
A Performer architecture details

We define the Performer architecture formally as follows. X(out) = X(s)W(out) + b(out) and for
each 1 ≤ r ≤ s:

H(r−1) = LN(MultiHead-Att(X(r−1))) + X(r−1), (11)

X(r) = LN(FFN(H(r−1))) + H(r−1), where (12)

MultiHead-Att(X) = [H(1) . . . H(k)], (13)

∀j ≤ k : H(j) = Att(XW
(j)
Q ,XW

(j)
K ,XW

(j)
V), (14)

FFN(H) = GeLU(HW(1) + b(1))W(2) + b(2). (15)

Here k is the number of attention heads (dmodel = kd). W(out) ∈ Rdmodel×|Σ|, b(out) ∈
R1×|Σ|, W(1) ∈ Rdmodel×dff , b(1) ∈ R1×dff , W(2) ∈ Rdff×dmodel , b(2) ∈ R1×dmodel ,
W

(j)
Q ,W

(j)
K ,W

(j)
V ∈ Rdmodel×d are trainable parameters (separate for each instance of

MultiHead-Att, FFN), “+” is broadcasted rowwise when biases are added and LN is layer normal-
ization [2], which is applied rowwise and depends on additional trainable parameters. GeLU denotes
Gaussian error Linear Unit [16], which is applied elementwise.

B Derivation of Gradient Expressions

θ(n) doesn’t affect terms L(1)(X(out,1)), . . . ,L(n−1)(X(out,n)), so corresponding gradients are zero:

∇θ(n)L = ∇θ(n)

N∑
n′=n

L(n′)(X(out,n′)).

Similarly, U (n) does not affect L(1), . . . ,L(n), so

G(n) = ∇U(n)L = ∇U(n)

N∑
n′=n+1

L(n)(X(out,n′)).

In particular,
G(N) = ∇U(N)L = 0r×D1 .

For all 1 ≤ n < n′ ≤ N , θ(n) and U (n−1) affect L(n′) only through U (n), so according to the chain
rule

∇θ(n)

N∑
n′=n+1

L(n′)(X(out,n′)) =

s∑
r=1

∂U (n)
r

∂θ(n)

>

×∇U(n)
r

N∑
n′=n+1

L(n′)(X(out,n′))

=

s∑
r=1

∂U (n)
r

∂θ(n)

>

×∇U(n)
r
L,

∀1 ≤ r′ ≤ s : ∇U(n−1)

r′

N∑
n′=n+1

L(n′)(X(out,n′)) =

s∑
r=1

∂U (n)
r

∂U (n−1)
r′

>

×∇U(n)
r

N∑
n′=n+1

L(n′)(X(out,n′))

=

s∑
r=1

∂U (n)
r

∂U (n−1)
r′

>

×∇U(n)
r
L,

where ∂�
∂� denotes Jacobian matrices. Further, for all 1 ≤ r ≤ s:

∂U (n)
r

∂�

>

×∇U(n)
r
L = ∇�

(
[U (n)
r]>〈〈∇U(n)

r
L〉〉
)
,

where � ∈ {θ(n)} ∪ {U (n−1)
r′ }1≤r′≤s. 〈〈·〉〉 denotes a stop-gradient operator, i.e. gradients are not

propagated inside brackets and the argument is considered as constant.

14

We conclude that

∇θ(n)L = ∇θ(n)L(n)(X(out,n)) +∇θ(n)

N∑
n′=n+1

L(n′)(X(out,n′)) = ∇θ(n)L(n)(X(out,n))

+

s∑
r=1

∂U (n)
r

∂θ(n)

>

×∇U(n)
r
L

= ∇θ(n)

(
L(n)(X(out,n)) +

s∑
r=1

[U (n)
r]>〈〈∇U(n)

r
L〉〉
)

= ∇θ(n)Φ(n)(θ(u),U (n−1),∇U(n)L)

= ∇θ(n)Φ(n)(θ(u),U (n−1),G(n)),

∀1 ≤ r′ ≤ s : G(n−1)
r′ = ∇U(n−1)

r′
L = ∇U(n−1)

r′
L(n)(X(out,n)) +∇U(n−1)

r′

N∑
n′=n+1

L(n′)(X(out,n′))

= ∇U(n−1)

r′
L(n)(X(out,n)) +

s∑
r=1

∂U (n)
r

∂U (n−1)
r′

>

×∇U(n)
r
L

= ∇U(n−1)

r′

(
L(n)(X(out,n)) +

s∑
r=1

∇�[U (n)
r]>〈〈∇U(n)

r
L〉〉
)

= ∇U(n−1)

r′
Φ(n)(θ(n),U (n−1),∇U(n)L)

= ∇U(n−1)

r′
Φ(n)(θ(n),U (n−1),G(n)),

where the second chain of equalities is equivalent to (10).

