lower bound, for p = 2.
Theorem 7. Let D > 0. There exists an absolute constant c0 > 0 such that, for T ≥ d

4 , we
have

sup
X∈X2(D)

E∗(X ,Oc,2, T,Wobl) ≥ c0
√
dDB√
T

.

(Moreover, one can take c0 := 1
72 .)

See Section 4.5 for a proof.
The standard Random Coordinate Descent (RCD) (see for instance [10, Theorem 6.6]),
which employs uniform sampling, matches this lower bound up to constant factors. The
optimality of standard RCD motivates further the folklore approach of uniformly sampling
coordinates for random coordinate descent unless there is an obvious structure to exploit (as
in [24]). This establishes that adaptive sampling strategies do not improve over nonadaptive
sampling strategies for the family Wobl. Also from Remark 1, the standard optimization
error for `2 convex family blows up by a factor of

√
d when the gradients are sampled

obliviously.

Strongly convex family. For strongly convex functions, we obtain the following lower
bound, for p = 2.
Theorem 8. Let D > 0. There exist absolute constants c0, c1 > 0 such that, for T ≥
c0 · d B2

α2D2 , we have

sup
X∈X2(D)

E∗(X ,Osc, T,Wobl) ≥ c1dB
2

αT
.

See Section 4.7 for the proof.
Once again, the standard RCD algorithm matches this lower bound, which shows that adap-
tive sampling strategies do not improve over nonadaptive sampling strategies for strongly
convex optimization. Further, from Remark 2, the standard optimization error for strongly
convex family blows up by a factor of d when the gradients are sampled obliviously.

4 Proofs of average information lower bounds

4.1 Outline of the proof for our lower bounds

The proofs of our lower bounds for adaptive protocols follow the same general template,
summarized below.

Step 1. Relating optimality gap to average information: We consider a family
of functions G = {gv : v ∈ {−1, 1}d} satisfying suitable conditions and associate with it
a “discrepancy metric” ψ(G) that allows us to relate the optimality gap of any algorithm
to an average mutual information quantity. Specifically, for V distributed uniformly over
{−1, 1}d, we show that the output x̂ of any optimization algorithm satisfies

E
[
gV (x̂)−min

x∈X
gV (x)

]
≥ dψ(G)

6

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 ,
11



where Yt is the channel output for the gradient in the tth iteration and Y T := (Y1, . . . , YT ).
Heuristically, we have related the gap to optimality to the difficulty of inferring V by ob-
serving Y T . We note that the bound above is similar to that of [5], but instead of mutual
information I

(
V ∧ Y T

)
we get the average mutual information per coordinate. This latter

quantity is amenable to analysis for adaptive protocols.

Step 2. Average information bounds: To bound the average mutual information per co-
ordinate, 1

d

∑d
i=1 I

(
V (i) ∧ Y T

)
, we take recourse to the recently proposed bounds from [2].

These bounds hold for Y T which is the output of adaptively selected channels from a fixed
channel familyW, with i.i.d. input XT = (X1, . . . , XT ) generated from a family of distribu-
tions {pv, v ∈ {−1, 1}d}. We view the output of oracle as inputs XT and derive the required
bound.
While results in [2] provided bounds forWpriv,ε andWcomm,r, we extend the approach to han-
dle Wobl. Specifically, under a smoothness and symmetry condition on {pv, v ∈ {−1, 1}d},
which has a parameter γ associated with it, we show the following:
For |X | <∞ and Xi := {x(i) : x ∈ X}, i ∈ [d], we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ C

2 · Tγ
2,

where the constant C depends only on {pv, v ∈ {−1,+1}d} and, denoting by v⊕i ∈ {−1, 1}d
the vector with the sign of the ith coordinate of v flipped, is given by

C = (max
i∈[d]
|Xi| − 1) ·max

x∈X
max

v∈{−1,+1}d
max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

Step 3. Use appropriate difficult instances On the one hand, to prove lower bounds
for the convex family we will use the class of functions Gc = {gv(x) : v ∈ {−1, 1}d} defined
on the domain X = {x ∈ Rd : ‖x‖∞ ≤ b} comprising functions gv given below:

gv(x) = a ·
d∑
i=1
|x(i)− v(i) · b|, ∀x ∈ X , v ∈ {−1, 1}d.

On the other hand, to prove lower bounds for the strongly convex family, we will use the
class of functions Gsc = {gv(x) : v ∈ {−1, 1}d} on X = {x ∈ Rd : ‖x‖∞ ≤ b} given by

gv(x) = a

d∑
i=1

(
1 + 2δv(i)

2 f+
i (x) + 1− 2δv(i)

2 f−i (x)
)
, ∀x ∈ X , v ∈ {−1, 1}d,

where f+
i and f−i , for i ∈ [d], are given by

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2, f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2.

Step 4. Carefully combine everything: We obtain our desired bounds by applying
Steps 1 and 2 to difficult instances from Step 3. Since the difficult instance for convex
family consists of linear functions, the gradient does not depend on x. Thus, we can design
oracles which give i.i.d. output with distribution independent of the query point xt, whereby
the bound in Step 2 can be applied. Interestingly, we construct different oracles for p < 2
and p ≥ 2.
However, the situation is different for the strongly convex family. The gradients now depend
on the query point xt, whereby it is unclear if we can comply with the requirements in Step
2. Interestingly, for communication and local privacy constraints, we construct oracles that
allow us to view messages Y T as the output of adaptively selected channels applied to
independent samples from a common distribution pv. While it is unclear if the same can
be done for computational constraints as well, we use an alternative approach and exhibit
an oracle for which we can find an intermediate message vector Z1, . . . , ZT such that (i)
V and Y T are conditionally independent given ZT and (ii) the message ZT satisfies the
requirements of Step 2.

12



4.2 Relating optimality gap to average information

In this section, we prove a general lower bound for the expected gap to optimality by
considering a parameterized family of functions and oracles which is contained in our oracle
family of interest. We present a bound that relates the expected gap to optimality to the
average mutual information between the channel output and different coordinates of the
unknown parameter. This step is the key difference between our approach and that of [5],
which used Fano’s method instead of our bound below. We remark that the bounds resulting
from Fano’s method are typically not amenable to analysis for adaptive protocols.
In more detail, our result can be used to prove bounds for the average optimization error
over any class of functions which satisfies the two conditions below.
Assumption 1. Let X ⊆ Rd and V = {−1, 1}d. Let G = {gv : v ∈ V} where gv : X → R
are real-valued functions from X such that

1. the gvs are coordinate-wise decomposable, i.e., there exist functions gi,b : R → R,
i ∈ [d], b ∈ {−1, 1}, such that

gv(x) =
d∑
i=1

gi,v(i)(x(i)).

2. the minimum of gv is also a coordinate-wise minimum, i.e., if we denote by x∗v the
minimum of gv over X , then, for all i ∈ [d], we have

x∗v(i) = argmin
y∈Xi

gi,v(i)(y),

where Xi = {x(i) : x ∈ X}.

For G satisfying Assumptions 1 and for i ∈ [d], we now define the following discrepancy
metric:

ψi(G) := min
y∈Xi

(
gi,1(y) + gi,−1(y)−

(
min
y′∈Xi

gi,1(y′) + min
y′∈Xi

gi,−1(y′)
))

(8)

ψ(G) := min
i∈[d]

ψi(G). (9)

This is a “coordinate-wise counterpart” of the metric used in [5]. The next lemma follows
readily from this definition.
Lemma 2. Fix i ∈ [d]. For every y ∈ Xi, there can be at most one b ∈ {−1, 1} such that

gi,b(y)− min
y′∈Xi

gi,b(y′) ≤
ψi(G)

3 .

Proof. Let b ∈ {−1, 1}. By definition of ψi(G), for all y ∈ Xi we have(
gi,b(y)− min

y′∈Xi
gi,b(y′)

)
+
(
gi,−b(y)− min

y′∈Xi
gi,−b(y′)

)
≥ ψi(G).

For y such that gi,b(y)−miny′∈Xi gi,b(y′) ≤
ψi(G)

3 , we now must have that

gi,−b(y)− min
y′∈Xi

gi,−b(y′) ≥
2ψi(G)

3 .

