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Abstract

We study the approximation power of Graph Neural Networks (GNNs) on latent
position random graphs. In the large graph limit, GNNs are known to converge to
certain “continuous” models known as c-GNNs, which directly enables a study of
their approximation power on random graph models. In the absence of input node
features however, just as GNNs are limited by the Weisfeiler-Lehman isomorphism
test, c-GNNs will be severely limited on simple random graph models. For instance,
they will fail to distinguish the communities of a well-separated Stochastic Block
Model (SBM) with constant degree function. Thus, we consider recently proposed
architectures that augment GNNs with unique node identifiers, referred to as
Structural GNNs here (SGNNs). We study the convergence of SGNNs to their
continuous counterpart (c-SGNNs) in the large random graph limit, under new
conditions on the node identifiers. We then show that c-SGNNs are strictly more
powerful than c-GNNs in the continuous limit, and prove their universality on
several random graph models of interest, including most SBMs and a large class
of random geometric graphs. Our results cover both permutation-invariant and
permutation-equivariant architectures.

1 Introduction

Graph Neural Networks (GNNs) are deep architectures defined over graph data that have garnered a
lot of attention in recent years. They represent the state-of-the-art in many graph Machine Learning
(graph ML) problems, and have been successfully applied to e.g. node clustering [7], semi-supervised
learning [24], quantum chemistry [17], and so on. See [5, 44, 18, 21] for reviews.

As the universality of Multi-Layers Perceptrons (MLP) is one of the foundational theorems in deep
learning – that is, any continuous function can be approximated arbitrarily well by an MLP – in
the last few years the approximation power of GNNs has been a topic of great interest. In the
absence of special node features, i.e. when one has only access to the graph structure, the crux of the
problem has been proven to be the capacity of GNNs to solve the graph isomorphism problem, that
is, deciding when two graphs are permutations of each other or not (a difficult problem for which no
polynomial algorithm is known [4]). Indeed, this property is directly linked to the approximation
power of GNNs [8, 3]. In this light, the landmark paper [45] proves that classical GNNs are at best as
powerful as the famous Weisfeiler-Lehman (WL) test [43] for graph isomorphism. Since then, several
works [45, 31, 8] have derived new architectures, for instance involving high-order tensors [31],
with improved discriminative power equivalent to “higher-order” variants of the WL test. In another
line of works, several recent papers have advocated the use of unique node identifiers [28, 27], with
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strategies to preserve the permutation-equivariance/invariance of GNNs coined Structural Message
Passing (SMP) in [41] (see Sec. 2.3). We call these models Structural GNN (SGNN) here. SGNNs
have been proved to be strictly more powerful than the WL test in [41], and even universal on graphs
with bounded degrees, however for powerful layers that cannot be implemented in practice.

When the size of the graphs grows, the notion of graph isomorphism becomes somewhat moot: large
graphs might share properties (number of well-connected communities, and so on) but are never
isomorphic to each other. GNNs have nevertheless proven successful in identifying their large-scale
structures, e.g. for node clustering [7]. Several papers have therefore used tools from random graph
theory and graphons to study the behavior of GNNs in the large-graph limit. In [22, 38], GNNs are
shown to converge to limiting “continuous” architectures (coined c-GNNs in [22]). A few works have
studied the discriminative power of c-GNNs on graphons [30], however, analogously to how the WL
test will fail on regular graphs, c-GNNs are severely limited on graph models with almost-constant
degree function (Fig. 1), and the question is still largely open.

Figure 1: Illustration of Prop. 7 (Sec. 5.3). On an
SBM with constant degree function, a GNN (top) might
overfit the training set, but converges to a constant c-
GNN. On the contrary, there exists a c-SGNN (bottom)
that perfectly separates the communities. Details can be
found in App. E.

Contribution and outline. In this paper, we
study the convergence of SGNNs on large ran-
dom graphs towards “c-SGNNs”, and analyze
the approximation power of c-GNNs and c-
SGNNs. After some preliminary results in
Sec. 2, we study the convergence of SGNNs
in Sec 3. In Sec. 4 and 5, we show that
c-SGNNs are strictly more powerful than c-
GNNs in both permutation-invariant and equiv-
ariant case. We then prove the universality of
c-SGNNs on several popular models of ran-
dom graphs, including Stochastic Block Models
(SBMs) and radial kernels. For instance, we
show in Sec. 5.3 that c-SGNNs can perfectly
identify the communities of most SBMs, in-
cluding some for which any c-GNN provably
fails (Fig. 1). The code for the numerical illus-
trations is available at https://github.com/
nkeriven/random-graph-gnn.

Related work. The approximation power of
GNNs (on finite graphs) has been a topic of great interest in recent years, and we do not attempt to
make an exhaustive list of all results here. The landmark paper [45] showed that permutation-invariant
GNNs were at best as powerful as the WL test, and later models [31, 8, 16] were constructed to be as
powerful as higher-order WL tests, using for instance higher-order tensors [31]. The link between
the graph isomorphism problem and function approximation was made in [8, 23] and extended in
[3]. Some architectures were proven to be universal [32, 23] but involve tensors of unbounded order.
When graphs are equipped with unique node identifiers, the approximation power of GNNs can be
significantly improved if relaxing permutation-invariance/equivariance [28, 27, 10], or assuming that
it holds only in expectation with respect to additional sources of randomness [39, 1]. On the contrary,
as we will see in Sec. 2.3, the SGNN architecture proposed in [41] is inspired by the same ideas
but still satisfies exact permutation-invariance/equivariance. As mentioned above, SGNNs are more
powerful than the WL test [41], and even universal on graphs with bounded degrees when allowing
powerful layers. To our knowledge, the approximation power of SGNNs as they are implemented in
practice is still open. We treat of their continuous limit in this paper.

Fewer results can be found in the large-graph limit. Beyond the graph-isomorphism paradigm, authors
have studied the capacity of GNNs to count graph substructures [6, 13] or identify various graph
properties [15, 46]. Several works have studied the large-graphs limit of GNNs [38, 30, 26, 22],
assuming random graph or graphon models. The degree function has been proven to be a crucial
element for the discriminative power of c-GNNs, and they will not be able to distinguish graphons
with close degree functions [30]. Here we show how c-SGNNs allow to overcome these limitations,
and provide the first universality theorems for (S)GNNs in the continuous limit. Finally, we note that
universal architectures exist on measures [11, 49], which can be seen as limits of point clouds, but,
similar to the discrete case [48, 32, 23], the graph case may be significantly harder to study.
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2 Preliminaries

In this section, we group notations on random graphs and GNNs, present the convergence result of
[22] slightly adapted to our context, and introduce the SGNNs of [41]. An undirected graph G with n
nodes is represented by a symmetric adjacency matrix A ∈ Rn×n. It is isomorphic to all graphs with
adjacency matrices σAσ>, for any permutation matrix σ ∈ {0, 1}n×n. Matrix rows (resp. columns)
are denoted by Ai,: (resp. A:,i). The norm ‖·‖ is the operator norm for matrices and Euclidean norm
for vectors. For a compact metric space X , we denote by C(X ,R) the space of bounded continuous
functions X → R, equipped with ‖f‖∞ = supx |f(x)|. For a multivariate function f ∈ C(X ,Rd),
fi denotes its ith coordinate, and ‖f‖∞ = (

∑
i ‖fi‖

2
∞)1/2.

2.1 Random graph model

We consider “latent position” random graphs, which include several popular models such as SBMs or
graphons [29]. The nodes are associated with unobserved latent random variables xi drawn i.i.d. For
the edges, we will examine two cases: an “ideal” one with deterministic weighted edges, and a more
“realistic” one where the edges are randomly drawn independently. In the literature, the latter is often
considered as an idealized framework to study the behavior of various algorithms [42, 37].

Let (X ,mX ) be a compact metric space that is not a singleton, and assume that the ε-covering
numbers1 of X scale as O

(
ε−dX

)
for some dimension dX . We denote byW the set of symmetric

bivariate functions in C(X × X , [0, 1]) that are LW -Lipschitz in each variable, and by P the set of
probability distributions over X equipped with the total variation norm ‖·‖TV. A graph with n nodes
is generated according to a random graph model (W,P ) ∈ W ×P as follows:

x1, . . . , xn
i.i.d∼ P, aij =

{
W (xi, xj) deterministic edges case
α−1
n Bernoulli(αnW (xi, xj)) random edges case

where αn is the sparsity level of the graph in the random edges case, which we assume to be known
for simplicity. When αn ∼ 1, the graph is said to be dense, when αn ∼ 1

n the graph is sparse, and
when α ∼ logn

n the graph is relatively sparse. Note that we have normalized the Bernoulli edges by
1/αn such that Eaij = W (xi, xj) conditionally on xi, xj . When X is finite, the model is called an
SBM (see Sec. 4.3).

Like finite graphs, random graph models can be isomorphic to one another [22, 29]. In this paper,
similar to [22] we consider that, for any bijection ϕ : X → X , the model (W,P ) is isomorphic to
(Wϕ, ϕ

−1
] P ), where Wϕ(x, y) = W (ϕ(x), ϕ(y)) and f]P is the pushforward of P (the distribution

of f(X)). Indeed, it is easy to see that both produce exactly the same distribution over graphs.

2.2 Graph Neural Networks

Following [22, 12], in this paper we consider the so-called “spectral” version of GNNs, which include
several message-passing models for certain aggregation functions. We consider polynomial filters h
defined as h(A) =

∑
k βkA

k for a matrix or operator A. In practice, the order of the filters is always
finite, but our results are valid for infinite-order filters (assuming that the sum always converges
for simplicity). We consider any activation function ρ : R → R which satisfies ρ(0) = 0 and
|ρ(x)− ρ(y)| 6 |x− y| for which the universality theorem of MLPs applies [35], e.g. ReLU.

