
A FedSage+ Algorithm

Referring to Section 4.3, FedSage+ includes two phases. Firstly, all data owners in the distributed
subgraph system jointly train NeighGen models through sharing gradients. Next, after every local
graph mended with synthetic neighbors generated by the respective NeighGen model, the system
executes FedSage to obtain the generalized node classification model. Algorithm 1 shows the pseudo
code for FedSage+.

Algorithm 1 FedSage+: Subgraph federated learning with missing neighbor generation
1: Notations. Data owners set {D1, . . . , DM}, server S, epochs for jointly training NeighGen eg,

epochs for FedSage ec, learning rate for FedSage η.
2: For t = 1→ eg , we iteratively run procedure A, procedure C, procedure D, and procedure E
3: Every Di ∈ {D1, . . . , DM} retrieves G′i from FL trained NeighGeni
4: S initializes and broadcasts φ
5: For t = 1→ ec, we iteratively run procedure B and procedure F
6:
7: On the server side:
8: procedure A SERVEREXCECUTIONFORGEN(t) . FL of NeighGen on epoch t
9: Collect (Zti , H

g
i)← LOCALREQUEST(Di, t) from every data owner Di, where i ∈ [M]

10: Send {(Ztj , H
g
j)|j ∈ [M] \ {i}} to every data owner Di, where i ∈ [M]

11: for Di ∈ {D1, . . . , DM} in parallel do
12: {∇Lfi,1, . . . ,∇L

f
i,M} \ {∇L

f
i,i} ← FEEDFORWARD(Di, {(Ztj , H

g
j)|j ∈ [M] \ {i}})

13: for Di ∈ {D1, . . . , DM} in parallel do
14: Aggregate gradients as∇Lfi,J ←

∑
j∈[M]\{i}∇L

f
i,j

15: Send ∇Lfi,J to Di for UPDATENEIGHGEN(Di,∇Lfi,J)

16: procedure B SERVEREXCECUTIONFORC(t) . FedSage for mended subgraphs on epoch t
17: Collect φi ← LOCALUPDATEC(Di, φ, t) from all data owners
18: Broadcast φ← 1

M

∑
i∈[M] φi

19:
20: On the data owners side:
21: procedure C LOCALREQUEST(Di, t) . Run on Di

22: Sample a V ti ∈ V̄ ti and get Zti ← {He
i (Ḡi(v))|v ∈ V ti }

23: Send Zti , H
g
i to Server

24: procedure D FEEDFORWARD(Di, {(Ztj , H
g
j)|j ∈ [M] \ {i}}) . Run on Di

25: for j ∈ [M] \ {i} do
26: Lfj,i ← 1

|Zt
j |
∑
zv∈Zt

j

∑
p∈[|Hg

j (zv)|]
(
minu∈Vi

(||Hg
j (zv)

p − xu||22)
)

. A part of Eq. (6)

27: Compute and send {∇Lf1,i, . . . ,∇L
f
M,i} \ {∇L

f
i,i} to Sever

28: procedure E UPDATENEIGHGEN(Di,∇Lfi,J) . Run on Di

29: Train NeighGeni by optimizing Eq. (6).
30: procedure F LOCALUPDATEC(Di, φ, t) . Run on Di

31: Sample a V ti ⊆ Vi
32: φi ← φ− η∇l(φ|{(G′i(v), yv)|v ∈ V ti })
33: Send φi to Sever

1

B Full Version of Definition 6.1

Notation. We denote the whole graph G = {V,E,X} and |V | = n. To perform node classification
on G, we consider a GNN F with K aggregation operations1 and each aggregation operation contains
R fully-connected layers. We describe the aggregation operation below.