We will use this observation to bound the expected gap to optimality for any algorithm π
optimizing an unknown function in G that has access to only the corresponding first-order
oracle.
Lemma 3. Suppose G = {gv : v ∈ {−1, 1}d} satisfies Assumption 1. Let π be any opti-
mization algorithm that adaptively selects the channels {Wj}j∈[T ]. For a random variable V

13



distributed uniformly over {−1, 1}d, the output x̂ of π when it is applied to a function from
G and any associated (stochastic subgradient) oracle satisfies

E [gV (x̂)− gV (x∗V )] ≥ dψ(G)
6

1−

√√√√1
d

d∑
i=1

2I(V (i) ∧ Y T )

 ,
where ψ(G) = minj∈[d] ψj(G), Yt is the channel output for the gradient at time step t and
Y T := (Y1, . . . , YT ).

Proof. Our proof is based on relating the gap to optimality to the error in estimation of
V upon observing Y T . Suppose the algorithm π along with channels {Wj}j∈[T ] outputs
the point x̂ after T iterations. By linearity of expectation, the decomposability of gv, and
Markov’s inequality, we have

E [gV (x̂)− gV (x∗V )] =
d∑
i=1

E
[
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i))

]
≥

d∑
i=1

ψi(G)
3 Pr

(
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i)) ≥ ψi(G)

3

)

≥ ψ(G)
3

d∑
i=1

Pr
(
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i)) ≥ ψi(G)

3

)
. (10)

We proceed to bound each summand separately.

Fix any i ∈ [d] and consider the following estimate for V (i): Given x̂, we output a V̂ (i) ∈
{−1, 1} satisfying

gi,V̂ (i)(x̂(i))− min
y′∈Xi

gi,V̂ (i)(y
′) < ψi(G)

3 ;

if no such V̂ (i) exists, we generate V̂ (i) uniformly from {−1, 1}. Then, as a consequence of
Lemma 2, we get

Pr
(
V̂ (i) 6= v(i)

)
≤ Pr

(
gi,v(i)(x̂(i))− gi,v(i)(x∗v(i)) ≥

ψi(G)
3

)
. (11)

Next, denote by pY T the distribution of Y T and by pY T+i and pY T−i , respectively, the distri-
butions of Y T given V (i) = +1 and V (i) = −1. It is easy to verify that

pY
T

= 1
2(pY

T

+i + pY
T

−i ), ∀ i ∈ [d].

Noting that V (i) is uniform and the estimate V̂ (i) is formed as a function of Y T , we get

Pr
(
V̂ (i) 6= v(i)

)
≥ 1

2 −
1
2dTV

(
pY

T

+i ,pY
T

−i

)
. (12)

From this, combining (11) and (12) and plugging the result into (10), we have

E [gv(x̂)− gv(x∗v)] ≥
ψ(G)

6

d∑
i=1

[
1− dTV

(
pY

T

+i ,pY
T

−i

)]
≥ ψ(G)

6

d∑
i=1

[
1− dTV

(
pY

T

+i ,pY
T
)
− dTV

(
pY

T

−i ,pY
T
)]

≥ ψ(G)
6

d∑
i=1

[
1−

√
1
2D
(
pY T+i ‖pY

T
)
−
√

1
2D
(
pY T−i ‖pY

T
)
|

]

≥ dψ(G)
6

1−

√√√√1
d

d∑
i=1

D
(
pY T+i ‖pY

T
)

+ D
(
pY T−i ‖pY

T
)
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= dψ(G)
6

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 ,
where the second inequality follows from the triangle inequality, the third is Pinsker’s in-
equality, and the fourth is Jensen’s inequality.

4.3 Average information bounds

The next step in our proof is to bound the average mutual information that emerged in
Section 4.2. A general recipe for bounding this average mutual information has been given
recently in [2], which we recall below.

Let {pv, v ∈ {−1, 1}d} be a family of distributions over some domain X and W be a
fixed channel family. For v ∈ {−1, 1}d and i ∈ [d], denote by v⊕i the element of {−1, 1}d
obtained by flipping the ith coordinate of v. For a fixed v, we obtain T independent samples
X1, . . . , XT from pv. Let Y1, . . . , YT be the output of channels selected from the channel
family W by an adaptive channel selection strategy (see Section 2.1) when input to the
channel at time t is Xt, 1 ≤ t ≤ T .7

For V distributed uniformly on {−1, 1}d, we are interested in bounding
(1/d)

∑d
i=1 I

(
V (i) ∧ Y T

)
. In [2], different bounds were given for this quantity under

different assumptions. We state these assumptions below.
Assumption 2. For every v ∈ {−1, 1}d and i ∈ [d], there exists φv,i : X → R such that
Epv

[
φ2
v,i

]
= 1, Epv [φv,iφv,j ] = 1{i=j} holds for all i, j ∈ [d], and

dpv⊕i
dpv

= 1 + γφv,i,

where γ ∈ R is a fixed constant independent of v, i.
Assumption 3. There exists some κW ≥ 1 such that

max
v∈{−1,1}d

max
y∈Y

sup
W∈W

Epv⊕i [W (y | X)]
Epv [W (y | X)] ≤ κW .

Assumption 4. There exists some σ ≥ 0 such that, for all v ∈ {−1, 1}d, the vector
φv(X) := (φv,i(X))i∈[d] ∈ Rd is σ2-subgaussian for X ∼ pv.8 Further, for any fixed z, the
random variables φv,i(X) are independent across i ∈ [d].

We then have the following bound local privacy constraints.
Theorem 9 ([2, Corollary 6]). Consider {pv, v ∈ {−1, 1}d} satisfying Assumption 2 and
the channel family W = Wpriv,ε. Let V be distributed uniformly over {−1, 1}d and Y T be
the output of channels selected by the optimization algorithm as above. Then, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ T · γ

2

2 · e
ε(eε − 1)2.

For the case of communication constraints, we have the analogous statement below:
Theorem 10 ([2, Corollary 6]). Consider {pv, v ∈ {−1, 1}d} satisfying Assumptions 2
and 3 and the channel family W = Wcom,r. Let V be distributed uniformly over {−1, 1}d
and Y T be the output of channels selected by the optimization algorithm as above. Then, we
have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 1

2κWcom,r · Tγ2(2r ∧ d).

7The bound in [2] allows even shared randomness U in its definition of interactive protocols. We
have omitted U in this paper for simplicity.

8Recall that a random variable Y is σ2-subgaussian if E [Y ] = 0 and E
[
eλY
]
≤ eσ

2λ2/2 for all
λ ∈ R; and that a vector-valued random variable Y is σ2-subgaussian if its projection 〈Y, u〉 is
σ2-subgaussian for every unit vector u.
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Moreover, if Assumption 4 holds as well, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ (ln 2)κWcom,r σ

2 · Tγ2r.

Finally, we derive a bound for the oblivious sampling channel family.
Theorem 11. Consider {pv, v ∈ {−1, 1}d} satisfying Assumption 2 and the channel family
W =Wobl. Let V be distributed uniformly over {−1, 1}d and Y T be the output of channels
selected by the optimization algorithm as above. Further, assume that |X | < ∞. Then, we
have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ C

2 · Tγ
2,

where the constant C depends only on {pv, v ∈ {−1,+1}d} and, denoting Xi := {x(i) : x ∈
X}, is given by

C = (max
i∈[d]
|Xi| − 1) ·max

x∈X
max

v∈{−1,+1}d
max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

Proof. We recall another result from [2, Theorem 5]: Under Assumptions 2 and 3, we have9

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 1

2κWobl · Tγ2 max
v∈{−1,1}d

max
W∈Wobl

∑
y∈Y

Varpv [W (y | X)]
Epv [W (y | X)] .

We now evaluate various parameters involved in this bound. Let W be a oblivious sampling
channel specified by the probability vector (pi)i∈[d]. Note that a channel W ∈ Wobl can be
equivalently viewed as having output alphabet Y = {(i, z) : z ∈ Xi, i ∈ [d]}. Recall that
for an input x, the channel output is x(i) with probability pi, i ∈ [d], i.e., for y = (i, z),
W (y | x) = pi1{x(i)=z}. Thus, we have

∑
y∈Y

Varpv [W (y | X)]
Epv [W (y | X)] =

d∑
i=1

∑
z∈Xi

p2
i Pr(X(i) = z)− p2

i Pr(X(i) = z)2

pi Pr(X(i) = z)

=
d∑
i=1

pi(|Xi| − 1)

≤ max
i∈[d]
|Xi| − 1.