Spectral GNNs are defined by successive filtering of a graph signal. Given an input signal Z(0) ∈
Rn×d0 , at each layer ` = 0, . . . ,M − 1:

Z
(`+1)
:,j = ρ

(∑d`
i=1 h

(`)
ij

(
1
nA
)
Z

(`)
:,i + b

(`)
j 1n

)
∈ Rn j = 1, . . . , d`+1 , (1)

where h(`)
ij (A) =

∑
k β

(`)
ijkA

k are trainable graph filters, b(`)j ∈ R are trainable additive biases and ρ
is applied pointwise. We note the normalization A/n that will be necessary for convergence. GNNs
exist in two main versions: so-called “permutation-invariant” GNNs Φ̄ output a single vector for the
entire graph, while “permutation-equivariant” GNNs Φ output a graph signal:

ΦA(Z(0)) = g
(
Z(M)

)
∈ Rn×dout Φ̄A(Z(0)) = g

(
1
n

∑n
i=1 Z

(M)
i,:

)
∈ Rdout , (2)

1the number of balls of radius ε required to cover X
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where g : RdM → Rdout is an MLP applied row-wise in the equivariant case. By construction, such
GNNs are indeed equivariant or invariant to node permutation: for all permutation matrices σ, we
have ΦσAσ>(σZ(0)) = σΦA(Z(0)) and Φ̄σAσ>(σZ(0)) = Φ̄A(Z(0)).

Continuous GNNs. In [22], the authors show that, in the large random graphs limit, GNNs converge
to the following “continuous” models (coined c-GNNs), which propagate functions over the latent
space f (`) ∈ C(X ,Rd`) instead of graph signals. Given an input function f (0) ∈ C(X ,Rd0):

f
(`+1)
j = ρ

(∑d`
i=1 h

(`)
ij (TW,P )f

(`)
i + b

(`)
j

)
,

where TW,P is the operator TW,P f =
∫
W (·, x)f(x)dP (x). Then similar to (2) the permutation-

equivariant/invariant versions of c-GNNs are defined as:

ΦW,P (f (0)) = g ◦ f (M), Φ̄W,P (f (0)) = g
(∫
f (M)(x)dP (x)

)
.

Remark that ΦW,P (f (0)) is itself a function in C(X ,Rdout) while Φ̄W,P (f (0)) ∈ Rdout is a vector.
Moreover, by virtue of the polynomial filters, the four architectures ΦA, Φ̄A,ΦW,P , Φ̄W,P have the
exact same set of parameters. Like in the discrete case, one can prove that c-GNN are equivariant
or invariant to isomorphisms of random graph models [22]: for all bijection ϕ : X → X , we have
ΦWϕ,ϕ

−1
] P (f ◦ ϕ) = ΦW,P (f) ◦ ϕ and Φ̄Wϕ,ϕ

−1
] P (f ◦ ϕ) = Φ̄W,P (f).

Let us now turn to convergence of GNNs to c-GNNs. The following result is adapted2 from [22].
While the outputs of permutation-invariant GNNs and c-GNNs are vectors in Rdout that can be
directly compared, the output graph signal of a permutation-equivariant GNN is compared with
a sampling of the output function of the corresponding c-GNN: for a graph signal Z ∈ Rn×d, a
function f : X → Rd and X = {xi}ni=1, we define the (square root of the) mean-square error
as MSEX(Z, f) = ( 1

n

∑n
i=1 ‖Zi − f(xi)‖22)1/2. The proof of Theorem 1 with all multiplicative

constants is given in App. A.1. Recall that dX is the “dimension” of X .

Theorem 1. Assume G is drawn from (W,P ) and has latent variables X . Fix ρ, ν > 0.

• In the deterministic edges case: with probability 1− ρ, for all Z(0):

MSEX(ΦA(Z(0)),ΦW,P (f (0))) 6 C ·MSEX(Z(0), f (0)) +R1(n) (3)

for some constant C and R1(n) = O
(√

(dX + log(1/ρ))/n
)

.

• In the random edges case: assume that the sparsity level is αn & n−1 log n. There is a constant
Cν such that, with probability 1− ρ− n−ν , for all Z(0):

MSEX(ΦA(Z(0)),ΦW,P (f (0))) 6 C ·MSEX(Z(0), f (0)) +R1(n) +R2(n) (4)

where R2(n) = O
(
Cν/
√
αnn

)
.

• In the permutation-invariant case: The exact same results hold for
∥∥Φ̄A(Z(0))− Φ̄W,P (f (0))

∥∥
instead of the MSE on the left-hand-side, with an added error term R3(n) = O

(√
log(1/ρ)/n

)
.

By the theorem above, a GNN converges to its continuous counterpart if Z(0) is (close to) a sampling
of a function f (0) at the latent variables. This is directly assumed in [22]. In the present paper
however, we do not suppose that input node features are available. While several strategies have been
proposed in the literature, a popular baseline is to simply take constant input Z(0) = 1n (which, by a
multiplication by A on the first layer, is also equivalent to inputing the degrees as in [7] for instance).
In this case, there is convergence to a c-GNN with f (0) = 1. For simplicity in the rest of the paper
we drop the notation “(1)” and write ΦA = ΦA(1n), ΦW,P = ΦW,P (1), and so on. It is known that
GNNs are limited on regular graphs: for permutation-invariant GNNs, the WL test cannot distinguish
regular graphs of the same order, and for permutation-equivariant GNNs, ΦA(1n) is constant over
the nodes. Similarly for c-GNN, the degree function

∫
W (·, x)dP (x) is key in the discriminative

power of c-GNNs [30], and if it is constant, then ΦW,P (1) is a constant function (see Fig. 1).

2The authors in [22] proved this for the normalized Laplacian, which allows bypassing the knowledge of αn.
Here we use the adjacency matrix, for our later results on approximation power.
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2.3 SGNN: GNN with unique node identifiers

To remedy the absence of input node features, in [41] the authors propose an architecture with unique
node identifiers while still respecting permutation invariance/equivariance. More precisely, they
first choose an arbitrary ordering of the nodes q = 1, . . . , n, apply a GNN to each one-hot vector
eq = [0, . . . , 1, . . . , 0], and restore equivariance to permutation by a final pooling. For later purpose
of convergence, we generalize this strategy to any collection Eq(A) ∈ Rn×d0 that satisfies:

Eq(σAσ
>) = σEσ−1(q)(A) . (5)

where by an abuse of notation σ(q) designates the permutation function applied to index q. For
instance, it can be any filtering of one-hot vector Eq(A) = h(A)eq . After the GNN ΦA, a pooling is
applied to restore equivariance, then a second GNN Φ′A that is either invariant or equivariant:

ΨA = Φ′A

(
1
n

∑
q ΦA (Eq(A))

)
∈ Rn×d′out , Ψ̄A = Φ̄′A

(
1
n

∑
q ΦA (Eq(A))

)
∈ Rd′out (6)

In [41], these architectures, called SMPs, are interpreted as doing message-passing over matrices,
and can use more general pooling and aggregation functions. In a sense, what we call SGNN are
“spectral” versions of SMP, but are essentially the same idea. It is not difficult to see that SGNNs
satisfy: ΨσAσ> = σΨA and Ψ̄σAσ> = Ψ̄A.

3 Convergence of SGNNs on large random graphs

In this section, we extend Theorem 1 to SGNNs. To define continuous SGNNs, we consider a bivariate
input function ηW,P : X × X → Rd0 such that: the mapping (W,P ) 7→ ηW,P is continuous3, for
any (W,P ), ηW,P is Cη-bounded and Lη-Lipschitz in each variable, and similar to (5) is respects the
following:

ηWϕ,ϕ
−1
] P (x, y) = ηW,P (ϕ(x), ϕ(y)) , (7)

for all bijections ϕ : X → X . For instance, ηW,P = W or any filter ηW,P (x, y) =
[h(TW,P )W (·, y)](x) satisfy these conditions. A c-SGNN is then defined as:

ΨW,P = Φ′W,P
(∫

ΦW,P (ηW,P (·, x))dP (x)
)
, (8)

for the equivariant case, or similarly Ψ̄W,P = Φ̄′W,P
(∫

ΦW,P (ηW,P (·, x))dP (x)
)

for the invariant
case. Again, using the properties of c-GNNs, it is easy to see that c-SGNNs respect random graphs
isomorphism: ΨWϕ,ϕ

−1
] P = ΨW,P ◦ ϕ and Ψ̄Wϕ,ϕ

−1
] P = Ψ̄W,P . We are now ready to extend

Theorem 1. The proof and multiplicative constants are in App. A.2.
Theorem 2. Assume G is drawn from (W,P ) with latent variables X . Fix ρ, ν > 0.

• In the deterministic edges case: with probability 1− ρ:

MSEX(ΨA,ΨW,P ) 6 C ′ · sup
q

MSEX(Eq(A), η(·, xq)) +R′1(n) (9)

for some constant C ′ and R′1(n) = O
(√

(dX + log(1/ρ))/n
)

.

• In the random edges case: assume that the sparsity level is αn & n−1 log n. There is a constant
Cν such that, with probability 1− ρ− n−ν:

MSEX(ΨA,ΨW,P ) 6 C ′ · sup
q

MSEX(Eq(A), η(·, xq)) +R′1(n) +R′2(n) (10)

where R′2(n) = O
(
Cν/
√
αnn

)
.

• In the permutation-invariant case: The exact same results hold for
∥∥Ψ̄A − Ψ̄W,P

∥∥ instead of

the MSE, with an added error term R′3(n) = O
(√

log(1/ρ)/n
)

.

Hence, we obtain convergence when the input signal Eq(A) is close to being a sampling of a function
ηW,P at xq . The choice of input signal/function is therefore crucial. Let us examine a few strategies.

3for the norm ‖·‖∞ + ‖·‖TV onW ×P
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One-hot vectors. If one chooses one-hot vectors Eq = eq as in [41], then we can see that the
SGNN converges to the continuous architecture with input ηW,P = 0, since MSEX(eq, 0) → 0.
Since ΨW,P is nothing more than a traditional c-GNN ΦW,P with constant input in that case, this is
not a satisfying choice in terms of approximation power.

One-hop filtering. If we choose to “filter” eq once and take Eq(A) = Aeq , the natural continuous
equivalent is ηW,P = W . Such a strategy only works for deterministic edges: indeed,

MSEX(Aeq,W (·, xq)) =
(
n−1

∑n
i=1(aiq −W (xi, xq))

2
)1/2{

= 0 with deterministic edges
≈
√
n−1

∑
i V ar(aiq) ∼ α−1 with random edges, w.h.p.

where the last line comes from a simple application of Hoeffding’s inequality. Hence, in the case of
random edges, the MSE does not vanish and typically diverges for non-dense graphs (Fig. 2).