Definition B.1 (Aggregation operation, (AGG)) For ∀k ∈ [K], AGG aggregates the information
from the previous layer and performs R times non-linear transformation. With denoting the initial
feature vector for node u ∈ V as h(0,R)

u = xu ∈ Rd, for an AGG with R = 2 fully-connected layers,
the AGG can be written as:

h(k,0)u = cu

√
cσ
m
σ

φk,2√cσ
m
σ

φk,1 · cu ∑
v∈N (u)∪u

h(k−1,0)v

 ,

where cσ ∈ R is a scaling factor related initialization, cu ∈ R is a scaling factor associated
with neighbor aggregation, σ(·) is ReLU activation, and learnable parameter φk,r ∈ Rm×m for
∀(k, r) ∈ [K]× [R]\{(1, 1)} as φ1,1 ∈ Rk×d.

For notation simplicity, GNN F here is considered in GNTK format. The weights of F , φ is
i.i.d. sampled from a multivariate Gaussian distribution N (0, I). For node u ∈ V , we denote u’s
computational graph as Gu = {Vu, Eu, Xu} and |Vu| = nu. Let 〈a, b〉 denote inner-product of
vector a and b. We are going to define the kernel matrix of two nodes u, v ∈ V as follows.

Definition B.2 (GNTK for node classification) Considering in the overparameterized regime for
an GNN F , F is trained using gradient descent with infinite small learning rate. Given n training
samples of nodes with corresponding labels, we denote Θ ∈ Rn×n as the the kernel matrix of GNTK.
For ∀u, v ∈ V , Θuv is the u, v entry of Θ and defined as

Θuv = Eφ∼N (0,I)

[〈
∂F (φ,G, u)

∂φ
,
F (φ,G, v)

∂φ

〉]
= Eφ∼N (0,I)

[〈
∂F (φ,Gu, u)

∂φ
,
F (φ,Gv, v)

∂φ

〉]
∈ R.

In GNTK formulation, an AGG B.1 needs to calculate 1) a covariance matrix Σ(Gu, Gv); and 2) the
intermediate kernel values Θ(Gu, Gv) Now, we specify the pairwise value in Σ(Gu, Gv) ∈ Rnu×nv

and Θ(Gu, Gv) ∈ Rnu×nv . For ∀k ∈ [K] and ∀r ∈ [R], Σ
(k)
(r)(Gu, Gv) and Θ

(k)
(r)(Gu, Gv) indicate

the corresponding covariance and intermediate kernel matrix for rth transformation and kth layers.
Initially, we have [Σ

(0)
(R)(Gu, Gv)]uv = [Θ

(0)
(R)(Gu, Gv)]uv = 〈hu, hv〉, where hu, hv ∈ Rd are the

input features of node u and v. Denote the scaling factor for node u as cu. Θ
(l)
(R)(Gu, Gv) can

be calculated recursively through the aggregation operation given in [7]. Specifically, we have the
following two steps.

Step 1: Neighborhood Aggregation As the AGG we defined above, in GNTK, the aggregation
step can be performed as:[

Σ
(k)
(0)(Gu, Gv)

]
uv

= cucv
∑

u′∈N (u)∪{u}

∑
v′∈N (v)∪{v}

[
Σ

(k−1)
(R) (Gu, Gv)

]
u′v′

,

[
Θ

(k)
(0)(Gu, Gv)

]
uv

= cucv
∑

u′∈N (u)∪{u}

∑
v′∈N (v)∪{v}

[
Θ

(k−1)
(R) (Gu, Gv)

]
u′v′

.

Step 2: R transformations Now, we consider the R ReLU fully-connected layers which perform
non-linear transformations to the aggregated feature generated in step 1. The ReLU activation function

1In Graphsage, this is equivalent to having K graph convectional layers.

2

σ(x) = max{0, x}’s derivative is denoted as σ̇(x) For r ∈ [R], u, v ∈ V , we define covariance
matrix and its derivative as

[
Σ

(k)
(r) (Gu, Gv)

]
uv

= cσE(a,b)∼N
(
0,
[
A

(k)

(r)
(Gu,Gv)

]
uv

)[σ(a)σ(b)],[
Σ̇

(k)

(r) (Gu, Gv)
]
uv

= cσE(a,b)∼N
(
0,
[
A

(k)

(r)
(Gu,Gv)

]
uv

)[σ̇(a)σ̇(b)],

where [A
(k)
(r)(Gu, Gv)]uv is an intermediate variable that

[
A

(k)
(r)(Gu, Gv)