Furthermore, proceeding similarly, we get that Assumption 3 holds as well with

κWobl = max
x∈X

max
v∈{−1,+1}d

max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

The proof is completed by combining the bounds above.

4.4 The difficult instances for our lower bounds

With our general tools ready, we now describe the precise constructions of function families
we use to get our lower bounds. We first provide the details of a family Gc(a, b) of convex
functions, before turning to Gsc(a, b, δ, θ), our family of hard instances for the strongly
convex setting. In both cases, our families of hard instances are parameterized (by a, b and
a, b, δ, θ, respectively), and setting those parameters carefully will enable us to prove our
various results.

9This is the general bound underlying Theorem 9.
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Difficult functions for the convex family. To prove lower bounds for the convex family,
we will use the class of functions Gc(a, b) below, parameterized by a, b > 0 and defined on
the domain X as follows:

X = {x ∈ Rd : ‖x‖∞ ≤ b},

gv(x) = a ·
d∑
i=1
|x(i)− v(i) · b|, ∀x ∈ X , v ∈ {−1, 1}d, and

Gc = {gv(x) : v ∈ {−1, 1}d}. (13)

Observe that the class Gc satisfies the conditions in Assumption 1 with gi,1(x) = a|x(i)− b|
and gi,−1(x) = a|x(i) + b| and Xi = [−b, b] for all i ∈ [d]. Further, we can bound the
discreprency metric for this class as follows.
Lemma 4. For the class of functions Gc defined in (13), we have ψ(Gc) ≥ 2ab.

Proof. Note that minx∈[−b,b] gi,1(x) = minx∈[−b,b] gi,−1(x) = 0. Therefore, for all i ∈ [d],
ψi(Gc) = min

x∈[−b,b]
(a|x(i)− b|+ a|x(i) + b|) ≥ 2ab,

where the inequality follows from the triangle inequality.

Difficult functions for the strongly convex family. To prove lower bounds for the
strongly convex family, we will use the class of functions Gsc(a, b, δ, θ), parameterized by
a, b > 0, δ > 0, and θ ∈ [0, 1], and defined on the domain X as follows:
X = {x ∈ Rd : ‖x‖∞ ≤ b},

gv(x) = a

d∑
i=1

(
1 + 2δv(i)

2 f+
i (x) + 1− 2δv(i)

2 f−i (x)
)
, ∀x ∈ X , v ∈ {−1, 1}d, and

Gsc = {gv(x) : v ∈ {−1, 1}d}, (14)
where f+

i and f−i , for i ∈ [d], are given by

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2, (15)

f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2, (16)

for all x ∈ X . We can check that, for every v ∈ {−1, 1}d, the function gv is then α-strongly
convex for α := a · 1−θ

4 . Moreover, we have the following bound for the discrepancy metric.

Lemma 5. For the class of functions Gsc defined in (14), if 1−θ
1+θ ≥ 2δ then ψ(Gsc) ≥ 2ab2δ2

1−θ .

Proof. This follows from similar calculations as in [5, Appendix A]; we provide the proof
here for completeness. Fixing any v ∈ {−1, 1}d, we first note that by definition of Gsc,
the function gv can be indeed be decomposed as gv(x) =

∑d
i=1 gi,v(i)(xi) for x ∈ X (i.e.,

‖x‖∞ ≤ b), where, for i ∈ [d], ν ∈ {−1, 1} and y ∈ Xi := [−b, b],

gi,ν(y) = a

(
1 + 2δν

2

(
θb|y + b|+ 1− θ

4 (y + b)2
)

+ 1− 2δν
2

(
θb|y − b|+ 1− θ

4 (y − b)2
))

= a

(
1− θ

4 y2 + 1 + 3θ
4 b2 + δν(1 + θ)by

)
where the second line relies on the fact that |y + b| = y + b and |y − b| = b− y for |y| ≤ b.
One can easily see, e.g., by differentiation, that gi,ν is minimized at y∗ := −2δν 1+θ

1−θ b which
does satisfy |y∗| ≤ b given our assumption 1−θ

1+θ ≥ 2δ. It follows that miny∈Xi gi,1(y) =
miny∈Xi gi,−1(y) = ab2

(
1+3θ

4 − δ2 (1+θ)2

1−θ

)
. Similarly, we have, for y ∈ Xi,

gi,1(y) + gi,−1(y) = a

(
1− θ

2 y2 + 1 + 3θ
2 b2

)
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which is minimized at y∗ = 0, where it takes value ab2 1+3θ
2 . Putting it together,

ψi(Gsc) = min
y∈Xi

(gi,1(y) + gi,−1(y))− (min
y∈Xi

gi,1(y) + min
y∈Xi

gi,−1(y)) = 2ab2δ2 (1 + θ)2

1− θ .

Finally, ψ(Gsc) = mini∈[d] ψi(Gsc) = 2ab2δ2 (1+θ)2

1−θ ≥
2ab2δ2

1−θ , as claimed.

4.5 Convex Lipschitz functions for p ∈ [1, 2): Proof of Theorems 1, 4, and 7

We first prove Theorems 1 and 4, our lower bounds on optimization of convex functions for
p ∈ [1, 2) under privacy and communication constraints, respectively. We consider the class
of functions Gc defined in (13) with parameters a := 2Bδ/d1/q and b := D/(2d1/p). That is,
X = {x ∈ Rd : ‖x‖∞ ≤ D/(2d1/p)} and

gv(x) := 2Bδ
d1/q

d∑
i=1

∣∣∣∣x(i)− v(i)D
2d1/p

∣∣∣∣ x ∈ X , v ∈ {−1, 1}d. (17)

Note that the gradient of gv is equal to −2Bδv/d1/q at every x ∈ X .
For each gv, consider the corresponding gradient oracle Ov which outputs independent
values for each coordinate, with the ith coordinate taking values −B/d1/q and B/d1/q with
probabilities (1 + 2δv(i))/2 and (1− 2δv(i))/2, respectively, for some parameter δ > 0 to be
suitably chosen later.
Clearly, X ∈ Xp(D) and all the functions gv and the corresponding oracles Ov belong to
the convex function family Oc,p. We begin by noting that for V distributed uniformly over
{−1, 1}d, we have

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥ E [gV (xT )− gV (x∗V )] ,

where the expectation is over v as well as the randomness in xT .
From Lemma 3 and 4, we have

E [gV (xT )− gV (x∗V )] ≥ d · ab
3 ·

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 , (18)

where Y T = (Y1, ..., YT ) are the channel outputs for the gradient estimates supplied by the
oracle for the T queries.
Next, we apply the average information bound from Section 4.3. To do so, observe that by
the definition of our oracle, the oracle output at each time step is an independent draw from
the product distribution pv on Ω :=

{
− B
d1/q ,

B
d1/q

}d (in particular, pv is the same at each
time step, as it does not depend on the query xt at time step t to the oracle). We treat the
output of the independent outputs of the oracle as i.i.d. samples X1, ..., XT in Section 4.3
and the corresponding channel outputs as Y T . We can check that, for every i ∈ [d], we have

pv⊕i(x)
pv(x) = 1 + 2δv(i) sign(x(i))

1− 2δv(i) sign(x(i)) (19)

for all x ∈ Ω, and that Assumption 2 is satisfied with

γ := 4δ√
1− 4δ2

, φi,v(x) := v(i) sign(x(i)) + 2δ√
1− 4δ2

. (20)

Furthermore, noting that Assumption 3 always holds with

κW = max
v∈{−1,1}d

max
x∈Ω

max
i∈[d]

pv⊕i(x)
pv(x) ,

it is satisfied with κW = 2 (regardless of W), as long as δ ≤ 1/6, since the right-side above
is bounded by 2 for such a δ. Finally, Assumption 4, is also satisfied as (φi,v(X))i∈[d] for
X ∼ pv is σ2-subgaussian for σ2 := 1

1−4δ2 .
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Completing the proof of Theorem 1 (LDP constraints). From Theorem 9 and the
bounds derived above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ T · 8δ2

1− 4δ2 · e
ε(eε − 1)2,

and therefore,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ c · Tδ2ε2,

where c := 9e(e− 1)2 (recalling that ε ∈ (0, 1] and δ ≤ 1/6). Substituting this bound on the
average mutual information in (18) along with the values of a and b, we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·

[
1−

√
2cTδ2ε2

d

]
.