101 102 103

n

10 3M
SE

One-hop
Two-hop
Theory

Figure 2: Difference between the out-
puts of some Ψ̄A in the random edges
case with αn ∼ n−1/3 and in the deter-
ministic edges case, which converges
to Ψ̄W,P . Convergence is observed for
two-hop filtering only. The theoretical
rate of Prop. 1 is slightly pessimistic.
Details can be found in App. E.

Two-hop filtering. We can therefore choose to filter twice and
consider ηW,P (x, y) = TW,P [W (·, y)](x), that is, Eq(A) =
A2eq/n. We have the following result.

Proposition 1. In the random edges case, with probability 1−ρ,
we have for all q:

MSEX
(
A2eq
n , TW,P [W (·, xq)](·)

)
. O

(√
log(n/ρ)

αn
√
n

)
.

In the deterministic edges case, the rate is O (1/
√
n).

Convergence is guaranteed when
√

log n/(αn
√
n)→ 0, which

is stronger than relative sparsity. The difference between one-
hop and two-hop filtering is illustrated in Fig. 2. Other strategies
may also be examined, and we leave this for future work. For
instance, based on Theorem 5 in App. D, a strategy based on
the eigenvectors of A could lead to convergence even in the
relatively sparse case. In the rest of the paper, we explicitly
write when our results are valid for one- or two-hop filtering.

4 Approximation power: permutation-invariant case

In this section, we study the approximation power of continuous architectures in the permutation-
invariant case. We seek to characterize the functionsW×P → R that can be well-approximated by a
c-GNN or c-SGNN. We derive a generic criterion for universality arising from the Stone-Weierstrass
theorem, before proving that c-SGNNs are indeed strictly more powerful than c-GNNs. Finally, we
give several examples of models for which c-SGNNs are universal.

4.1 Generic result with Stone-Weierstrass theorem

A classical tool to prove universality of neural nets in the literature is the Stone-Weierstrass theorem
[20, 23], which states that an algebra of functions that separates points on a compact space is dense in
the set of continuous functions. Although NNs are typically not an algebra since they are not closed
by multiplication, one of the original proofs of universality for MLPs solves this by a clever trick
[20] which we recall in Lemma 1 in App. D. A direct application results in the following proposition.

Proposition 2. LetM⊂W×P be a compact subset ofW×P . c-SGNNs (resp. c-GNNs) are dense
in C(M,R) if and only if: for all (W,P ) 6= (W ′, P ′) ∈M, there is a c-SGNN (resp. a c-GNN) such
that Ψ̄W,P 6= Ψ̄W ′,P ′ (resp. Φ̄W,P 6= Φ̄W ′,P ′ ).

Note that, by construction of the permutation-invariant c-(S)GNNs, universality is only possible when
M does not contain two isomorphic versions of the same random graph model. Equivalently,M
may be a larger set quotiented by random graph isomorphism.
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4.2 c-SGNNs are more powerful than c-GNNs

SGNNs were proven to be strictly more powerful than the WL test, and therefore than GNNs, in [41].
In the theorem below, we check that this strict inclusion holds for their continuous limits.
Theorem 3. The set of functions of the form (W,P ) → Φ̄W,P is strictly included in the set of
functions (W,P )→ Ψ̄W,P , for both one- and two-hop input filtering.

This theorem is proven by constructing two models that are distinguished by a c-SGNN but not by
any c-GNN. The principle is similar to the proof in the discrete case: in [41] the authors construct
two k-regular graphs (with constant degree k), which by construction cannot be distinguished by
the Weisfeiler-Lehman test, and prove that there is however a SGNN that distinguishes them. In the
proof of 3, we construct two SBMs with the same constant degree function, such that any c-GNN
returns the same result on them, and design a c-SGNN that distinguishes them. We note that there
might be subsetsM⊂W ×P that do not contain such models, and therefore on which c-GNNs and
c-SGNNs have the same approximation power.

4.3 Examples

While a generic universality theorem on random graphs seems to be out-of-reach for the moment,
we examine several interesting examples, and pave the way for future extensions. We focus on
c-SGNNs, but, sometimes, may not conclude on the power of c-GNNs: we could not prove that they
are universal, but were not able to find a counter-example either. For simplicity, and since our purpose
here is mainly illustrative, we mostly focus on one-hop input filtering.

Stochastic Block Models. SBMs [19] are classical models to emulate graphs with communities.
In our settings, SBMs with K communities can be obtained with a finite latent space |X | = K,
typically X = {1, . . . ,K}. The kernel W (k, k′) = Wkk′ can be represented as a matrix W ∈ SK ,
where SK is the set of symmetric matrices in [0, 1]K×K , and the distribution P (k) = Pk as a vector
P ∈ ∆K−1, where ∆K−1 = {P ∈ [0, 1]K ,

∑
k Pk = 1} is the (K–1)-dimensional simplex.

In the following proposition, we fix P and examine universality with respect to W . In this case,
continuous GNNs are actually quite similar to discrete ones on matricesW , except that the probability
vector P also intervenes in the computation. While GNNs on finite graphs can only be universal
when using high-order tensors [32, 23] due to invariance to graph-isomorphism, here P can help to
disambiguate this constraint. We will say that P ∈ ∆K−1 is incoherent if: for signs s ∈ {−1, 0, 1}k,
having

∑K
k=1 skPk = 0 implies s = 0. That is, no probability is an exact sum or difference of

the others. We note that a vector drawn uniformly on ∆K−1 is incoherent with probability 1. For
incoherent probability vectors, we can show universality of c-SGNNs. Moreover, this is actually a
case where we can prove that c-GNNs are, in turn, not universal.
Proposition 3. For one-hop input filtering, if P is incoherent the space of functions W → Ψ̄W,P

is dense in C(SK ,R). Moreover, there exists P incoherent and W 6= W ′ such that, for any c-GNN,
Φ̄W,P = Φ̄W ′,P .

Additive kernel. Let us now fix W and examine universality with respect to P . A classical theorem
on symmetric continuous functions [48] states that any W can be arbitrarily well approximated as
W (x, y) ≈ u(v(x) + v(y)) for some functions u, v. Inspired by this result, a kernel will be said to
be additive if it can (exactly) be written as W (x, y) = u(v(x) + v(y)), and injectively additive if
both u, v are continuous and injective. We prove universality in the unidimensional case below.

Proposition 4. Let X ⊂ R, and P̃ be any compact subset of P . Assume W is injectively additive
with Im(v) ⊂ R. For one-hop filtering, the space of functions P → Ψ̄W,P is dense in C(P̃,R).

It is easy to see that injectively additive kernels include all SBMs for which Wij 6= Wij′ when
j 6= j′, so Prop. 4 completes Prop. 3. However, unlike additive kernels, injectively additive kernels
are a priori not universal approximators of symmetric continuous functions: this result [48] is only
valid when Im(v) can be multidimensional. But it is known for instance that there is no continuous
injective map from [0, 1]2 to [0, 1], so if Im(v) = [0, 1]2, u cannot be both continuous and injective.

Radial kernel. We conclude this section with an important class of kernels, radial kernels
W (x, y) = w(‖x− y‖) for some function w : R+ → [0, 1]. They include the popular Gaus-

7



sian kernel and so-called ε-graphs. Below, we give an example in one dimension, for which c-SGNNs
are universal on symmetric distributions. The case of non-symmetric distributions seems more
involved and we leave it for future investigations.

Proposition 5. Assume that X = [−1, 1] and W (x, y) = w(|x− y|) where w is continuous and
injective. Let P̃ ⊂ P be any compact set of symmetric distributions. For one-hop input filtering, the
space of functions P → Ψ̄W,P is dense in C(P̃,R).

5 Approximation power: permutation-equivariant case

In the equivariant case, recall that the outputs of c-(S)GNNs are functions on X . The “traditional”
notion of universality is to evaluate the approximation power of mappings (W,P )→ F , where F is
some space of equivariant functions, as is done for the discrete case in [23, 3]. However, a potentially
simpler and more relevant notion here is to fix (W,P ), and directly examine the properties of the space
of functions X → R represented by c-(S)GNNs, that is, the space of functions {ΨW,P : X → R} for
all possible c-SGNNs ΨW,P (and similar for ΦW,P ). Indeed, this directly answers such questions
as: given an SBM, does there exist a c-GNN that can labels the communities (Fig. 1)? Or: given the
structure of a mesh, what functions can be computed on it, e.g. for segmentation?

5.1 Generic result with Stone-Weierstrass theorem

As in the invariant case, the Stone-Weierstrass theorem yields a generic separation condition.

Proposition 6. Let (W,P ) be fixed. Then c-SGNNs (resp. c-GNNs) are dense in C(X ,R) iff:
for all x 6= x′ ∈ X , there is a c-SGNN (resp. a c-GNN) such that ΨW,P (x) 6= ΨW,P (x′) (resp.
ΦW,P (x) 6= ΦW,P (x′)).

If (W,P ) are such that c-(S)GNNs satisfy some symmetry or invariance (see for instance Prop. 9),
then the space X can be quotiented to obtain universality among functions satisfying these constraints.

5.2 c-SGNNs are more powerful than c-GNNs

Using a proof similar to Theorem 3, we can then prove that c-SGNNs are indeed strictly more
powerful than c-GNNs for some (W,P ).

Theorem 4. For both one- and two-hop input filtering, the following holds. For any (W,P ), the set
of functions of the form ΦW,P is included in the set of functions ΨW,P , and there exist (W,P ) such
that the inclusion is strict.

Again, we note that, for some random graph models (W,P ), c-SGNNs and c-GNNs might have the
same approximation power.

5.3 Examples

We treat the same examples as before, with the addition of two-hop filtering for SBMs and radial
kernels on the d-dimensional sphere.

SBM. Universality in the SBM case corresponds to being able to distinguish communities, that is,
ΨW,P : X → R returns a different value for each element of the latent space X . In the following
result, we assume that W is invertible, and prove the result for both one- and two-hop filtering,
meaning that c-SGNNs can indeed distinguish communities of SBMs with random edges under some
mild conditions. On the other hand, c-GNNs may fail on such models.

Proposition 7. Let P be incoherent, and W be invertible. For both one- and two-hop input filtering,
c-SGNNs are dense in C(X ,R). Moreover, there exist (W,P ) satisfying the conditions above such
that any c-GNN ΦW,P is a constant function.