]
uv

=

 [
Σ

(k)
(r−1)(Gu, Gu)

]
uu

[
Σ

(k)
(r−1)(Gu, Gv)

]
uv[

Σ
(k)
(r−1)(Gu, G)

]
uv

[
Σ

(k)
(r−1)(Gv, Gv)

]
vv

 ∈ R2×2

Thus, we have[
Θ

(l)
(r)(Gu, Gv)

]
uv

=
[
Θ

(k)
(r−1)(Gu, Gv)

]
uv

[
Σ̇

(k)
(r)(Gu, Gv)

]
uv

+
[
Σ

(k)
(r)(Gu, Gv)

]
uv
.

Θ = Θ
(l)
(R)(Gu, Gv) can be viewed as kernel matrix of GNTK for node classification. The general-

ization ability in the NTK regime and depends on the kernel matrix.

C Missing Proofs for Theorem 6.2

In this section, we provide the detailed version and proof of Theorem 6.2.

Theorem C.1 (Full version of generalization bound Theorem 6.2) Given n training data sam-
ples (hi, yi)

n
i=1 drawn i.i.d from Graph G, we consider any loss function l : R × R 7→ [0, 1]

that is 1-Lipschitz in the first argument such that l(y, y) = 0. With a probability at least 1− σ and a
constant c ∈ (0, 1), the generalization error of GNTK for node classification can be upper-bounded
by

LD(F) = E(G,y)∼D[l(F (G), y)] = O

(√
y>Θ(−1)y · tr(Θ)

n
+

√
log(1/σ)

n

)
.

To prove the generalization bound, we make the following assumptions about the labels.

Assumption C.2 For each i ∈ [n], the labels yi = [y]i ∈ R satisfies

yi = α1〈h̄>u , β1〉+

∞∑
l=1

α2l〈h̄>u , β2l〉2l,

where α1, α2, · · · , α2k ∈ R, β1, β2, · · · , β2k ∈ Rd, and h̄u = cu
∑
v∈N (u)∪{u} hv ∈ Rd .

The following Lemma C.3 and C.4 give the bounds for
√

y>Θ(−1)y and tr(Θ).

Lemma C.3 (Bound on
√

y>Θ(−1)y) Under the Assumption C.2, we have√
y>Θ(−1)y ≤ 2|α1|‖β1‖2 +

∞∑
l=1

√
2π(2k − 1)|α2l|‖β2l‖2l2 = o(n)

Proof. Without loss of generality, we consider a simple GNN (K = 1, R = 1) in Section B and
define the kernel matrix for on the computational graph Gu, Gv node u, v ∈ V as

Θuv =
[
Σ

(1)
(0)(Gu, Gv)

]
uv

[
Σ̇

(1)
(1)(Gu, Gv)

]
uv

+
[
Σ

(1)
(1)(Gu, Gv)

]
uv
.

3

We decompose Θ ∈ Rn×n into Θ = Θ′ + Θ′′, where

Θ′uv =
[
Σ

(1)
(0) (Gu, Gv)

]
uv

[
Σ̇

(1)

(1) (Gu, Gv)
]
uv
, and Θ′′uv =

[
Σ

(1)
(1)(Gu, Gv)

]
uv
.

Following the proof in [7] and assuming ‖h̄u‖2 = 1, we have

[
Σ̇

(1)

(1) (Gu, Gv)
]
uv

=
π − arccos

([
Σ

(1)
(0) (Gu, Gv)

]
uv

)
2π

,

[
Σ

(1)
(1) (Gu, Gv)

]
uv

=
π − arccos

([
Σ

(1)
(0) (Gu, Gv)

]
uv

)
+

√
1−

[
Σ

(1)
(0) (Gu, Gv)

]2
uv

2π
.

Then,

Θ′ =
1

4

[
Σ

(1)
(0) (Gu, Gv)

]
uv

+
1

2π

[
Σ

(1)
(0) (Gu, Gv)

]
uv

arcsin
([

Σ
(1)
(0) (Gu, Gv)

]
uv

)
=

1

4

[
Σ

(1)
(0) (Gu, Gv)

]
uv

+
1

2π

∞∑
l=1

(2k − 3)!!