Upon setting δ :=
√

d
8cTε2 , we get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

2c
· DB√

T
·
√

d

ε2 ,

where we require T ≥ 9
2c ·

d
ε2 in order to enforce δ ≤ 1/6.

Completing the proof of Theorem 4 (Communication constraints). From Theo-
rem 10 and γ, σ, and κW set as discussed above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 32(ln 2)

(1− 4δ2)2 · Tδ
2r,

whereby, using δ ≤ 1/6,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 29Tδ2r.

Substituting this bound on mutual information in (18) along with the values of a and b, we
have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·
[
1− 1√

d
·
√

58Tδ2r

]
.

Setting δ :=
√

d
232rT , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

58
· DB√

T
·
√
d

r
,

where we require T ≥ 9
58 ·

d
r in order to enforce δ ≤ 1/6.

Completing the proof of Theorem 7 (Computational constraints). Note that the
sets Xis in Theorem 11 have |Xi| = 2 for our oracle. Further,

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) = pv⊕i(x)

pv(x) = 1 + 2δv(i) sign(x(i))
1− 2δv(i) sign(x(i)) ≤ 2,

when δ ≤ 1/6. Thus, the constant C in Theorem 11 is less than 2, whereby
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 16δ2

1− 4δ2 · T,

whereby, using δ ≤ 1/6,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 18Tδ2.
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Substituting this bound on mutual information in (18) along with the values of a and b, we
have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·
[
1− 1√

d
·
√

36Tδ2
]
.

Setting δ :=
√

d
144T , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
72 ·

DB
√
d√

T
,

where we require T ≥ d
4 in order to enforce δ ≤ 1/6.

4.6 Convex Lipschitz functions for p ∈ [2,∞]: Proof of Theorems 2 and 5

Next, we establish Theorems 2 and 5, the analogous lower bounds on optimization of convex
functions when p ∈ [2,∞). We again consider the class of functions Gc defined in (13), this
time with parameters a := 2Bδ/d and b := D/(2d1/p) That is, here X = {x : ‖x‖∞ ≤
D/(2d1/p)} and

gv(x) := 2Bδ
d

d∑
i=1

∣∣∣∣x(i)− v(i)D
2d1/p

∣∣∣∣ . ∀x ∈ X , v ∈ {−1, 1}d.

It follows that the gradient of gv is equal to −2Bδv/d at every x ∈ X .
For each gv, consider then the gradient oracle Ov which outputs 0 in all but a randomly
chosen coordinate; if that coordinate is i, it takes values −B and B with probabilities
1+2δv(i))

2d and 1−2δv(i)
2d , respectively, for some parameter δ ∈ (0, 1/6] to be suitably chosen

later. Thus, the oracle is no longer a product distribution.
Clearly, X ∈ Xp(D) and all the functions gv and the corresponding oracles Ov belong to the
convex function family Oc,p. Proceeding as in Section 4.5, we get for a uniformly distributed
V that

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p ·

1−

√√√√1
d

d∑
i=1

2I(V (i) ∧ Y T )

 . (21)

Further, proceeding as in the previous section to bound the average information, we note
that the oracle outputs independent samples from the distribution pv on Ω := {−B, 0, B}d
at each time. It can be checked easily that, for every i ∈ [d], the expression of the ratio pv⊕i

pv

given in (19) still holds (as only the denominators of the Bernoulli parameters have changed,
and they cancel out in the ratio), and that Assumption 2 is satisfied with the following γ,
φi,vs:

γ := 1√
d
· 4δ√

1− 4δ2
, φi,v(x) :=

√
d · v(i) sign(x(i)) + 2δ√

1− 4δ2
. (22)

Observe the difference with the expressions from the previous section (specifically, (20)), as
the orthonormality assumption now crucially introduces a factor 1/

√
d in the value of γ.

Finally, because we will enforce δ ≤ 1/6 we also can take κWcom,r = 2 for the communication
constraints, as before. We remark that φi,v(X) is no longer subgaussian.

Completing the proof of Theorem 2 (LDP constraints). From Theorem 9 and the
value of γ above, we get, analogously to the previous section,

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ c · Tδ

2ε2

d
,

where c := 9e(e − 1)2 (recalling that ε ∈ (0, 1] and δ ≤ 1/6). Substituting this bound on
mutual information in (21), we obtain

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p

[
1−

√
2cTδ2ε2

d2

]
.
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Optimizing over δ, we set δ :=
√

d2

8cTε2 and get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

2c
· DBd

1/2−1/p
√
T

·
√

d

ε2 ,

where we require T ≥ 9
2c ·

d2

ε2 in order to guarantee δ ≤ 1/6. This concludes the proof.

Completing the proof of Theorem 5 (Communication constraints). We prove the
two parts of the lower bounds separately, starting with the first. From Theorem 10 and the
setting of γ and κW as above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 16

1− 4δ2 · Tδ
2 2r ∧ d

d
,

whereby, using δ ≤ 1/6,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 18Tδ2 2r ∧ d

d
.

Substituting this bound on mutual information in (21), we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p ·

[
1− 1√

d
·
√

36Tδ2 2r ∧ d
d

]
.

Setting δ :=
√

d2

144(2r∧d)T , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
72 ·

DBd1/2−1/p
√
T

·
√

d

2r ∧ d ,

where we require T ≥ 1
4 ·

d2

2r∧d in order to guarantee δ ≤ 1/6.
The second bound follows by noting that the lower bound in Theorem 4 is still valid. Finally,
since d2

2r∧d ≥
d
r for all 1 ≤ r ≤ d, both bounds apply whenever T = Ω

(
d2

2r∧d

)
, as claimed.

4.7 Strongly convex functions: Proof of Theorem 3, 6, and 8

Next, we establish our lower bounds on strongly convex optimization. We consider the class
of functions Gsc defined in (14) with parameters a := B/(

√
db) and b := D/(2

√
d). That is,

X = {x : ‖x‖∞ ≤ D/(2
√
d)}, and, for every x ∈ X and v ∈ {−1, 1}d,

gv(x) := B

b ·
√
d

d∑
i=1

1 + 2δv(i)
2 f+

i (x) + 1− 2δv(i)
2 f−i (x),

and

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2 and f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2.

Moreover, in order to ensure that the every gv is α-strongly convex, we choose θ := 1− 4α
a

(so that a 1−θ
4 = α). It remains to specify δ, which we will choose such that 0 < δ ≤ 1

2 ·
1−θ
1+θ

in the course of the proof.
For each gv, consider the gradient oracle Ov which on query x outputs independent values
for each coordinate, with the ith coordinate taking values B

b
√
d
· ∂f

+
i

(x)
∂xi

and B
b
√
d
· ∂f

−
i

(x)
∂xi

with
probabilities 1+2δv(i))

2 and 1−2δv(i)
2 , respectively.

Note that we have
∣∣∣∂f+

i
(x)

∂xi

∣∣∣ , ∣∣∣∂f−i (x)
∂xi

∣∣∣ ≤ b for all x and i, and therefore the gradient esti-
mate ĝ(x) supplied by the oracle Ov at x satisfies ‖ĝ(x)‖22 ≤ B2 with probability one, for
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every query x ∈ X . Further, it is clear that X ∈ X2(D) and all the functions gv and the
corresponding oracles Ov belong to the strongly convex function family Osc.
Using our assumption that δ ≤ 1

2 ·
1−θ
1+θ , we obtain by Lemma 5

ψ(Gsc) ≥ 2ab2δ2

1− θ = 2a2b2δ2

4α = B2δ2

2dα , (23)

where we first plug in a(1− θ) = 4α and then substitute for a and b.