This proposition is illustrated in Fig. 1: on an SBM with constant degree function, any GNN
converges to a c-GNN with constant output, while a SGNN with two-hop input filtering can be close
to a c-SGNN that perfectly separates the communities.
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Figure 3: Illustration of Prop. 9 on Gaussian kernel, but with random edges and two-hop input filtering. The
x-axis is the latent variables in X = [−1, 1]. The y-axis is the output of a SGNN trained to approximate some
function f (red curve). On the left, both distribution P and f are symmetric, c-SGNNs are universal in that case.
In the center, P is symmetric but not f , and the training expectedly fails since the limit c-SGNN is symmetric.
On the right, P and f are non-symmetric, and universality holds again. Details can be found in App. E.

Additive kernel. As in the invariant case, injectively additive kernels lead to universality.

Proposition 8. Assume W is injectively additive, fix any P . Then, for one-hop input filtering,
c-SGNNs are dense in C(X ,R).

Radial kernel. Unlike the invariant case (Prop. 5) which was limited to symmetric distributions, we
treat both symmetric and non-symmetric case: when P is symmetric, then so is ΨW,P (by permutation-
equivariance), and we have universality among symmetric functions. When P is non-symmetric, we
have universality among all functions. See Fig. 3 for an illustration.

Proposition 9. Consider X = [−1, 1], W (x, y) = w(|x − y|) a radial kernel with an invertible,
continuous w, and P with a piecewise continuous density such that EPX = 0. Then, for one-hop
input filtering: if P is symmetric, c-SGNNs are dense in the space of symmetric functions in C(X ,R),
and if P is not symmetric, c-SGNNs are dense in C(X ,R).

Finally, we look at radial kernels on the d-dimensional sphere X = Sd−1 = {x ∈ Rd | ‖x‖ = 1},
an important example sometimes referred to as random geometric graphs [34, 2], or dot-product
kernels [33], which are for instance popular in social networks analysis [47]. Indeed, in this case,
the kernel only depends on the dot product W (x, y) = w(x>y). Denoting by dτ the uniform
measure on Sd−1, it is known [14, 9] that functions in L2(dτ) can be uniquely decomposed as
f(x) =

∑
k>0 fk(x) =

∑
k>0

∑N(d,k)
j=1 ak,jYk,j(x) where Yk,j are spherical harmonics, that is,

homogeneous harmonic polynomials of degree k which form an orthonormal basis of L2(dτ). We
will say that such a function is injectively decomposed if the mapping x→ [fk(x)]k>0 from Sd−1

to `2(R) is injective. Note that generically this is verified if fk is non-zero for more than d − 1
distinct values of k > 0, as this corresponds to solving an over-determined system of polynomial
equations, but there may be degenerate situations where this is not enough. The proof of the following
proposition is based on the well-known Legendre/Gegenbauer polynomial decomposition of spherical
harmonics [9] (see App. C.5).

Proposition 10. Assume that X = Sd−1, that W (x, y) = w(x>y) with continuous invertible
w : [−1, 1]→ [0, 1], and that P = fdτ has a density f which is injectively decomposed. Then for
one-hop input filtering c-SGNNs are dense in C(X ,R).

6 Conclusion and outlooks

It is known that permutation-invariant GNNs fail to distinguish regular graphs of the same order, and
permutation-equivariant GNNs return constant output on regular graphs. Similarly, their continuous
counterparts suffer from the same flaw on random graph with constant or almost-constant degree
function [30]. However, we showed that the recently proposed SGNNs converge to continuous
architectures which, like in the discrete world, are strictly more powerful than c-GNNs. Moreover, we
proved that both permutation-invariant and permutation-equivariant c-SGNNs are universal on many
random graph models of interest, including a large class of SBMs and random geometric graphs.

We believe that our work opens many possibilities for future investigations. We examined very simple
strategies for choosing the inputs Eq(A) of the SGNN, but more complex, spectral-based choices
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could exhibit better convergence properties and approximation power. We showed universality in
specific random graph models of interest, but deriving a more generic criterion is still an open
question. More directly, most of our examples illustrate the one-dimensional case X ⊂ R, and
a generalization to multidimensional latent spaces would be an important step forward. Besides
SGNNs, architectures that include high-order tensors [31] (sometimes called FGNN [3]) are known
to be more powerful than the WL test. Conditions for their convergence on large graphs are still open,
in particular since high-order tensors lead to high-order operators that may be difficult to manipulate.
Finally, we remark that directly estimating the latent variables xi is a classical task in statistics, for
which conditions of success have been derived for various approaches, e.g. for Spectral Clustering
[25]. Comparing them with (S)GNNs is an important path for future work.
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A Convergence

Let us start with some notations. Given a GNN Φ, we define some bounds on its parameters
that will be used in the multiplicative constants of the theorem. Recall that the filters are written
h

(`)
ij (λ) =

∑∞
k=0 β

(`)
ijkλ

k. We define B(`)
k =

(
β

(`)
ijk

)
ji
∈ Rd`+1×d` the matrix containing the order-k

coefficients, and by B(`)
k,|·| =

(∣∣∣β(`)
ijk

∣∣∣)
ji

the same matrix with absolute value on all coefficients.

Recall that ‖·‖ is the operator norm for matrices. We define the following bounds:

H
(`)
2 =

∑
k

∥∥∥B(`)
k

∥∥∥ H
(`)
∂,2 =

∑
k

∥∥∥B(`)
k

∥∥∥ k
H(`)
∞ =

∥∥∥B(`)
0,|·|

∥∥∥+
∑
k>1

∥∥∥B(`)
k

∥∥∥ H
(`)
∂,∞ =

∑
k

∥∥∥B(`)
k

∥∥∥ k√log k

which all converge by our assumptions on the βk. We may also denoteH2 byHL2(P ) for convenience
but this quantity does not depend on P . Note that, only for H∞, we use the spectral norm of the
matrix B0,|·| with non-negative coefficients, which is suboptimal compared to using B0. This is due
to a part of our analysis where we do not operate in a Hilbert space but only in a Banach space B(X ),

see Lemma 4. We also define
∥∥b(`)∥∥ =

√∑
j(b

(`)
j )2 to measure the norm of the bias.

Given X = {x1, . . . , xn} and any dimension d, we denote by SX the sampling operator acting on
functions f : X → Rd defined by SXf

def.
= [f(x1), . . . , f(xn)] ∈ Rn×d. We have

∥∥∥ 1√
n
SXf

∥∥∥
F
6

‖f‖∞. Finally, given X and W , we define W (X)
def.
= (W (xi, xj))ij ∈ Rn×n, and remark that

W (X)
n ◦SX = SX ◦TW,X . In the deterministic edges case, the adjacency matrix A is directly W (X).

In the random edges case, A has expectation W (X) (conditionally on X).

A.1 Convergence of GNNs: proof of Theorem 1

This proof is a variant of [22]. We prove Theorem 1 with the following error terms:

R1(n) =

C1

√
dX + C2

√
log
(∑

` d`
ρ

)
√
n

R2(n) =
CνC3√
αnn

R3(n) = C4

√
log(1/ρ)

n
, (11)

where R2 is present in the random edges case and R3 in the permutation-invariant case, and the
following constants:

C = Lg

M−1∏
`=0

H
(`)
2 C1 =

M−1∑
`=0

C(`)H
(`)
∂,∞

C2 = C1(1 +DXLW ) C3 =

M−1∑
`=0

C(`)H
(`)
∂,2 C4 = C(M)

where the MLP g is Lg-Lipschitz and DX = supx,x′∈X mX (x, x′) is the diameter of X , and

C(`) = Lg

(
M−1∏
s=`+1

H
(s)
2

)(
Cf

`−1∏
s=0

H(s)
∞ +

`−1∑
s=0

∥∥∥b(s)∥∥∥ `−1∏
p=s+1

H(p)
∞

)
with the conventions that an empty product is 1 and an empty sum is 0.

We begin the proof by the equivariant case, the invariant case will simply use an additional concentra-
tion inequality. We have

MSEX
(

ΦA(Z(0)),ΦW,P (f)
)

=
1√
n

∥∥∥ΦA(Z(0))− SXΦW,P (f (0))
∥∥∥
F

6 Lg
1√
n

∥∥∥Z(M) − SXf (M)
∥∥∥
F
.
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We therefore seek to bound that last term. Define the notation

∆(`) =
1√
n

√√√√∑
j

∥∥∥∥∥∑
i
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h
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ij
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A

n

)
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2

.

Then, using the Lipschitzness of ρ, Lemma 4 with ‖A/n‖ 6 1, and the fact that SX ◦ ρ = ρ ◦ SX ,
we have∥∥∥Z(`+1) − SXf (`+1)

∥∥∥
F

=

∑
j

∥∥∥∥∥ρ
(

d∑̀
i=1

h
(`)
ij

(
A

n

)
Z

(`)
:,i + b

(`)
j 1n

)
− SXρ

(
d∑̀
i=1

h
(`)
ij (TW,P )f

(`)
i + b

(`)
j

)∥∥∥∥∥
2


1
2

=

∑
j

∥∥∥∥∥ρ
(

d∑̀
i=1

h
(`)
ij

(
A

n

)
z

(`)
i + b

(`)
j 1n

)
− ρ

(
SX

(
d∑̀
i=1

h
(`)
ij (TW,P )f

(`)
i + b

(`)
j

))∥∥∥∥∥
2


1
2

6

∑
j

∥∥∥∥∥
d∑̀
i=1

h
(`)
ij

(
A

n

)
Z

(`)
:,i − SXh

(`)
ij (TW,P )f

(`)
i

∥∥∥∥∥
2


1
2

6

∑
j

∥∥∥∥∥
d∑̀
i=1

h
(`)
ij

(
A

n

)(
Z

(`)
:,i − SXf

(`)
i

)∥∥∥∥∥
2


1
2

+

∑
j

∥∥∥∥∥
d∑̀
i=1

h
(`)
ij

(
A

n

)
SXf

(`)
i − SXh

(`)
ij (TW,P )f

(`)
i

∥∥∥∥∥
2


1
2

6 H
(`)
2

∥∥∥Z(`) − SXf (`)
∥∥∥
F

+
√
n∆(`).