(2k − 2)!! · (2k − 1)
·
[
Σ

(1)
(0) (Gu, Gv)

]2k
uv

=
1

4
h̄>u h̄v +

1

2π

∞∑
l=1

(2k − 3)!!

(2k − 2)!! · (2k − 1)
·
(
h̄>u h̄v

)2k
.

We denote Φ2k as the feature map of the kernel at degree 2k that 〈hu, hv〉(2k) = Φ2k(hu)>Φ2k(hv).
Following the proof in [7], we have

Θ′ =
1

4
h̄>u h̄u′ +

1

2π

∞∑
l=1

(2k − 3)!!

(2k − 2)!! · (2k − 1)
· Φ2k(h̄u)>Φ2k(h̄v).

As Θ′′ is a positive semidefinite matrix, we have

y>Θ(−1)y ≤ y>Θ′
(−1)

y.

We define y(0)i = α1

(
h̄>u
)
β1 and y(2k)i = α2kΦ2k

(
h̄u
)>

Φ2k(β2k) for each k ≥ 1. Under Assump-
tion C.2, label yi can be rewritten as

yi = y
(0)
i +

∞∑
k=1

y
(2k)
i .

Then we have√
y>Θ(−1)y ≤

√
y>Θ′(−1)y ≤

√
(y(0))>Θ′(−1)y(0) +

∞∑
k=1

√
(y(2k))>Θ′(−1)y(2k).

When k = 0, we have √
(y(0))>Θ′(−1)y(0) ≤ 4|α1|‖β1‖2.

When k ≥ 1, we have√
(y(2k))>Θ′(−1)y(2k) ≤

√
2π(2k − 1)|α2k|‖Φ2k(β2k)‖2 =

√
2π(2k − 1)|α2k|‖β2k‖2l2 .

Thus, √
y>Θ(−1)y ≤ 2|α1|‖β1‖2 +

∞∑
l=1

√
2π(2k − 1)|α2l|‖β2l‖2l2 = o(n)

The bound of tr(Θ) is simpler to prove.

Lemma C.4 (Bound on tr(Θ)) Let n denote as the number of training samples. Then tr(Θ) ≤ 2n.

4

Proof. We have Θ ∈ Rn×n. For each u, v ∈ V , as Lemma C.3 shown that[
Σ̇

(1)

(1) (Gu, Gv)
]
uv

=
π − arccos

([
Σ

(1)
(0) (Gu, Gv)

]
uv

)
2π

≤ 1

2
and

[
Σ

(1)
(1) (Gu, Gv)

]
uv

=
π − arccos

([
Σ

(1)
(0) (Gu, Gv)

]
uv

)
+

√
1−

[
Σ

(1)
(0) (Gu, Gv)

]2
uv

2π
≤ 1,

we have
Θuv ≤ 2.

Thus,
tr(Θ) ≤ 2n.

Combine Combining Theorem C.1, Lemma C.3 and Lemma C.4, it is easy to see for a constant
c ∈ (0, 1) :

LD(F) = E(v,y)∼G[l(F (G, v), y)] . O(1/nc).

D Detailed ablation studies of NeighGen

In this section, we provide in-depth NeighGen studies to empirically explain its power in the
cross-subgraph missing neighbor generation. Specifically, we first show the intermediate results of
NeighGen by boiling down the generation process into the missing cross-subgraph link generation by
dGen and the missing cross-subgraph neighbor feature generation by fGen. Next, we experimentally
verify the necessity of training locally specialized NeighGen. Finally, we provide FL training
hyper-parameter study on batch size and local epoch to emphasize the robustness of FedSage+.

D.1 Intermediate results of dGen and fGen.

In this section, we study the two generative components in NeighGen, i.e., dGen and fGen, to explore
their expressiveness in reconstructing missing neighbors. Especially, we analyze the outputs from
dGen and fGen separately to explain how NeighGen assists in the missing cross subgraph neighbor
generation process.