Completing the proof of Theorem 6 (Communication constraints). By proceeding
as in Section 4.5, from Lemma 3 and using the inequality (23) above, we have

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12α

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 . (24)

It remains to bound
∑d
i=1 I

(
V (i) ∧ Y T

)
to complete the proof. Note that unlike the proof

in Section 4.5, the gradient estimates have different distributions for different x. However,
for a point x we can still express the gradient estimate ẑ(x) of gv(x) given by Ov as follows:
abbreviating f ′+i (x) := ∂f+

i
(x)

∂xi
and f ′−i (x) := ∂f−

i
(x)

∂xi
, we have

ẑ(x)(i) = aZif
′+
i (x) + a(1− Zi)f ′−i (x), (25)

where Zi ∼ Ber(1/2+δv(i)) and the Zi’s are mutually independent. Thus, for a fixed x, ẑ(x)
can be viewed as a function of {Zi}i∈[d]. Furthermore, for a channelW ∈ Wcom,r consider the
channel W ′x which first passes the Bernoulli vector {Zi}i∈[d] through the function ẑ(x)(i)
and the resulting output is passed through the channel W . This composed channel Wx

belongs to Wcom,r, too.
Therefore, we can treat the independent copies of Z ∼ pv revealed by the oracle as i.i.d.
random variables X1, ..., Xn in Section 4.3. Further, note that at time t, the query is for
a point xt which is a random function of Y t−1, and so, Y T can be viewed as the channel
outputs with adaptively selected channels from Wcom,r. Thus, we can apply the bounds in
Theorem 10.
Doing so, analogously to the computations in Section 4.5,10 we get

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cδ2rT,

for an appropriate constant c, which in view of (24) leads to

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12α ·
[
1− 1√

d
·
√

2cTδ2r

]
= 1

192c ·
B2

αT
· d
r

the last equality by setting δ :=
√

d
8cTr . Finally, observe that this choice of δ indeed satisfies

δ < 1
2 ·

1−θ
1+θ , as long as T ≥ 2c · B

2

D2 · d
α2r . This completes the proof.

Completing the proof of Theorem 3 (Privacy constraints). Proceeding as in the
proof of Theorem 6 above, we have the analogue of (24),

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥
B2δ2

12α

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 .
As stated in the proof of Theorem 6, the privatization of the gradient ẑ(x) can be viewed
as first preprocessing {Zi}i∈[d] and the passing the preprocessed output through the LDP

10As we have, in both cases, unknown Bernoulli product distribution over {−1, 1}d with bias
vector 1

2 + δv.
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channel. Such a composed channel also belongs to Wpriv,p. Thus, we can apply the bound
in Theorem 9 and proceed as in the proof of Theorem 1 to obtain

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cTδ2ε2

where c > 0 is an absolute constant. Choosing δ :=
√

d
8cTε2 , which makes 2δ less than 1−θ

1+θ

for T ≥ 2c · B
2

D2 · d
α2ε2 , for some universal positive constant c, then yields

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥ c0 ·
B2

αT
· d
ε2

for some absolute constant c0 > 0, concluding the proof.

Completing the proof of Theorem 8 (Computational constraints). As before, we
can get

sup
X∈X2(D)

E∗(X ,Osc, T,Wobl) ≥ B2δ2

12α

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )

 .
Recall that we can express the subgradient estimate as in (25). Note that for an oblivious
sampling channel Wt used at time t, specified by a probability vector (pj)j∈[d], the output
is given by

Yi = (aZJtf ′+Jt (x) + a(1− ZJt)f ′−Jt (x))eJt ,

where Jt = j with probability pj . To proceed, we observe that the Markov relation
V—{ZJt , Jt}t∈[T ]—Y T holds. Indeed, we can confirm this by noting that {ZJt}t∈[T ] are
generated i.i.d. from pV and, for each t ∈ [T ], Yt is a function of (Y t−1, ZJt , Jt) and a local
randomness U available only to the optimization algorithm which is independent jointly of
V and {ZJt , Jt}t∈[T ]. It follows that Y T itself is a function of U and {ZJt , Jt}t∈[T ], which
gives

I
(
V ∧ Y T | {ZJt , Jt}t∈[T ]

)
≤ I
(
V ∧ U | {ZJt , Jt}t∈[T ]

)
= 0. (26)

From the previous observation, we also get that the Markov relation
V (i)—{ZJt , Jt}t∈[T ]—Y T holds for every i ∈ [d]. Thus, by the data processing in-
equality for mutual information, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤

d∑
i=1

I
(
V (i) ∧ {ZJt , Jt}t∈[T ]

)
.

Now since vector (Zj)j∈[d] is a Bernoulli vector, the mutual information on the right-side
can be bounded by the same computation as in the proof of Theorem 7 using Theorem 11.
This follows by observing that for all t ∈ [T ], (ZJt , Jt) is a function of ZJteJt , which in
turn can be seen as a output of the oblivious sampling channel for an input vector (Zj)j∈[d].
Therefore, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cTδ2

for an appropriate constant c and δ ≤ 1
6 , which in view of (24) leads to

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12α

[
1− 1√

d
·
√

2cTδ2
]

= 1
c0
· dB

2

αT
,

where the last identity is obtained by setting δ := c1

√
d
T , where c0 and c1 are universal

positive constants. Finally, observe that this choice of δ indeed satisfies δ < 1
2 ·

1−θ
1+θ , as long

as T ≥ c2 · B
2

D2 · d
2

α , for some universal positive constant c2. This completes the proof.
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5 Adaptivity helps

In the previous sections we showed for information-constrained first-order optimization over
the standard function and oracle classes, adaptive channel selection strategies offer no better
minmax convergence guarantees than nonadaptive channel selection strategies. In all the
cases, we made this claim in the minmax sense. Namely, we showed that for the worst-
case function-oracle pair, adaptive schemes need not help. However, it does not imply that
adaptivity does not help for any function-oracle pair. In fact, we now exhibit an interesting
convex function class and associated oracle for which adaptivity can help.
Our example considers the oblivious sampling family Wobl. Recall that in Randomized
Coordinate Descent (RCD), the oracle returns the gradient along a single, randomly chosen
coordinate [24, 28]. One can consider an adaptive version of this algorithm which allows
to choose which coordinate to query the gradient for: we refer to this variant as Adaptive
Coordinate Descent (ACD). We provide an example of a function class for which ACD has
a strictly better performance than RCD, thereby showing that adaptive channel selection
can help.

5.1 Mean estimation as an optimization problem.

The problem we consider entails a structured `2 minimization. We first define s-block
sparsity, which is needed to define our function class.
Definition 4. A vector v ∈ Rd is s-block sparse if (i) there exists an i such that vj = 0 for
all j /∈ {is+1, . . . ,min{i(s+1), d}} and (ii) the nonzero coordinates have the same absolute
value in [0, 1]. Let Bs be the set of all s-block sparse vectors in d dimensions.11

For v ∈ Bs and X = [−1, 1]d let fv : X → R be the function fv(x) = ‖x − v‖22, x ∈ X .
Further, we associate with each function fv an oracle Ov as follows. Let X be a random
variable over {−1, 1}d with E [X] = v (i.e., its mean is the s-block sparse vector v parame-
terizing fv). Moreover, we assume that each coordinate of X is independent. The gradient
estimate output of the oracle Ov at x and at time t is 2(x −Xt), where {Xt}∞t=1 are i.i.d.
random variables with the same distribution as X. Note that the expected value of this
gradient estimate is ∇f(x). Let Oblsp,s denote the collection of pairs of functions and oracles
described above.
As remarked earlier, we have fixed the class of oracles for our example. In our general
formulation in Section 2.1, we did not even require the oracle to return independent outputs
for different queries. The specific oracle above returns independent outputs for every query,
and identically distributed outputs for the same query. Furthermore, the outputs are inde-
pendent across the coordinates and each coordinate takes values −1 or +1. Interestingly,
similar oracles were used in our lower bounds earlier.
Observe that the first-order optimization described above is the standard `2 mean estimation
problem cast as an optimization problem, since the function fv is minimized at x∗ := E [X] =
v. Moreover, the essential information supplied by the oracle are the i.i.d. samples Xt (since
the algorithm already knows the queries x).
We will consider the block-sparse function and oracle class Oblsp,s using the oblivious sam-
pling channel family Wobl and show that adaptive channel selection strategies strictly out-
perform the nonadaptive ones. Towards that, we first derive a lower bound for nonadaptive
strategies, and then present an adaptive scheme which improves over this bound.
Recall that ENA∗(X ,Oblsp,s, T,Wobl) ≥ E∗(X ,Oblsp,s, T,Wobl). We will show a strict sep-
aration between the two quantities: for s :=

√
d, the error incurred by any nonadaptive

strategy is at least Ω(d3/2/T ), while there exists an adaptive strategy achieving error
O((d log d)/T ).