A recursion shows that, for all Z(0):
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We now bound all ∆(`) with high probability. Recall that W (X)
n ◦ SX = SX ◦ TW,X , and that we

have
∥∥∥SX√nf∥∥∥ 6 ‖f‖∞ and ‖TW,X‖∞ 6 1. By Lemma 4 we have
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The first term in (13) is 0 in the deterministic edges case. In the random edges case, it is handled
with a recent concentration inequality for Bernoulli matrices [25], recalled in Theorem 5 in App. D.
Since αn & logn

n , for any ν, there is a constant Cν such that, with probability 1−n−ν on the random

edges (conditionally on X),
∥∥∥A−W (X)

n

∥∥∥ 6 Cν√
αnn

. By the law of total probability, it is valid with

joint probability 1− n−ν on both X and the random edges.

We now bound the second term in (13). Define ρk = Cρ
(k+1)2

∑
` d`

with C such that
∑
k` d`ρk = ρ/4

(even when the filters are not of finite order). Using an application of Dudley’s inequality detailed
in Lemma 3, applied with U(x, y) = W (x, y)f(y) which is bounded by ‖f‖∞ and has Lipschitz
constant LW ‖f‖∞ in the first variable, and a union bound, we obtain with probability 1− ρ/4 that:
for all i, `, k, we have

∥∥∥(TW,X − TW,P )T kW,P f
(`)
i

∥∥∥
∞

.
1√
n

∥∥f `i ∥∥∞(√dX + (1 +DXLW )
√

log ρ−1
k

)
.

Coming back to the second term of (13), with probability 1− ρ/4:

∑
k

‖Bk‖

√√√√∑
i

(
k−1∑
p=0

(∥∥∥(TW,X − TW,P )T k−1−p
W,P f

(`)
i

∥∥∥
∞

)2
)

.

(√
dX + (1 +DXLW )

√
log

∑
` d`
ρ

)
√
n

∑
k

‖Bk‖ k
√

log k

√∑
i

∥∥∥f (`)
i

∥∥∥2

∞

6

(√
dX + (1 +DXLW )

√
log

∑
` d`
ρ

)
√
n

H
(`)
∂,∞

∥∥∥f (`)
∥∥∥
∞
.

At the end of the day we obtain that with probability 1− ρ, for all `:

∆(`) ∝
∥∥∥f (`)

∥∥∥
∞

 H
(`)
∂,2√
αnn

+

H
(`)
∂,∞

(√
d+ (1 +DXLW )

√
log

∑
` d`
ρ

)
√
n

 .

We then use Lemma 5 to bound
∥∥f (`)

∥∥
∞ and conclude.

For the invariant case, we have

∥∥∥Φ̄A(Z(0))− Φ̄W,P (f (0))
∥∥∥ 6 MSEX(ΦA(Z(0)),ΦW,P (f (0)))

+ Lg

∥∥∥∥∥ 1

n

n∑
i=1

f (M)(xi)−
∫
f (M)(x)dP (x)

∥∥∥∥∥
We use a vector Hoeffding’s inequality [36, Lemma 4] and a bound on

∥∥f (M)
∥∥
∞ (Lemma 5) to

conclude.
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A.2 Convergence of SGNNs

We prove Theorem 2 with the same form of error terms (11) whereRi is replaced byR′i with modified
multiplicative constants C ′i. Here we will have:

C ′ = DLg

M−1∏
`=0

H
(`)
2

C ′1 = DLΦ +

M−1∑
`=0

H
′(`)
∂,∞C

′(`) +

M−1∑
`=0

H
(`)
∂,∞C

(`)

C ′2 = (1 +DXLW )

M−1∑
`=0

H
′(`)
∂,∞C

′(`) +DLΦDX +DCΦ +

M−1∑
`=0

H
(`)
∂,∞(C(`) +DXL

(`))

C ′3 =

M−1∑
`=0

H
′(`)
∂,2 C

′(`) +H
(`)
∂,2C

(`), C ′4 = C ′(M)

where H ′(`)? is like H(`)
? but for the weights in Φ′, the final-layer MLP of Φ′ is denoted by g′ with a

Lipschitz constant Lg′ , and:

D = Lg′
M−1∏
`=0

H
′(`)
2

C ′(`) = Lg′

(
M−1∏
s=`+1

H
′(s)
2

)(
CΦ

`−1∏
s=0

H ′(s)∞ +

`−1∑
s=0

∥∥∥b′(s)∥∥∥ `−1∏
p=s+1

H ′(p)∞

)

C(`) = DLg

(
M−1∏
s=`+1

H
(s)
2

)
C̃(`)
∞

L(`) = DLg

(
M−1∏
s=`+1

H
(s)
2

)(
LW C̃

(`)
∞ +

√
d`Lη

`−1∏
s=0

H(s)
∞

)
CΦ = ‖g(0)‖+ LgC̃

(M)
∞

LΦ = Lg

(
Lη

M−1∏
`=0

∥∥∥B(`)
0

∥∥∥+ LW

M−1∑
`=0

(
M−1∏
s=`+1

∥∥∥B(s)
0

∥∥∥) C̃(`)
2

)

with

C̃
(`)
? = Cη

`−1∏
s=0

H
(s)
? +

`−1∑
s=0

∥∥∥b(s)∥∥∥ `−1∏
p=s+1

H
(p)
? for ? ∈ {2,∞} .

We start by applying Theorem 1 on the outer GNN Φ′. Since the result is uniformly valid over all
input of the GNN Z(0) with probability 1− ρ:

MSEX(ΨA,ΨW,P ) 6 DMSEX

(
1

n

∑
q

ΦA(Eq(A)),

∫
ΦW,P (η(·, x))dP (x)

)
+R′(n) (14)

where, from Theorem 1, D = Lg′
∏M−1
`=0 H

′(`)
2 is C1 but for the weights in Φ′, and R′(n) is the error

term formed by summing various R′i(n), taking into account that by Lemma 5 the function inputed
in Φ′ is bounded by CΦ.
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We must therefore bound the first term in (14). We write

MSEX

(
1

n

∑
q

ΦA(Eq(A)),

∫
ΦW,P (η(·, x))dP (x)

)

6 MSEX

(
1

n

∑
q

ΦA(Eq(A)),
1

n

∑
q

ΦW,P (η(·, xq))

)

+ MSEX

(
1

n

∑
q

ΦW,P (η(·, xq)),
∫

ΦW,P (η(·, x))dP (x)

)
6 sup

q
MSEX (ΦA(Eq(A)),ΦW,P (η(·, xq)))

+

∥∥∥∥∥ 1

n

∑
q

ΦW,P (η(·, xq))−
∫

ΦW,P (η(·, x))dP (x)

∥∥∥∥∥
∞

. (15)

Let us start with the second term. By Lemma 5 and the Lipschitzness of g, U(x, y)
def.
=

ΦW,P (η(·, y))(x) is CΦ-bounded and LΦ-Lipschitz with respect to x.

Hence, applying Lemma 3: with probability 1− ρ,∥∥∥∥∥ 1

n

∑
q

ΦW,P (η(·, xq))−
∫

ΦW,P (η(·, x))dP (x)

∥∥∥∥∥
∞

.
LΦ

√
dX + (LΦDX + CΦ)

√
log(1/ρ)√

n
.

(16)

For the first term in (15), we introduce some notations. We denote by f (`)
i : X ×X → R the bivariate

function propagated at each layer of the inner part of the c-SGNN, as:

f
(0)
0 = η f

(`+1)
j = ρ

(∑
i

h
(`)
ij (TW,P )f

(`)
i + b

(`)
j

)
(17)

where TW,P is here to be understood as an operator on C(X × X ) defined by TW,P [f ](x, y) =∫
W (x, z)f(z, y)dP (z). With these notations, ΦW,P (η(·, xq)) = g(f (M)(·, xq)). Note that we still

have ‖TW,P ‖∞ 6 1 for this version. We perform the computation as in the proof of Theorem 1 in
(12) to obtain:

sup
q

MSEX (ΦA(Eq(A)),ΦW,P (η(·, xq)))

6 Lg

M−1∑
`=0

sup
q

∆(`)
q

M−1∏
s=`+1

H
(s)
2 + Lg

(
M−1∏
`=0

H
(`)
2

)
sup
q

MSEX(Eq(A), η(·, xq)) (18)

with

∆(`)
q =

1√
n

√√√√∑
j

∥∥∥∥∥∑
i

(
h

(`)
ij

(
A

n

)
SXf

(`)
i (·, xq)− SXh(`)

ij (TW,P )[f
(`)
i (·, xq)]

)∥∥∥∥∥
2

. (19)

Then, again we decompose

sup
q

∆(`)
q 6 H

(`)
∂,2

∥∥∥∥A−W (X)

n

∥∥∥∥∥∥∥f (`)
∥∥∥
∞

+
∑
k

‖Bk‖

√√√√√∑
i

(
k−1∑
p=0

∥∥∥(TW,X − TW,P )T k−1−p
W,P [f

(`)
i ]
∥∥∥
∞

)2

(20)

where we recall here that f (`)
i is a bivariate function.
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Again, the first term is 0 in the deterministic edges case, and otherwise by Theorem 5 we have∥∥∥A−W (X)
n

∥∥∥ 6 Cν/
√
αnn with probability 1− n−ν , and by Lemma 6 we have

∥∥∥f (`)
∥∥∥
∞

6 Cη

`−1∏
s=0

H(s)
∞ +

`−1∑
s=0

∥∥∥b(s)∥∥∥ `−1∏
p=s+1

H(p)
∞ .

Fix k, `, i for now. We will apply Lemma 3 with U : (X × X )×X → R defined as U((x, x′), y) =

W (x, y)f(y, x′) for f(y, x′) = T kW,P [f
(`)
i (·, x′)](y). Since ‖TW,P ‖∞ 6 1 we have ‖f‖∞ 6∥∥∥f (`)

i

∥∥∥
∞

. Then,∥∥∥T kW,P [f
(`)
i (·, x′)]− T kW,P [f

(`)
i (·, x′′)]

∥∥∥
∞

=
∥∥∥T kW,P [f

(`)
i (·, x′)− f (`)

i (·, x′′)]
∥∥∥
∞

6
∥∥∥f (`)
i (·, x′)− f (`)

i (·, x′′)
∥∥∥
∞

6 LηmX (x, x′)

`−1∏
s=0

H(s)
∞

by Lemma 6. Hence U is bounded by
∥∥∥f (`)
i

∥∥∥
∞

and L(`)
i -Lipschitz with respect to (x, x′), with

L
(`)
i = LW

∥∥∥f (`)
i

∥∥∥
∞

+ Lη

`−1∏
s=0

H(s)
∞ . (21)

Finally, note that X × X is compact with covering numbers proportional to ε−2d. Hence by Lemma
3 and a union bound, again defining ρk as in the proof of Theorem 1 such that

∑
ik` ρk = ρ: with

probability 1− ρ, we have simultaneously for all i, k, `:

sup
x

∥∥∥(TW,X − TW,P )T kW,P f
(`)
i (·, x)

∥∥∥
∞

.
1√
n

(∥∥∥f (`)
i

∥∥∥
∞

√
dX + (

∥∥∥f (`)
i

∥∥∥
∞

+DXL
(`)
i )
√

log ρ−1
k

)
.