C Efficient “Block” Computation of (2-3)

Denote Q̃ = (g(Ql))
L
l=1, K̃ = (g(Kl))

L
l=1, N = (Rl × Q̃l)

L
l=1, D = (S>l Q̃l)

L
l=1. [18] propose the

following algorithm for computation of (2-3). Initialize buffers curR = 0d×M , curS = 0M , iterate
over l = 1, . . . , L and compute

curR := curR + Vl × K̃>l ;

curS := curS + K̃l;

Nl := curR× Q̃l;

Dl := curS> × Q̃l;

Yl := Nl/Dl.

This way, the 3D tensor R ∈ RL×d×M is not stored in memory explicitly, resulting in O(L) time
and O(L(d + M) + dM) memory complexity. In order to have the same memory consumption
during back-propagation, [18] propose the following routine. Keep buffers curR, curS as the result
of forward pass, and initialize gradient buffers gradR = 0d×M , gradS = 0M . Assuming that
∇NL ∈ RL×d,∇DL ∈ RL are computed using automatic differentiation, iterate in a backward
direction l = L, . . . , 1 and compute

∇Q̃l
L := (∇Dl

L) · curS + curR> ×∇Nl
L;

curR := curR−Vl × K̃>l ;

curS := curS− K̃l;

gradR := gradR + (∇Nl
L)× Q̃>l ;

gradS := gradS + (∇Dl
L) · Q̃l;

∇Vl
L := gradR× K̃l;

∇K̃l
L := gradR> ×Vl.

15

In practice, the described algorithm works slowly when implemented in pure PyTorch, because l is
iterated one-by-one: [18] use low-level CUDA extensions to make the algorithm practical. Instead,
we propose a “block” version, when we iterate through blocks of l of a small size C (we use C = 64).
In each block we use explicit prefix sums on inputs of length C to find Yl:l+C−1, using the maintained
front curR, curS. The formal algorithm is as follows. Initialize buffers curR = 0d×M , curS = 0M .
For simplicity assuming that C divides L (extension for an opposite case is straightforward), iterate
over l = 1, C + 1, . . . , L− C + 1 and compute

blockR := PS((Vl+l′−1 × K̃>l+l′−1)Cl′=1); (16)

blockR := (curR + blockRl′)
C
l′=1;

blockS := PS((K̃l+l′−1)Cl′=1); (17)

blockS := (curS + blockSl′)
C
l′=1;

curR := blockRC ;

curS := blockSC ;

Nl:l+C−1 := (blockRl′ × Q̃l+l′−1)Cl′=1;

Dl:l+C−1 := (blockS>l′ × Q̃l+l′−1)Cl′=1;

Yl:l+C−1 := (Nl+l′−1/Dl+l′−1)Cl′=1.

In the “block” version, the number of outer sequential iterations is reduced to L/C, resulting in
O((L/C) log C) parallel time complexity, when the logarithmic parallel algorithm is used to compute
prefix sums (16,17). In our experiments, we use torch.cumsum to compute (16,17), which works
fast in practice. The memory complexity of the algorithm is O(L(d+M) +CdM), where the second
term is for storing blockR. Assuming that C is a small constant (C = O(1)), we conclude that the
“block” version has O(L(d+M)+dM) memory and O(L) time complexity – same as the algorithm
of [18]. As for hidden constants in complexity estimates, the constant inside O(L) time complexity is
reduced at the cost of increasing constant of the “small” dM term in the memory complexity (when
d,M � L), making the “block” iterative algorithm a practical choice for computing (2-3).