5.2 Lower bound for nonadaptive channel selection strategies

We show an Ω(ds/T ) lower bound on the error for nonadaptive strategies.
11For simplicity, we assume throughout that d/s is an integer.
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Theorem 12. Let X = [−1, 1]d. Then, there exists absolute constants c0, c1, c2 > 0, such
that for any s ≥ c0 and T ≥ c1d, we have

ENA∗(X ,Oblsp,s, T,Wobl) ≥ c2 ·
sd

T
.

Proof. Let δ ∈ (0, 1/2] be a parameter to be determined in the course of the proof. Let
Vs ⊂ {−1, 1}s be a maximal (s/4)-packing in Hamming distance, i.e., a collection of vectors
such that dH(v, v′) > s/4 for any two distinct v, v′ ∈ Z. By the Gilbert–Varshamov bound,
we have |Vs| ≥ 2cs for some constant c ∈ (0, 1). Now define the set V ⊂ {−1, 1}d of
d-dimensional s-block sparse vectors as follows:

V =
⋃

i∈{1,...d/s}

{vT = (vT1 , . . . , vTd/s) : vi ∈ Vs, vj = 0 ∈ Rs ∀j 6= i}.

That is, V is the set of all s-block sparse vectors such that the non-sparse block contains all
possible vectors from Vs. From the definition, we immediately have |V| ≥ d

s2cs.
We will restrict ourselves to the subclass of functions Gs,δ ⊆ Gblsp,s consisting of all the
functions of the form

f2δv(x) = ‖x− 2δv‖22, v ∈ V.
Fix v ∈ V. Clearly, the minimizer x∗ of f2δv is 2δv, for which f2δv(x∗) = 0, and therefore

f2δv(x)− f2δv(x∗) = ‖x− 2δv‖22 .
Also, recall from the previous section that the oracle O2δv associated with f2δv will, upon
query x ∈ Rd, output the gradient estimate 2(x − Xv), where Xv ∈ {−1, 1}d is a random
variable with mean 2δv, whose distribution we get to specify. We will choose it as a product
distribution over {−1, 1}d, such that, for every i ∈ [d],

Pr(Xv(i) = 1) = 1 + 2δv(i)
2 , Pr(Xv(i) = −1) = 1− 2δv(i)

2 . (27)

We can verify that that E [Xv] = 2δv.
We will use Fano’s method to prove the lower bound. Fix any optimization algorithm π,
and denote by Y T and x̂ ∈ Rd the corresponding transcript over the T time steps and its
eventual output, respectively. Let V be distributed uniformly over V. First, we relate the
optimization error to the mutual information between V and the messages Y T :
Claim 1. For V and Y T as above, we have

E [f2δV (x)− f2δV (x∗)] ≥ sδ2

4

(
1− I(V ∧ Y T ) + 1

cs+ log(d/s).

)
. (28)

Proof. By Markov’s inequality, we have

E [f2δV (x)− f2δV (x∗)] = E
[
‖x− 2δV ‖22

]
≥ sδ2

4 Pr
(
‖x− 2V δ‖22 ≥

√
sδ

2

)
,

where the expectation is over the uniform choice of V and the randomness in choosing x.
Consider the multiple hypothesis testing problem of determining V by observing Y T . For
this problem consider the estimator which, after running π to obtain an approximate mini-
mizer x̂ of f2δV , outputs the V which is closest to the estimated x̂, denoted by V (x̂):

V (x̂) := argmin
u∈V
‖x̂− 2δu‖2 .

We will prove the following bound for the probability of error for this algorithm:

Pr(V (x̂) 6= V ) ≤ Pr
(
‖x̂− 2V δ‖22 ≥

√
sδ/2

)
.

To see this, recall that every distinct u, u′ ∈ V satisfy dH(u, u′) > s/4, which implies
‖2δu − 2δu′‖2 >

√
sδ. Therefore, whenever ‖x̂ − 2V δ‖2 <

√
sδ/2, the triangle inequality

guarantees that, for every u ∈ V such that u 6= V ,
‖x̂− 2δu‖2 ≥ ‖2δu− 2δV ‖2 − ‖x̂− 2δV ‖2 >

√
sδ/2 > ‖x̂− 2δV ‖2.
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It follows that
Pr(V (x̂) 6= V ) ≤ Pr

(
‖x̂− 2V δ‖22 ≥

√
sδ/2

)
,

as claimed. By Fano’s inequality, we also have a lower bound on this error:

Pr(V (x̂) 6= V ) ≥ 1− I(V ∧ Y T ) + 1
log |V| .

Putting the two together yields (28).

It remains to bound I(V ∧ Y T ), which we do next.

Claim 2. For V and Y T as above, we have I(V ∧ Y T ) ≤ 4δ2sT
d .

Proof. Since π is a nonadaptive protocol, the random variables Y T are independent (albeit
not necessarily identically distributed). Therefore, by similar arguments as in proving (26)
and denoting as before by e1, . . . , ed the standard basis vectors, we have

I(V ∧ Y T ) ≤
T∑
t=1

I(V ∧XV (Jt)eJt),

where Jt = i with probability pi, for all i ∈ [d], and Jt1 is independent of Jt2 .
We will derive a uniform bound for I(V ∧ XV (Jt)eJt) for all t ∈ [T ]. To do so, fix any
t ∈ [T ], and denote by W ∈ Wobl the channel used as the tth time step and by (pi)i∈[d]
its corresponding distribution over coordinates. Denoting by PXv′ the product distribution
described in (27) (when the underlying vector is v′) and recalling the definition of a channel
in Wobl, we can rewrite PXv(Jt)eJt |v′ , the conditional pmf of Xv(Jt)eJt given V = v′, as
follows:

PXv(Jt)eJt |v′(ei)) = pi · PXv′ (i)(1) = pi ·
1 + 2δv′(i)

2 ,

PXV (Jt)eJt |v′(−ei) = pi · PXv′ (i)(−1) = pi ·
1− 2δv′(i)

2 ,

for all i ∈ [d]. (In particular, PXv(Jt)eJt is supported on 2d elements.)

Then, by joint-convexity of D(P‖Q), we have

I(V ∧Xv(Jt)eJt) =
∑
v′∈V

PV (v′)D(PXv(Jt)eJt |v′‖PXv(Jt)eJt )

≤
∑
v′∈V

PV (v′)
∑
i∈[d]

piD(PXv′ (i)‖
∑
v′∈V

PV (v′)PXv′ (i))

=
∑
i∈[d]

pi
∑
v′∈V

PV (v′)D(PXv′ (i)‖
∑
v′∈V

PV (v′)PXv′ (i)).

Fixing i ∈ [d], we now use the fact that∑
v′∈V

PV (v′)D(PXv′ (i)‖
∑
v′∈V

PV (v′)PXv′ (i)) ≤
∑
v′∈V

PV (v′)D(PXv′ (i)‖Q),

for every Q with support {−1, 1}. Choosing Q as the uniform distribution over {−1, 1}, it
then suffices to bound

∑
v′∈V PV (v′)D(PXv′ (i)‖Q).

Note that D(PXv′ (i)‖Q) = 0 unless i belongs to the block of s non-zero coordinates of
v′. When i belongs to that block, however, we get by upper bounding KL divergence by
chi-square divergence that

D(PXv′ (i)‖Q) ≤
∑

x∈{−1,1}

(
PXv′ (i)(x)−Q(x)

)2
Q(x) =

∑
x∈{−1,1}

(
1+2δv′(i)x

2 − 1
2

)2

1/2 = 4δ2.
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Since V is drawn uniformly at random, the probability (over V ) that the block to which i
belongs is the non-sparse one is s/d. Consequently,

∑
v′∈V PV (v′)D(PXv′ (i)‖Q) ≤ 4δ2s

d . As
this holds for every i ∈ [d], plugging this in our bound for I(V ∧ Yt) leads to

I(V ∧ Yt) ≤
∑
i∈[d]

pi
∑
v′∈V

PV (v′)D(PXv′ (i)‖Q) ≤
∑
i∈[d]

pi ·
4δ2s

d
= 4δ2s

d
.