Hence, as in the previous proof:

∑
k

‖Bk‖

√√√√∑
i

(
k−1∑
p=0

(∥∥∥(TW,X − TW,P )T k−1−p
W,P f

(`)
i

∥∥∥
∞

)2
)

6

(∥∥f (`)
∥∥
∞
√
dX + (

∥∥f (`)
∥∥
∞ +DXL

(`))
√

log
∑
` d`
ρ

)
H

(`)
∂,∞

√
n

where L(`) = (
∑
i(L

(`)
i )2)

1
2 .

A.3 Proof of Prop. 1

The error can be written as

1√
n

∥∥A2eq/n− SXTW,P (W (·, xq))
∥∥

2
6

1√
n

∥∥A2eq/n−W (X)2eq/n
∥∥

2

+ ‖(TW,X − TW,P )W (·, xq)‖∞ .

Using chaining as in the previous section, we have

sup
x
‖(TW,X − TW,P )W (·, x)‖∞ .

1√
n

(√
dX + (1 +DXLW )

√
log 1/ρ

)
.
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The first term is 0 in the deterministic edges case, and otherwise:

1√
n

∥∥A2eq/n−W (X)2eq/n
∥∥

2
=

 1

n

∑
i

 1

n

∑
j

aijajq −
1

n

∑
j

W (xi, xj)W (xj , xq)

2


1
2

6

 1

n

∑
i6=q

 1

n

∑
j

aijajq −W (xi, xj)W (xj , xq)

2


1
2

+
1√
n

 1

n

∑
j

a2
jq −

1

n

∑
j

W (xj , xq)
2

2

.

Now, by Bernstein inequality with

V ar(aijajq) 6 E(a2
ija

2
jq) = α−2

n E(aijajq) = α−2
n W (xi, xj)W (xj , xq)

for i 6= q and a union bound, with proba 1− δ, we have:∣∣∣∣∣∣ 1n
∑
j

aijajq −
1

n

∑
j

W (xi, xj)W (xj , xq)

∣∣∣∣∣∣ .
√

log(n/δ)

αn
√
n

for all q and i 6= q.

Since
∣∣∣ 1
n

∑
j a

2
jq − 1

n

∑
jW (xj , xq)

2
∣∣∣ 6 2, we have

1√
n

sup
q

∥∥A2eq/n− SXTW (W (·, xq))
∥∥

2
.

√
log(n/δ)

αn
√
n

+

√
dX + (1 +DXLW )

√
log 1/ρ√

n
(22)

B Approximation power: invariant case

B.1 Application of Stone-Weierstrass

Proof of Prop. 2. We do the proof for cSGNNws, it is exactly similar for cGNNs.

This is a direct application of Lemma 1: for any two cSGNNs Ψ̄ :W×P → Rd, Ψ̄′ :W×P → Rd′ ,
their concatenation [Ψ̄, Ψ̄′] :W ×P → Rd+d′ is also a cSGNN (if they do not use the same input
transforms η, η′, one can concatenate η′′ = [η, η′]), and for any MLP g, g ◦ Ψ̄ is also a cSGNN.

One must just check that cSGNNs are continuous with respect to ‖·‖∞ + ‖·‖TV onW ×P:

• (W,P ) 7→ η is continuous by assumption ;

• for any fW,P ∈ C(X ,Rd) continuously indexed by (W,P ),

‖TW,P [fW,P ]− TW ′,P ′ [fW ′,P ′ ]‖∞ 6 ‖fW,P ‖∞ (‖W −W ′‖∞ + ‖P − P ′‖TV)

+ ‖fW,P − fW ′,P ′‖∞
and similarly for

∥∥∫ fW,P dP − ∫ fW ′,P ′dP ′∥∥ ;

• the non-linearity ρ is Lipschitz.

B.2 cSGNNs are more powerful than cGNNs

Proof of Theorem 3. By construction, cGNNs are included in cSGNNs, since one can take Φ = 0 as
the input GNN before pooling in (6).
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To prove strict inclusion, we will construct two models (W,P ), (W ′, P ′) such that, for any cGNN
we have Φ̄W,P = Φ̄W ′,P ′ , but there exists a cSGNN such that Ψ̄W,P = Ψ̄W ′,P ′ . We do the proof in
the random edges case with two-hop input filtering ηW,P = TW,P (W ), since such cSGNNs can of
course also be constructed in the deterministic edges case.

Since X is not a singleton, one can can single out two arbitrary elements x, x′ and take P as a sum
of two Diracs over them, which is equivalent to considering that X = {x, x′} (since any invariant
architecture involves a final integration by P , it is useless to consider W outside of the support of P ).
This results in a two-community SBM, for which P can be represented as a 2-vector on the simplex
and W as a 2-by-2 symmetric matrix. We then consider a family of SBMs indexed by γ ∈ [0, 1]:

P =

(
1/3
2/3

)
, Wγ =

(
γ 1−γ

2
1−γ

2
1+γ

4

)
.

It is not hard to see that TWγ ,P [1] = 1/3 · 1 for any γ. Therefore, for any cGNN Φ, the function
propagated inside its layers is always constant, and does not depend on γ. That is, Φ̄Wγ ,P = Φ̄W0,P

for any γ. On the other hand, consider the following SGNN:

Ψ̄W,P =

∫
x

∫
y

f(TW (W (·, y)))dP (y)dP (x)

where f is an MLP. By the universality theorem, f can approximate x→ x2, for which we obtain:
Ψ̄Wγ ,P ≈ 1/16 ∗ γ4 − 1/12 ∗ γ3 + 1/24 ∗ γ2 − 1/108 ∗ γ + 17/1296.

This is not a constant function, so we can always find γ, γ′ such that Ψ̄Wγ ,P 6= Ψ̄Wγ′ ,P , which
concludes the proof.

B.3 SBMs

Proof of Prop. 3. We apply Prop. 2. We fix P as an incoherent vector in the k-simplex, and define
M = {(W,P ) : W ∈ Sk([0, 1])} which is indeed compact. It therefore suffices to show that
cSGNNs separates points inM.

We proceed by contraposition: assume that W,W ′ are such that Ψ̄W,P = Ψ̄W ′,P for any cSGNN Ψ.
We must show that necessarily W = W ′. We look at cSGNNs of the form

ΨW,P =

∫
f1

(∫
f0 (W (x, y)) dP (y)

)
dP (x)

=
∑
i

Pif1(
∑
j

Pjf0(Wij)) =
∑
i

Pif1(
∑
j

Pjf0(W ′ij))

where f0, f1 are MLPs. By the universality theorem, they can approximate any continuous func-
tion. Pick any f0. Then f1 can be chosen as to take only values in {0, 1} on the discrete
set {

∑
j Pjf0(Wij),

∑
j Pjf0(W ′ij)}i of size 2K. Moreover, if there was an index i0 such that∑

j Pjf0(Wi0j) 6=
∑
j Pjf0(W ′i0j), f1 can be chosen to give different values on them. Then,

defining si = f1(
∑
j Pjf0(Wij))− f1(

∑
j Pjf0(W ′ij)) ∈ {−1, 0, 1}, we have both si0 6= 0 and

∑
i

Pisi =
∑
i

Pi

f1(
∑
j

Pjf0(Wij))− f1(
∑
j

Pjf0(W ′ij))

 = 0

which contradicts the incoherence of P . So, for all f0 and i, we have
∑
j Pjf0(Wij) =∑

j Pjf0(W ′ij). By the exact same reasoning on f0, we obtain that for all i, j, Wij = W ′ij , which
concludes the proof.

For the failure of c-GNNs, the proof is immediate using the example SBM in the proof of Theorem 3,
since P = [1/3, 2/3] is indeed incoherent.

B.4 Decomposed kernel

Proof of Prop. 4. Applying Prop. 2 withM = {W} × P̃ , it suffices to show that cSGNNs separate
the distributions in P̃ . By contraposition, assume that P, P ′ ∈ P̃ are such that Ψ̄W,P = Ψ̄W,P ′ for
any cSGNN, and we want to prove that necessarily P = P ′.
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We look at cSGNN of the form P 7→
∫
f1(
∫
f0(W (x, y))dP (y))dP (x), where f0, f1 are MLPs,

that can approximate any continuous functions by the universality theorem. Since u is continuous
and injective, it is well-known that it has a continuous inverse on its image. Hence f0 can be chosen
to approximate f0 ≈ u−1. By choosing f1 to approximate x→ xk, we obtain that:∫

(v(x) + EP v)
k
dP (x) =

∫
(v(x) + EP ′v)

k
dP ′(x) .

Taking k = 1 we obtain that EP v = EP ′v, and by an easy recursion we have EP vk = EP ′vk for
all k. Since v is invertible and polynomial functions are universal approximators on compacts one
can write v−1(x) =

∑
k akx

k and x =
∑
k akv(x)k, such that EPXk = EP ′Xk. Again, by the

universality of polynomial functions, EP f = EP ′f for any continuous function, which is well-known
to be equivalent to P = P ′ and concludes the proof.

B.5 Radial kernel

Proof of Prop. 5. We proceed as in the proof of Prop. 4 above: assuming P, P ′ ∈ P̃ are such that
Ψ̄W,P = Ψ̄W,P ′ for any cSGNN, we want to prove that necessarily P = P ′. We look at cSGNN
of the form P 7→

∫
f1(
∫
f0(W (x, y))dP (y))dP (x), where f0, f1 are MLPs. Since w is injective

f0 can approximate (x→ x2) ◦ w−1. By choosing f1 to approximate x→ xk, and since P, P ′ are
centered we obtain ∫ (

x2 + EPX2
)k
dP (x) =

∫ (
x2 + EP ′X2

)k
dP ′(x) .