We further show how to back-propagate through (2-3) in O((L/C) log C) time and O(L(d+M) +
CdM) memory. Again, keep buffers curR, curS as the result of forward pass, and initialize gradient
buffers gradR = 0d×M , gradS = 0M . Assuming that ∇NL ∈ RL×d,∇DL ∈ RL are computed
using automatic differentiation, iterate in a backward direction l = L − C + 1, L − 2C + 1, . . . , 1
and compute

curR := curR−
l+C−1∑
l′=l

Vl′ × K̃>l′ ;

curS := curS−
l+C−1∑
l′=l

K̃l′ ;

blockR := PS((Vl+l′−1 × K̃>l+l′−1)Cl′=1);

blockR := (curR + blockRl′)
C
l′=1;

blockS := PS((K̃l+l′−1)Cl′=1);

blockS := (curS + blockSl′)
C
l′=1;

∇Q̃l:l+C−1
L := ((∇Dl+l′−1

L) · blockSl′ + curR>l′ ×∇Nl+l′−1
L)Cl′=1;

gradR := gradR +

l+C−1∑
l′=l

(∇Nl′L)× Q̃>l′ ;

gradS := gradS +

l+C−1∑
l′=l

(∇Dl′L) · Q̃l′ ;

blockgradR := PS(((∇Nl+l′−1
L)× Q̃>l+l′−1)Cl′=1);

blockgradR := (gradR− blockgradRl′)
C
l′=1;

16

Figure 5: Version of Figure 2 for configuration I.

blockgradS := PS(((∇Dl+l′−1
L) · Q̃l+l′−1)Cl′=1);

blockgradS := (gradS− gradSl′)
C
l′=1;

∇Vl:l+C−1
L := (blockgradRl′ × K̃l+l′−1)Cl′=1;

∇K̃l:l+C−1
L := (blockgradR>l′ ×Vl+l′−1)Cl′=1.

Finally, it’s easy to see how to use both one-to-one and “block” iterative computation as part
of Algorithm 1 to compute the update (7-8). For that, when doing a forward computation for
some n, r, initialize curR, curS from corresponding subvectors of U

(r−1,n−1)
Bn−1 , with the rest of the

algorithm unchanged. Similarly, during a backward pass for some n, r, initialize gradR, gradS
from corresponding subvectors of G(n) and leave the rest of the iterative back-propagation algorithm
unchanged.

D Additional Experimental Details

We use 200K, 100K, 200K SGD iterations in the Copying Task, Penn Treebank, Enwik8 setups
respectively. We use Adam optimizer [19] with β1 = 0.9, β2 = 0.999 (default configuration used
in PyTorch). For the Copying task, we train with a learning rate 10−3 for 130K iterations and then
decrease the learning rate to 10−4. We use a fixed learning rate of 10−4 and 2 × 10−4 in Penn
Treebank and Enwik8 experiments respectively.

Figure 5 is a version of Figure 2 for the configuration II. We draw the same conclusions to those
reported in the main text. Figure 6 is a bigger version of Figure 4 from the main text. Figure 7 reports
additional experimental results: Bits Per Character for the Copying Task and train set learning curves
for Penn Treebank and Enwik8. Figure 8 is a version of Figure 4, showing a difference (−) between
curves and the “Full” curve. We observe that memory-efficient algorithms result in a negligible
loss of performance, which we attribute to numerical effects, accumulating with many thousands of
iterations.

17

Figure 6: Bigger version of Figure 4.

18

Figure 7: Bits-per-character learning curve for the Copying task and train-set learning curves for
language modelling on Penn Treebank and Enwik8 respectively.

19

Figure 8: A difference (−) between curves and the “Full” curve from Figure 4.

20

	Introduction
	Background: linear self-attention and Performer
	Low-memory back-propagation algorithm
	Compact notation for Performer
	Forward computation
	Back-propagation and the final algorithm
	Analysis of the running time and memory

	Experiments
	Empirical benchmarking of the tradeoff
	Effects of finite-precision arithmetic
	Training from scratch and fine-tuning
	One-shot fine-tuning under low memory

	Related Work and Extensions
	Conclusion
	Performer architecture details
	Derivation of Gradient Expressions
	Efficient ``Block'' Computation of (2-3)
	Additional Experimental Details