Summing over all t ∈ [T ] then proves the claim.

In order to conclude the proof, we combine Claims 1 and 2, to obtain

E [fV (x)− fV (x∗)] ≥ sδ2
(

1− 4Tδ2s/d+ 1
cs+ log(d/s)

)
≥ sδ2

(
1− 4Tδ2s/d+ 1

cs

)
≥ sδ2

(
1− 8Tδ2

cd

)
where the final inequality holds for δ2 ≥ d

4Ts . We now choose δ2 = cd
16T , which is a valid

choice for s ≥ 4
c , to get

E [fV (x)− fV (x∗)] ≥ c

32 ·
sd

T
,

where we require T ≥ cd
4 to ensure δ2 ≤ 1

4 , which, in turn, is essential for (27) to define a
valid pmf.

5.3 Adaptivity helps

We now prove a O((d log(d/s) + s2)/T ) upper bound on the error for adaptive strategies,
by exhibiting a specific adaptive channel selection strategy and optimization procedure we
term Adaptive Coordinate Descent (ACD), denoted πACD.
First, note that the only new information that the oracles present at each iteration is about
the random variable X with E [X] = v underlying the oracle associated with some function
fv(x) = ‖x−v‖22 in our familyOblsp,s. Thus, the problem at hand becomes that of estimating
the mean v using independent copies of X. See Algorithm 1 for a detailed description.
Keeping this in mind, our adaptive channel selection strategy is divided in two phases, each
making T/2 queries to the oracle:12 the exploration phase and the exploitation phase. In
the exploration phase, we select each block’s first coordinate as a representative coordinate
for that block and query each representative coordinate Ts/(2d) times. At the end of this
phase, an estimate of the mean is formed for each representative coordinate. Next, we select
the block whose representative coordinate has the sample mean with the highest absolute
value. Then, in the exploitation phase each coordinate of the selected block is queried T/(2s)
times.
Our optimization algorithm estimates the means of coordinates in the selected block using
the sample mean of the values received in the exploitation phase. For the rest of the
coordinates, the mean estimate is zero. Finally, our algorithm returns the overall estimated
mean vector as the estimated minimizer of the function.
Recall that in RCD, the oracle returns the gradient along a randomly chosen coordinate. In
contrast, ACD gets gradient for a particular coordinate in each round, and the choice of the
coordinates used in the exploitation phase depends on the observations of the exploration
phase. Also, we note that it is possible to interpret our procedure as a coordinate descent
algorithm. However, for the ease of presentation, we simply retain the form above.
The performance of πACD is characterized by the result below.

12We assume for simplicity that T/2, Ts/(2d), and T/(2s) are integers.
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Algorithm 1: Adaptive Coordinate Descent πACD

/* Exploration phase: the first T/2 oracle queries */
for i = 1 to d/s do

T1 ← 1 + (i− 1) · Ts2d , T2 ← i · Ts2d
for t = T1 to T2 do

Sample Xt((i− 1) · s+ 1), the ((i− 1) · s+ 1)th coordinate of the gradient
estimate at time t
Query the oracle for arbitrary x ∈ [−1, 1]d
Sample the ((i− 1) · s+ 1)th coordinate of the gradient estimate at time t
Recover Xt((i− 1) · s+ 1) from the ((i− 1) · s+ 1)th coordinate of the gradient
estimate

end
Compute

X̂(i)←
T2∑
t=T1

Xt((i− 1) · s+ 1)

;
end
Set

i∗ ← arg max
i∈[d/s]

|X̂(i)|

and I ← {i∗, . . . , i∗ + (s− 1)}.
/* Exploitation phase: the last T/2 oracle queries */
for i ∈ I do

Set T1 ← T/2 + 1 + (i− 1) · T2s and T2 ← T/2 + i · T2s
for t = T1 to T2 do

Query the oracle for arbitrary x ∈ [−1, 1]d
Sample the ith coordinate of the gradient estimate at time t
Recover Xt(i) from the ith coordinate of the gradient estimate

end
Compute

Ŷ (i)← 2s
T

T2∑
t=T1

Xt(i)

end
for i ∈ [d] \ I do

Ŷ (i)← 0
end
Result: Ŷ = [Ŷ (1), . . . , Ŷ (d)]T

Theorem 13. Fix any 1 ≤ s ≤ d, and (f,O) ∈ Oblsp,s.13 Let Ŷ ∈ Rd be the point returned
by Algorithm 1 after T oracle queries to O. Then,

E
[
f(Ŷ )

]
≤

36d ln d
s + 2s2

T
,

Proof. Fix (f,O) as in the statement, so that f is parameterized by some s-block sparse
vector v ∈ [−1, 1]d, with f(x) = ‖x − v‖22; and O corresponds to the distribution of some
random variable X over {−1, 1}d with mean E [X] = v. For simplicity, and without loss
of generality, we assume that the block of non-sparse coordinates for the mean vector is
{1, . . . , s}. Further, let14 δ : = E [X(1)]. Using the same notation as in the description of

13 That is, f(x) = fv(x) = ‖x − v‖2 for some v with block sparsity structure and O gives
independent copies of random variable X with E [X] = v.

14Recall from Definition 4 that all the non-zero mean coordinates have the same mean value in
absolute value. Therefore, |E [X(i)] | = |δ| for all i ∈ {1, . . . , s}.
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Algorithm 1, denote by I the index of the coordinates in the block selected by the algorithm.
Moreover, let J := [d] \ I be the set of remaining coordinates. We can rewrite the error as

E
[
f(Ŷ )

]
= E

[
‖Ŷ − v‖22

]
= E

[∑
i∈I

(Ŷ (i)− v(i))2

]
+ E

[∑
i∈J

(Ŷ (i)− v(i))2

]
. (29)

We will bound both terms separately. To handle the first, recall that, for all i ∈ I, we have
Ŷ (i) = 2s

T

∑T2
t=T1

Xt(i), where T1 = T
2 + 1 + (i− 1) · T2s and T2 = T

2 + i · T2s . Therefore, for
all i ∈ [d],

E
[
(Ŷ (i)− v(i))21I(i) | I

]
= 2s
T
E
[
(XT1(i)− v(i))2]1I(i) ≤ 2s

T
E
[
XT1(i)2]1I(i) ≤ 2s

T
1I(i),

where the first equality follows from the fact that the sequence of random vectors
{Xt}Tt=T/2+1 is i.i.d. and independent of the random set I, along with the fact that
E [XT1(i)] = v(i); and the second inequality is because XT1(i) ∈ [−1, 1]. Since |I| = s,
by the law of total expectation we get

E

[∑
i∈I

(Ŷ (i)− v(i))2

]
=

d∑
i=1

E
[
(Ŷ (i)− v(i))21I(i)

]
≤ 2s2

T
. (30)

We claim that the second term of the RHS can be bounded as follows:

E

[∑
i∈J

(Ŷ (i)− v(i))2

]
≤ 36d

T
ln d
s

(31)

To see why, set R := 36d
s ln d

s , so that our goal is to show that E
[∑

i∈J (Ŷ (i)− v(i))2
]
≤

sR/T . First, for all i ∈ J , Ŷ (i) = 0, and so we have

E

[∑
i∈J

(Ŷ (i)− v(i))2

]
= E

[∑
i∈J

v(i)2

]
= sδ2 Pr(I 6= {1, . . . , s}).

The last equality follows from the fact that if I is the correct block (which we assumed was
{1, . . . , s}), then J only contains coordinates i for which the mean v(i) = vi = 0; while if I
is not the correct block, then all s coordinates of that block are in J , and each of them has
|v(i)| = |δ|.