Taking k = 1 we have EPX2 = EP ′X2, and by an easy recursion EPX2k = EP ′X2k for all k.
Since P, P ′ have 0 odd-order moments, EPXk = EP ′Xk for all k, from which we can conclude
P = P ′ as in the previous proof.

C Approximation power: equivariant case

C.1 Application of Stone-Weierstrass

Proof of Prop. 6. As the proof of Prop. 2, this is a direct application of Lemma 1: the set of cSGNNs
is closed by concatenation and composition with an MLP, X is compact, and any equivariant cSGNN
in continuous since by assumption W , ηW,P and ρ are.

C.2 cSGNNs are more powerful than cGNNs

Proof of Theorem. 4. As in the proof of Theorem 3 in App. B.2, non-strict inclusion is immediate.
To prove strict inclusion, as in the proof of Theorem 3 we consider again the same 2-community
SBM but for γ = 1/2:

P =

(
1/3
2/3

)
, W =

(
1/2 1/4
1/4 3/8

)
.

Again any c-GNN would return a constant function ΦW,P (1) = ΦW,P (2), while if we consider the
following c-SGNN for two-hop filtering:

ΨW,P =

∫
f(TW (W (·, y)))dP (y)

with f an MLP that approximates x→ x2, we obtain ΨW,P (1) ≈ 1/8 and ΨW,P (2) ≈ 11/96, hence
a non-constant function.

C.3 SBMs

Proof of Prop. 7. We treat the two-hop filtering case, since they are included in one-hop architectures.
By Prop. 6, we must prove the separation of elements of X , which here are discrete community labels
X = {1, . . . ,K}. Fix P ∈ ∆K−1 incoherent and W ∈ SK invertible. Assume that k, k′ are two
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communities such that ΨW,P (k) = ΨW,P (k′) for all Ψ with two-hop input filtering. We want to
show that necessarily k = k′. By assumption, we have:

∑
i

f

∑
j

WkjWjiPj

Pi =
∑
i

f

∑
j

Wk′jWjiPj

Pi

for any MLP f . As in the proof of Prop. 3 in App. B.3, f can approximate a function that is {0, 1}-
valued on its inputs such that, if there is an index i such that

∑
jWkjWjiPj 6=

∑
jWkjWjiPj , then

the incoherency of P is contradicted. Hence, for all i,
∑
jWkjWjiPj =

∑
jWkjWjiPj , or in other

words:
W · (P � (Wk,: −Wk′,:)) = 0.

Since W is invertible and P has only non-zero coordinates (by incoherency), we obtain Wk,: = Wk′,:.
Since W is invertible it has necessarily distinct columns, so k = k′, which concludes the proof.

For the failure of c-GNNs we use the example of the proof of Theorem. 4, for which P is incoherent,
W is invertible, but any c-GNN is constant.

C.4 Additive kernel

Proof of Prop. 8. Again we apply Prop. 6. Assume that x, x′ are such that ΨW,P (x) = ΨW,P (x′)
for all one-hop c-SGNN. In particular,∫

f (u(v(x) + v(y))) dP (y) =

∫
f (u(v(x′) + v(y))) dP (y)

for all MLP f . By taking f = u−1, we obtain v(x) = v(x′), which leads to x = x′ by assumption of
injectivity and concludes the proof.

C.5 Radial kernel

Proof of Prop. 9. Again we apply Prop. 6. Let x, x′ such that ΨW,P (x) = ΨW,P (x′) for all c-
SGNNs. We want to prove that: if P is symmetric, then x = x′ or x = −x′ (i.e. we quotient [−1, 1]
by symmetry), and if P is not symmetric, then necessarily x = x′.

By assumption
∫
f(W (x, y))dP (y) =

∫
f(W (x′, y))dP (y) for all MLP f .

If P is symmetric. By choosing f = (·)2 ◦ w−1, we have

0 = E(x−X)2 − E(x′ −X)2 = x2 + 2xEX + EX2 − (x′)2 − 2x′EX − EX2 = x2 − (x′)2

which is indeed x′ = x or x′ = −x.

If P is not symmetric. By the previous reasoning, we still have x′ = x or x′ = −x, however,
we must now show that the case x′ = −x is not possible. By contradiction, assume x′ = −x (and
x 6= 0). Denote Mk = EPXk the kth moment of P . By Lemma 2, P is symmetric iff M2k+1 = 0
for all k. We are going to show that this is the case by recursion: that is true for k = 0 by assumption,
and if M2`+1 = 0 for all ` 6 k − 1, by taking f0(t) = t2k+2:

0 = E(x−X)2(k+1) − E(x+X)2(k+1) =

2(k+1)∑
`=0

(
2(k + 1)

`

)
x`(−1)`M2(k+1)−`

−

2(k+1)∑
`=0

(
2(k + 1)

`

)
x`M2(k+1)−`


=

k+1∑
`=1

(
2(k + 1)

2`− 1

)
x2`−1M2(k+1−`)+1

= 2(k + 1)xM2k+1

and therefore M2k+1 = 0, and P is symmetric, which is a contradiction. Therefore, necessarily
x′ = x, which completes the proof.
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Proof of Prop. 10. Again we apply Prop. 6. Let x, x′ ∈ Sd−1 such that ΨW,P (x) = ΨW,P (x′) for
all c-SGNNs. We want to prove that x = x′. In particular,∫

g(w(x>y))dP (y) =

∫
g(w(x′>y))dP (y), (23)

for all MLP g.

Recall that we have assumed that that P has a density f decomposed as f(x) =
∑
k>0 fk(x) =∑

k>0

∑N(d,k)
j=1 ak,jYk,j(x), where Yk,j are spherical harmonics.

Let Pk denote the Legendre/Gegenbauer polynomial of degree k, which satisfies the addition formula

Pk(x>y) =
1

N(d, k)

N(d,k)∑
j=1

Yk,j(x)Yk,j(y).

Then, taking g = N(d, k)Pk ◦ w−1, note that we have∫
g(w(x>y))dP (y) = N(d, k)

∫
Pk(x>y)f(y)dτ(y)

=
∑
j

Yk,j(x)〈f, Yk,j〉L2(dτ)

= fk(x).

Thus, (23) implies fk(x) = fk(x′) for all k. By assumption of injectivity of x → [fk(x)]k,
necessarily x = x′, which concludes the proof.

D Additional material

Lemma 1. Let (X , d) be a compact metric space, F ⊂ ∪d>1C(X ,Rd) be a subspace of continuous
multivariate functions on X that is closed by concatenation, that is, f, f ′ ∈ F ⇒ [f, f ′] ∈ F . Define
Fρ =

{
g ◦ f | f ∈ F , g : Rd → R is a MLP with non-linearity ρ

}
, where ρ is not polynomial. If F

separates points, that is, ∀x 6= x′,∃f ∈ F , f(x) 6= f(x′), then FMLP is dense in C(X ,R) for the
supremum norm.

Proof. The proof uses the classical Stone-Weierstrass theorem: an algebra of continuous functions
that separates points is dense in the space of continuous functions (for the supremum norm).

The main point is to check that Fρ is an algebra. It is closed by linear combination: for all g, g′
MLPs, there is a g′′ such that g ◦ f + g′ ◦ f ′ = g′′ ◦ [f, f ′] and F is closed by concatenation. Closure
by multiplication is not true in general, however, following [20], this is true when ρ = cos: since
cos(a) cos(b) = 1

2 (cos(a+ b)− cos(a− b)), we have: for g(x) =
∑
i ai cos(b>i x+ ci) and similarly

g′,

(g ◦ f) · (g′ ◦ f ′) =
∑
ij

aia
′
j cos

(
b>i f(x) + ci

)
cos
(
(b′j)

>f ′(x) + c′j
)

=
∑
ij

aia
′
j

1

2

(
cos
(
[bi, bj ]

>[f, f ′](x) + ci + c′j
)

− cos
(
[bi,−bj ]>[f, f ′](x) + ci − c′j

) )
= g′′ ◦ [f, f ′]

for a certain MLP g′′.

Hence Fcos is an algebra. Moreover, it separates points: for x 6= x′, by hypothesis there is a f ∈ F
such that f(x) 6= f(x′), and by the universality theorem applied to MLPs, this is also true for some
g ◦ f .

To conclude the proof, we note that, by the universality theorem of MLPs, cos itself can be approached
by a MLP with any non-polynomial non-linearity ρ, so that Fρ is dense in Fcos.
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Lemma 2. A piecewise continuous function p on [−1, 1] is symmetric iff
∫
t2k+1p(t)dt = 0 for all k.

Proof. Recall that the Legendre polynomials Lk of degree k are such that: a) they form an orthogonal
basis of piecewise continuous functions on [−1, 1] for L2, b) respect parity Lk(−t) = (−1)kLk(t),
c) involves only monomials of the same parity tk−2p, p = 0, . . . , bk2 c.

By considering the decomposition p =
∑
k(
∫
Lkp)Lk, it is immediate that p is symmetric iff∫

L2k+1p = 0 for all k, which is the same as
∫
t2k+1p(t)dt = 0 for all k.

Lemma 3 (Chaining). Let (X ,mX ) be a compact metric space with diameter DX and covering
numbers N (X ,mX , ε) ∝ ε−dX , and Y a measurable space. Consider a bivariate measurable
function U : X × Y → R that is uniformly CU -bounded, and LU -Lipschitz in the first variable. Let
y1, . . . , yn be drawn i.i.d from a distribution P on Y . Then, with probability at least 1− ρ,∥∥∥∥∥ 1

n

∑
i

η(·, yi)−
∫
η(·, y)dP (y)

∥∥∥∥∥
∞

.
LU
√
dX + (LUDX + CU )

√
log(1/ρ)√

n
.

Proof. For any x ∈ X , define

Yx =
1

n

∑
i

U(x, xi)−
∫
U(x, y)dP (y).

Since |Yx| 6 2CU , for any fixed x0 ∈ X , by Hoeffding’s inequality we have: with probability at
least 1− ρ,

|Yx0 | . CU

√
log(1/ρ)

n
.

Now we have∥∥∥∥∥ 1

n

∑
i

U(·, xi)−
∫
U(·, x)dP (x)

∥∥∥∥∥
∞

= sup
x∈X
|Yx| 6 sup

x,x′∈X
|Yx − Yx′ |+ |Yx0

| .