As described in Section 4, both dGen and fGen are constructed as fully connected neural networks
(FNNs) whose depths can be varied according to the target dataset. In principle, due to the expressive-
ness of FNNs [29], dGen and fGen with even very few layers have the power to approximate complex
functions. The node degree and feature distributions, on the other hand, are often highly relevant to
the graph structure and less complex in nature. In Fig. 1 and Table 1, we provide intermediate results
on how dGen and fGen are able to recover missing neighbor numbers and features, respectively.

Additional details for dGen. Fig. 1 shows the break-down performance of dGen on the MSAca-
demic dataset with M=3, which clearly shows the effectiveness of dGen in recovering the true number
of missing neighbors. Notably, though the original output of dGen is a float number, we simply apply
the round function to retrieve the integer number of missing neighbors for reconstruction.

Additional details for fGen. As described in Section 4.1, based on the number of missing neigh-
bors generated by dGen, fGen further generates the feature of missing neighbors, thus recovering the
incomplete neighborhoods resulting from the subgraph federated learning scenario. Regarding to
our ultimate mission in missing neighbor generation as described in Section 4, i.e., locally modeling
the original global graph during graph convolution, we evaluate fGen by comparing the NeighGen
generated neihgbors with the neihgbors drawn from original whole graph and the ones from original
subgraph. Specifically, we present the L2 distance between the averaged feature distributions of
neighborhoods from these three types of graphs to show how the NeighGen generated missing
neighbors narrow the gap. For simplicity, we use N(v), Ni(v), and N ′i(v) to represent the first-order
neighbors of nodes v ∈ V drawn from the global graph G, the original subgraph Gi, and the mended
subgraph G′i respectively. Smaller values indicate the locally drawn neighbors (Ni(v) or N ′i(v))
being more similar to the true neighbors from the global graph (N(v)). The results in Table 1 clearly
show the effectiveness of fGen in recovering the true features of missing neighbors.

5

0 1 2 3 4 5
#Ture Missing Neighbors of Node v

0

1

2

3

4

5

dG
en

 P
re

di
ct

io
n

fo
r N

od
e

v

0.4018

0.9037

1.8798

2.9105
3.568

4.5481

Figure 1: Prediction of dGen for nodes in MSAcademic with M=3.
Table 1: Intermediate prediction evaluation for fGen.

M=3 Cora CiteSeer PubMed MSAcademic

L2(N
′
i(v), N(v))± std 0.0124±0.0140 0.0074±0.0097 0.0034 ±0.0047 1.1457 ±1.580

L2(Ni(v), N(v))± std 0.0168±0.0182 0.0101±0.0131 0.0046 ±0.0053 1.8690±1.8387

M=5 Cora CiteSeer PubMed MSAcademic

L2(N
′
i(v), N(v))± std 0.0262±0.0885 0.0065±0.0083 0.0040±0.0054 1.1245 ±1.5801

L2(Ni(v), N(v))± std 0.0309 ±0.0897 0.0083±0.0115 0.0053±0.0060 1.8806±1.9695

M=10 Cora CiteSeer PubMed MSAcademic

L2(N
′
i(v), N(v))± std 0.0636±0.2100 0.1569±0.3310 0.0056±0.0170 2.7136 ± 4.5595

L2(Ni(v), N(v))± std 0.0687±0.2093 0.1586 ±0.3307 0.0065±0.0171 3.2985±4.5686

D.2 Usage of local specialized NeighGens

To empirically explain why we need separate NeighGen functions, we contrast the downstream task
performances between FedSage with a globally shared NeighGen, i.e., FedSage with NeighGen
obtained with FedAvg, and FedSage with FL obtained local specialized NeighGens, i.e., FedSage+.
We conduct ablation experiments on four datasets with M=3, and the results are in Table 2. The
results clearly assert our explanation in Section 4.3, i.e., directly averaging NeighGen weights across
the system degenerates the downstream task performance, which indicates the insufficiency of FedAvg
in assisting local data owners in the diverse neighbor generation.