If |δ| ≤
√
R/T , we are done, as then sδ2 Pr(I 6= {1, . . . , s}) ≤ sR/T , which is what we

wanted. Thus, we hereafter assume |δ| >
√
R/T and want to bound Pr(I 6= {1, . . . , s}),

which by the description of our algorithm is exactly the probability that i∗ 6= 1. That is,

Pr
(
|X̂(1)| ≤ max

2≤i≤d/s
|X̂(i)|

)
,

where X̂(1), X̂(2), . . . , X̂(d/s) are independent random variables, with X̂(2), . . . , X̂(d/s)
being identically distributed as the sum of N := Ts

2d independent 1-subgaussian r.v.’s and
X̂(1) being the sum of N i.i.d. random variables in [−1, 1] with mean δ. On the one hand,
by a standard argument (see for instance [8]), one can check that

E
[

max
2≤i≤d/s

|X̂(i)|
]
≤
√

2N ln d
s
<

1
3N
√
R

T

where the last inequality used our setting of R ≥ 36d
s ln d

s . On the other hand,∣∣∣E [X̂(1)
]∣∣∣ = N |δ| > N

√
R

T
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and therefore we have

Pr
(
|X̂(1)| ≤ max

2≤i≤d/s
|X̂(i)|

)
≤ Pr

({
|X̂(1)| ≤ 2

3N |δ|
}
∪
{

max
2≤i≤d/s

|X̂(i)| ≥ 2
3N |δ|

})
≤ Pr

(
|X̂(1)| ≤ 2

3N |δ|
)

+ Pr
(

max
2≤i≤d/s

|X̂(i)| ≥ 2
3N |δ|

)
≤ Pr

(
|X̂(1)| ≤ 2

3

∣∣∣E [X̂(1)
]∣∣∣)+ Pr

(
max

2≤i≤d/s
|X̂(i)| >

√
2N ln(d/s) + 1

3N |δ|
)

We handle both terms separately. By symmetry, we can assume without loss of generality
that E

[
X̂(1)

]
≥ 0, and so

Pr
(
|X̂(1)| ≤ 2

3

∣∣∣E [X̂(1)
]∣∣∣) ≤ Pr

(
X̂(1) ≤ 2

3E
[
X̂(1)

])
≤ e−

E[X̂(1)]2
18N = e−δ

2N/18

by a Hoeffding bound. Note that we then have

sδ2 Pr
(
|X̂(1)| ≤ 2

3

∣∣∣E [X̂(1)
]∣∣∣) ≤ sδ2e−δ

2N/18 = sR

T
· 36d
sR
· δ

2N

18 e−δ
2N/18

≤ sR

T
· e−1

since N = Ts/2d, R ≥ 36d/s.
Turning to the second term, by a standard concentration bound for the maximum of sub-
gaussian r.v.’s and using the fact that each X̂(i), for i ≥ 2, is N -subgaussian, we get

Pr
(

max
2≤i≤d/s

|X̂(i)| >
√

2N ln(d/s) + 1
3N |δ|

)
≤ e−

(δN/3)2
2N = e−δ

2N/18

and we conclude as before that

sδ2 Pr
(

max
2≤i≤d/s

|X̂(i)| >
√

2N ln(d/s) + 1
3N |δ|

)
≤ sR

eT
.

This shows that, in this case,
sδ2 Pr(I 6= {1, . . . , s}) ≤ 2e−1 · sR/T ≤ sR/T (32)

as well. Plugging (30) and (32) in (29), we get E
[
‖Ŷ − µ‖22

]
≤ 36d ln(d/s)+2s2

T , proving the
theorem.

Combining Theorems 12 and 13, for X = [−1, 1]d and s =
√
d we obtain a strict separation

between nonadaptive and adaptive strategies:

ENA∗(X ,Oblsp,s, T,Wobl) & d3/2

T
, but E∗(X ,Oblsp,s, T,Wobl) ≤ 20d ln d

T

for T = Ω(d). Note that the separation between adaptive and nonadaptive schemes hold for
all log d� s� d, but the multiplicative gain in convergence rate is maximized for s ≈

√
d.
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A Proof of Lemma 1

From the strong convexity of f , we have

f

(
x+ y

2

)
− α

2

∥∥∥∥x+ y

2

∥∥∥∥2

2
≤ 1

2f(x)− α

4 ‖x‖
2
2 + 1

2f(y)− α

4 ‖y‖
2
2, ∀x, y ∈ X ,

which upon reorganizing and using the fact that 2‖x‖22 + 2‖x‖22 − ‖x+ y‖22 = ‖x− y‖22 can
be seen to be equivalent to

α

4 ‖x− y‖
2
2 ≤ f(x) + f(y)− 2f

(
x+ y

2

)
.
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Further, by Lipschitz continuity of f in the `2 norm, we have

f(x) + f(y)− 2f
(
x+ y

2

)
≤ B‖x− y‖2.

Upon combining the previous two bounds, we obtain

α

4 ≤
f(x) + f(y)− 2f

(
x+y

2
)

‖x− y‖22
≤ B

‖x− y‖2
,

which completes the proof upon substituting y = 0 and x such that |x(i)| = D for all i ∈ [d]
giving ‖x− y‖2 = d1/2D.

B Upper Bounds for p = 1 under communication constraints.

We now provide a scheme which matches the lower bound of Theorem 4 for `1 norm and
r-bits communication constraints, for optimization for the family of convex functions. Our
scheme divides the entire horizon of T iterations into Tr/d different phases. For any phase
t ∈ [Tr/d], the same point xt in the domain is queried d/r times. For each of the d/r
queries in a phase, we use r-bit quantizers to quantize different coordinates of the sub-
gradient output. At a high level, we want to use these r bits to send 1 bit each for r
different coordinates, sending 1 bit for each coordinate across the phases. However, there
is one technical difficulty. We have not assumed that making queries for the same point
gives identically distributed random variables. We circumvent this difficulty using random
permutations to create unbiased estimates for the subgradients.
Specifically, for a permutation σ : [d] → [d] chosen uniformly at random using public ran-
domness, we select the coordinates σ(1 + (i− 1) · r) to σ(i · r) of the subgradient estimate ĝi
supplied by the oracle for the ith query in the tth phase (i.e., ith time we query the point
xt) and quantize all of these coordinates using an 1-bit unbiased quantizer for the interval
[−B,B]. Note that such a quantizer can be formed since ‖ĝi‖∞ ≤ B.
Using this procedure, the quantized gradient for every query in each phase can be stored
in r bits. Furthermore, using all the d/r quantized estimates received in a phase, we can
create an estimate of the subgradient by simply adding all the estimates. Denote by Q̄t our
subgradient estimate in the tth phase. Then,

Q̄t =
d∑
i=1

Qπ(i)(ĝi)eπ(i),

where ĝi is the subgradient estimate returned by the oracle when we query xt for the ith
time and Qi is a 1-bit unbiased estimator of the ith coordinate of gradient estimate given
below: For all vectors g, such that ‖g‖∞ ≤ B, we have

Qi(g) =
{
B w.p. g(i)+B

2B
−B w.p. B−g(i)

2B
.

Then, we use Q̄t to update xt to xt+1 using stochastic mirror descent with mirror map

φa(x) : = ‖x‖
2
a

a− 1 ,

where a = 2 log d
2 log d−1 . Recall that for a mirror map Φ, the Bregman divergence associated

with Φ is defined as

DΦ(x, y) : = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.
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Algorithm 2: π∗ Optimal Scheme for Communication constrained optimization for `1
convex family
for t = 1 to Tr/d do

for i = 1 to d/r do
At Center:
Query the oracle for xt
At Oracle:
Output the r-bit vector of 1-bit unbiased estimates of the r coordinates
{1 + (i− 1) · r, . . . , i · r} of ĝi(xt) given by

Q̄t ←
i·r∑

j=1+(i−1)·r

Qπ(j)(ĝi(xt))eπ(j)

At Center:
xt+1 ← arg minx∈X (ηt〈x, Q̄t〉) +DΦa(x, xt))

end

Result:
∑T

i=1
xt

T
end

Theorem 14. For r ∈ N, we have

sup
X∈X1(D)

E∗(X ,Oc,1, T,Wcom,r) ≤
c0DB

√
log d√
T

·
√

d

d ∧ r

for every D > 0.

Proof. Note that our first order optimization algorithm π∗ uses Tr/d iterations. Moreover,
the subgradient estimates Q̄t are unbiased and have their infinity norm bounded by B.
Namely, we have obtained an unbiased subgradient oracle which produces estimates with
infinity norm bounded by B. Thus, using the standard analysis of mirror descent using
noisy subgradient oracle for optimization over an `1 ball with mirror map φa(x) : = ‖x‖2

a

a−1
(see Remark 1), the proof is complete.
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