The second term is bounded by the inequality above. For the first term, we are going to use Dudley’s
inequality “tail bound” version [40, Thm 8.1.6]. We first check the sub-gaussian increments of the
process Yx. The sub-gaussian norm ‖·‖ψ2

is defined in [40, Def. 2.5.6]. For any x, x′ ∈ X , we have

‖Yx − Yx′‖ψ2
.

∥∥∥∥∥ 1

n

∑
i

U(x, yi)− U(x′, yi)

∥∥∥∥∥
ψ2

.
1

n

(
n∑
i=1

‖U(x, yi)− U(x′, yi)‖
2
ψ2

) 1
2

.
1

n

(
n ‖U(x, ·)− U(x′, ·)‖2∞

) 1
2

6
LU√
n
mX (x, x′)

where we have used, from [40], Lemma 2.6.8 for the first line, Prop. 2.6.1 for the second, Example
2.5.8 for the third, and the Lipschitz property of U for the last.

Now, we apply Dudley’s inequality [40, Thm 8.1.6] to obtain that with probability 1− ρ,

sup
x,x′∈X

|Yx − Yx′ | .
LU√
n

(∫ 1

0

√
logN(X , d, ε)dε+DX

√
log(1/ρ)

)
. LU

√
d+DX

√
log(1/ρ)√

n
.

Combining with the decomposition above yields the desired result.
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Lemma 4 (Variant of Lemma 6 in [22]). Let (E, ‖·‖E) be a Banach space and (H, ‖·‖H) be a
separable Hilbert space. Let L,L′ be two bounded operators on E, and S : E → H be a linear
operator such that ‖S‖H→E 6 1. For 1 6 i 6 d and 1 6 j 6 d′, let hij =

∑
k βijkλ

k be a
collection of analytic filters, with Bk = (βijk)ji ∈ Rd′×d the matrix of order-k coefficients, with
operator norm ‖Bk‖. Let x1, . . . , xd ∈ E be a collection of points. Then:√√√√∑

j

∥∥∥∥∥S∑
i

hij(L)xi

∥∥∥∥∥
2

H

6

(∑
k

‖Bk‖
∥∥Lk∥∥)√∑

i

‖xi‖2E (24)

and√√√√∑
j

∥∥∥∥∥S∑
i

(hij(L)− hij(L′))xi

∥∥∥∥∥
2

H

6
∑
k

‖Bk‖

√√√√∑
i

(
k−1∑
`=0

‖L`‖ ‖(L− L′)(L′)k−1−`xi‖E

)2

.

(25)
Now, if ‖Lx‖E 6 ‖Sx‖H for some Hilbert spaceH, then√√√√∑

j

∥∥∥∥∥∑
i

hij(L)xi

∥∥∥∥∥
2

E

6

∥∥B0,|·|
∥∥+

∑
k>1

‖Bk‖
∥∥Lk−1

∥∥√∑
i

‖xi‖2E . (26)

Proof. The results (24) and (25) are directly from Lemma 6 in [22]. The result (26) is obtained by
observing that√√√√∑

j

∥∥∥∥∥∑
i

hij(L)xi

∥∥∥∥∥
2

E

=

√√√√∑
j

∥∥∥∥∥∑
ik

βijkLkxi

∥∥∥∥∥
2

E

6
∑
k

√√√√∑
j

∥∥∥∥∥∑
i

βijkLkxi

∥∥∥∥∥
2

E

6

√√√√∑
j

∥∥∥∥∥∑
i

βij0xi

∥∥∥∥∥
2

E

+
∑
k>1

√√√√∑
j

∥∥∥∥∥S∑
i

βijkLk−1xi

∥∥∥∥∥
2

H

.

We apply (24) on the second term and on the first:√√√√∑
j

∥∥∥∥∥∑
i

βij0xi

∥∥∥∥∥
2

E

6

√√√√∑
j

(∑
i

|βij0| ‖xi‖E

)2

6
∥∥B0,|·|

∥∥√∑
i

‖xi‖2E .

Lemma 5 (Properties of c-GNNs). Apply a c-GNN to a random graph model. Denote by f (`) the
function at each layer. Then we have

∥∥∥f (`)
∥∥∥
∗
6 ‖f‖∗

`−1∏
s=0

H
(s)
∗ +

`−1∑
s=0

∥∥∥b(s)∥∥∥ `−1∏
p=s+1

H
(p)
∗ (27)

where ∗ indicates L2(P ) or∞.

Moreover, for x, x′ ∈ X , we have

∥∥∥f (`)(x)− f (`)(x′)
∥∥∥ 6

(
`−1∏
s=0

∥∥∥B(s)
0

∥∥∥)∥∥∥f (0)(x)− f (0)(x′)
∥∥∥

+ LW dX (x, x′)

`−1∑
s=0

(
`−1∏
p=s+1

∥∥∥B(p)
0

∥∥∥)(∥∥∥f (0)
∥∥∥
L2(P )

s∏
p=0

H
(p)
2 +

s−1∑
p=0

∥∥∥b(p)∥∥∥ s∏
r=p+1

H
(r)
2

)
.
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Proof. For j 6 d`, using Lemma 4, the Lipschitzness of ρ and the easy fact that ‖TW,P f‖∞ 6
‖f‖L2(P ). we write

∥∥∥f (`)
∥∥∥
∗
6

√√√√√∑
j

∥∥∥∥∥∥
d`−1∑
i=1

h
(`−1)
ij (TW,P )f

(`−1)
i + b

(`−1)
j

∥∥∥∥∥∥
2

∗

6

√√√√√∑
j

∥∥∥∥∥∥
d`−1∑
i=1

h
(`−1)
ij (TW,P )f

(`−1)
i

∥∥∥∥∥∥
2

∗

+
∥∥∥b(`−1)

∥∥∥
6 H

(`−1)
∗

∥∥∥f (`−1)
∥∥∥
∗

+
∥∥∥b(`−1)

∥∥∥ .
An easy recursion gives the result.

Now,

∥∥∥f (`)(x)− f (`)(x′)
∥∥∥ 6

√√√√√∑
j

d`−1∑
i=1

h
(`−1)
ij (TW,P )f

(`−1)
i (x)− h(`−1)

ij (TW,P )f
(`−1)
i (x′)

2

=
∑
k

∥∥∥∥B(`−1)
k

[
T kW,P f

(`−1)
i (x)− T kW,P f

(`−1)
i (x′)

]d`−1

i=1

∥∥∥∥
and since |TW,P f(x)− TW,P f(x′)| 6 LW dX (x, x′) ‖f‖L2(P ) and ‖TW,P ‖L2(P ) 6 1 by Schwartz
inequality,∥∥∥f (`)(x)− f (`)(x′)

∥∥∥ 6
∥∥∥B(`−1)

0

∥∥∥∥∥∥f (`−1)(x)− f (`−1)(x′)
∥∥∥+H

(`−1)
2

∥∥∥f (`−1)
∥∥∥
L2(P )

LW dX (x, x′).

Again we obtain the result by recursion.

Lemma 6. (Properties of c-SGNNs) Denote by f (`) the bivariate functions propagated in the inner
part of a c-SGNN. We have∥∥∥f (`)

∥∥∥
∞

6 Cη

`−1∏
s=0

H(s)
∞ +

`−1∑
s=0

∥∥∥b(s)∥∥∥ `−1∏
p=s+1

H(p)
∞ .

Moreover, ∥∥∥f (`)(·, x)− f (`)(·, x′)
∥∥∥
∞

6 LηdX (x, x′)

`−1∏
s=0

H(s)
∞ .

Proof. The first inequality is proved exactly as Lemma 5, noting that ‖TW,P ‖∞ even for bivariate
functions and ‖η‖∞ 6 Cη .

Then we have

∥∥∥f (`)(·, x)− f (`)(·, x′)
∥∥∥
∞

6

√√√√√∑
j

∥∥∥∥∥∥
d`−1∑
i=1

h
(`−1)
ij (TW,P )

[
f

(`−1)
i (·, x)− f (`−1)

i (·, x′)
]∥∥∥∥∥∥

2

∞

6 H(`−1)
∞

∥∥∥f (`−1)(·, x)− f (`−1)(·, x′)
∥∥∥
∞
.

Theorem 5 ([25]). LetA be a n×n symmetric matrix with independent Bernoulli entries aij ∼ αnpij .
Assume that αn & logn

n . Then, for all ν > 0, there is a constant Cν such that, for all n, with
probability at least 1− n−ν:

1

n

∥∥∥∥ Aαn − P
∥∥∥∥ 6

Cν√
αnn

. (28)
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E Details of numerical experiments

Figure 1. In this figure, we consider a 2-communities SBM with incoherent P , invertible W ,
but constant degree function. We use dense random edges with αn = 1. We train a permutation-
equivariant GNN and a two-hop filtering SGNN on 5 random graphs with n = 80 nodes, output
dimension dout = K, with cross-entropy loss and the Adam optimizer. The displayed graph signal
corresponds to the first dimension of the log-softmax of the ouput. The test graph has n = 300
nodes. The graph filters have order 1, such that we actually manipulate the message-passing version
of GNNs. The GNN has M = 5 hidden layers with internal dimension d` = 250 (except d0 = 1
and dout = 2) and is trained for 2000 epochs. Each of the GNNs constituting the SGNN has M = 2
hidden layers with dimension d` = 50 and is trained for 1000 epochs.

Figure 2. We compare one-hop and two-hop input filtering for a simple permutation-invariant
SGNN, between the deterministic edges case and the random edges case. We know that the deter-
ministic edges case converges to the c-SGNN in all settings, and we test if the random edges case
converge to the deterministic one. We average over 50 random graphs with Gaussian kernel and a
range of n’s with αn ∼ n−1/3, such that Prop. 1 applies in the two-hop case. The dominating term in
the theoretical rate is O (1/(αn

√
n)) from Prop. 1.

Figure 3. Here we consider X = [−1, 1] with Gaussian kernel, and either a symmetric P (uniform)
or a non-symmetric but centered P (here a well-adjusted affine by part function). We use random
edges with αn ∼ n−1/3. We train a SGNN with two-hop input filtering to approximate either a
symmetric function x → cos(5x) or a non-symmetric one x → sin(5x) with a simple square loss.
We use 5 training graphs of size n = 150 and display a test graph with size n = 400.
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