Table 2: Contrast results in node classification accuracy under M=3
Model Cora CiteSeer PubMed MSAcademic

FedSage 0.8656 0.7393 0.8708 0.9327
(without NeighGen) (±0.0064) (±0.0034) (±0.0014) (±0.0005)

FedSage 0.8619 0.7326 0.8721 0.9210
with globally shared NeighGen (±0.0034) (±0.0055) (±0.0012) (±0.0016)

FedSage+ 0.8686 0.7454 0.8775 0.9414
(with local specialized NeighGens) (±0.0054) (±0.0038) (±0.0012) (±0.0006)

D.3 Experiments on Local Epoch and Batch Size

For the proposed FedSage and FedSage+, we further explore the association between the outcome
classifiers’ performances and different training hyper-parameters, i.e., batch size and local epoch
number, which are often concerned in federated learning frameworks.

The experiments are conducted on the PubMed dataset with M = 5. To control the variance, we
fix the model parameters’ updating times. Specifically, for subgraph FL methods, i.e., FedSage and
FedSage+, we fix the communication round as 50, while for the centralized learning method, i.e.,
GlobSage, we train the model for 50 epochs. Under different scenarios, we train the GlobSage model
with all utilized training samples in M data owners. Test accuracy indicates how models perform on
the same set of global test samples. Results are shown in Table 3 and 4. Every result is presented as
Mean (± Std Deviation).

6

Table 3: Node classification accuracy under different batch sizes with local epoch number as 1.
Batch Size FedSage FedSage+ GlobSage

1 0.8682(±0.0012) 0.8782(±0.0012) 0.8751(±0.001)
16 0.8733(±0.0018) 0.8814(±0.0023) 0.8736(±0.0013)
64 0.8696(±0.0035) 0.8755(±0.0047) 0.8776(±0.0011)

Table 4: Node classification accuracy under different local epoch numbers with batch size as 64. Note
that GlobSage is trained with 50 epochs.

Local Epoch FedSage FedSage+ GlobSage

1 0.8696(±0.0035) 0.8755(±0.0047)
3 0.8663(±0.0003) 0.8740(±0.0015) 0.8776(±0.0011)
5 0.8591(±0.0012) 0.8740(±0.0011)

Table 3 and 4 both evidence the reliable, repeatable therapeutic effects that FedSage+ consistently
further elevates FedSage in the global node classification task. Notably, in Table 3, when batch sizes
are as small as 16 and 1, FedSage+ accomplishes even higher classification results compared to the
centralized model GlobSage due to the employment of NeighGen.

Table 3 reveals the graph learning model can be affected by different batch sizes. As GlobSage is
trained on a whole global graph, rather than a set of subgraphs, compared to FedSage and FedSage+,
it suits a larger batch size, i.e., 64, than 1 or 16. Both FedSage and FedSage+, where every data owner
samples on a limited subgraph, fit better in batch sizes 16. Remarkably, when the batch size equals 1,
FedSage is prone to overfit to local biased distribution, while FedSage+ resists the overfitting problem
under the NeighGen’s assistance, i.e., generating cross-subgraph missing neighbors.

Table 4 provides the relation between the local epoch number and the downstream task performance.
For FedSage, more local epochs degenerate the outcome model with more biased aggregated local
weights, while FedSage+ maintains a relatively more stable performance in the downstream task.
Table 4 empirically evidences that the missing neighbor generator in FedSage+ provides further
generalization and robustness in resisting rapid accuracy loss brought by higher local epochs.

Similar to results in Table 2, Section 5, FedSage and FedSage+ exhibit competitive performance
even compared to the centralized model. Findings in Table 3 and 4 further contribute to a better
understanding of the robustness in FedSage+ compared to vanilla FedSage.

7

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3, 4 and 5.
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 6
and Appendix.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 6 and
Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 5
and the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [No] They are all public.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our models and code in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

8

	FedSage+ Algorithm
	Full Version of Definition 6.1
	Missing Proofs for Theorem 6.2
	Detailed ablation studies of NeighGen
	Intermediate results of dGen and fGen.
	Usage of local specialized NeighGens
	Experiments on Local Epoch and Batch Size

