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Abstract

Recent work introduced deep kernel processes as an entirely kernel-based alter-
native to NNs (Aitchison et al. 2020). Deep kernel processes flexibly learn good
top-layer representations by alternately sampling the kernel from a distribution
over positive semi-definite matrices and performing nonlinear transformations. A
particular deep kernel process, the deep Wishart process (DWP), is of particular
interest because its prior can be made equivalent to deep Gaussian process (DGP)
priors for kernels that can be expressed entirely in terms of Gram matrices. How-
ever, inference in DWPs has not yet been possible due to the lack of sufficiently
flexible distributions over positive semi-definite matrices. Here, we give a novel
approach to obtaining flexible distributions over positive semi-definite matrices
by generalising the Bartlett decomposition of the Wishart probability density. We
use this new distribution to develop an approximate posterior for the DWP that
includes dependency across layers. We develop a doubly-stochastic inducing-point
inference scheme for the DWP and show experimentally that inference in the DWP
can improve performance over doing inference in a DGP with the equivalent prior.

1 Introduction

The successes of modern deep learning have highlighted that good performance on tasks such as
image classification (Krizhevsky et al., 2012) requires deep models with lower layers that have the
flexibility to learn good representations. Up until very recently, this was only possible in feature-
based methods such as neural networks (NNs). Kernel methods did not have this flexibility because
the kernel could be modified only using a few kernel hyperparameters. However, with the advent
of deep kernel processes (DKPs; Aitchison et al., 2021), we now have deep kernel methods that
offer neural-network like flexibility in the kernel / top-layer representation. DKPs introduce this
flexibility by taking the kernel from the previous layer, then sampling from a Wishart or inverse
Wishart centered on that kernel, followed by a nonlinear transformation. The sampling and nonlinear
transformation steps are repeated multiple times to form a deep architecture. Remarkably, deep
Gaussian processes (DGPs; Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017), standard
Bayesian NNs, infinite-width Bayesian NNs (neural network Gaussian processes or NNGPs; Lee
et al., 2018; Matthews et al., 2018; Novak et al., 2019; Garriga-Alonso et al., 2019) and infinite
NNs with finite width bottlenecks (Aitchison, 2020) can be written as DKPs (Aitchison et al., 2021).
Indeed, for kernels that can be expressed in terms of operations on Gram matrices, Aitchison et al.
(2021) showed that a particular DKP, the deep Wishart process (DWP) has a prior equivalent to
a DGP’s prior. In a DGP, the random variables inferred in variational inference are the model’s
intermediate features, with kernels computed as a function of these features at each layer. However,
in a DWP, there are no features at all: the only random variables are the positive semi-definite kernel
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matrices themselves, which are sampled directly from Wishart distributions: the DWP works entirely
on the kernel matrices implied by the DGP’s features.

Aitchison et al. (2021) argued that DWPs should have considerable advantages over related feature-
based models, because feature-based models have pervasive symmetries in the true posterior, which
are difficult to capture in standard variational approximate posteriors. For instance, in a neural
network, it is possible to permute rows and columns of weight matrices, such that the activations
at a given layer are permuted, but the network’s overall input-output function remains the same
(MacKay, 1992; Sussmann, 1992; Bishop et al., 1995). These permutations result in network weights
with exactly the same probability density under the true posterior, but with very different probability
densities under standard variational approximate posteriors, which are generally unimodal. However,
these issues do not arise with DWPs, because all permutations of the hidden units correspond to the
same kernel (see Appendix D in Aitchison et al. (2021) for more details).

While Aitchison et al. (2021) showed the equivalence between DWPs and DGPs, they were not
able to do inference in DWPs because they were not able to find a sufficiently flexible distribution
over positive semi-definite matrices to form the basis of an approximate posterior. Instead, they
were forced to work with a different DKP: the deep inverse Wishart processes (DIWPs), which was
easier because the inverse Wishart itself forms a suitable approximate posterior. While the DIWP
also avoids using features, it does not correspond directly to an already-established Bayesian model.
Therefore, the DWP is a more important model, as it allows us to directly compare feature-based
and kernel-based inference. In this work, we show how to create a sufficiently flexible approximate
posterior for DWPs, thereby enabling us to compare directly to their equivalent DGPs. In particular,
our contributions are:

• We develop a new family of flexible distributions over positive semi-definite matrices by
generalising the Bartlett decomposition (Sec. 3.1).

• We use this distribution to develop an effective approximate posterior for the deep Wishart
process which incorporates dependency across layers (Sec. 3.2).

• We develop a doubly stochastic inducing-point inference scheme for the DWP. While the
derivation mostly follows that for deep inverse Wishart processes (Aitchison et al., 2021), we
need to give a novel scheme for sampling the test/training points conditioned on the inducing
points, as this is very different in the DWP compared to the previous DIWP (Sec. 3.3).

• We empirically compare DGP and DWP inference with the exact same prior. This was not
possible in Aitchison et al. (2021) as they only derived an inference scheme for deep inverse
Wishart processes, whose prior is not equivalent to a DGP prior.

We provide a reference implementation at https://github.com/LaurenceA/bayesfunc.

2 Background

2.1 Wishart distribution

The Wishart,W (Σ, ν), is a distribution over positive semi-definite P ×P matrices, G, with positive
definite scale parameter Σ ∈ RP×P and a positive, integer-valued degrees-of-freedom parameter,
ν. The Wishart distribution is defined by taking ν vectors nλ ∈ RP sampled from a zero-mean
Gaussian. These vectors can be generated from standard Gaussian vectors, ξλ, by transforming them
with the Cholesky, L of the scale parameter, Σ = LLT ,

Lξλ = nλ ∼ N (0,Σ) where ξλ ∼ N (0, I)

Both nλ and ξλ can be stacked to form P × ν matrices, N and Ξ,

N = (n1 n2 · · · nν) Ξ = (ξ1 ξ2 · · · ξν) .

Wishart samples are defined by taking the sum of the outer products of the nλ’s, which can be written
as a matrix-multiplication,

ν∑
λ=1

nλn
T
λ = NNT = LΞΞTL = LZLT = G ∼ W (Σ, ν) (1)
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where Z = ΞΞT is a sample from a standard Wishart (i.e. one with an identity scale parameter,)

ν∑
λ=1

ξλξ
T
λ = ΞΞT = Z ∼ W (I, ν) . (2)

Note that therefore the Wishart has mean,

E [G] = ν E
[
nλn

T
λ

]
= νΣ (3)

2.2 Bartlett decomposition

However, sampling Ξ can be computationally expensive for very large values of ν. Instead, it is
possible to sample a Wishart by writing down the distribution over the Cholesky of Z, denoted A
(Bartlett, 1934). Taking Z = AAT , the distribution over A is,

P
(
A2
jj

)
= Gamma

(
A2
jj ;α=ν−j+1

2 , β= 1
2

)
, (4a)

P (Aj>k) = N (Ajk; 0, 1) . (4b)

i.e. the square of the on-diagonal elements are Gamma distributed and the off-diagonal elements are
IID standard Gaussian.

2.3 Deep Gaussian proceses (DGPs)

In a DGP, we progressively sample features, F`, from a Gaussian process, conditioned on features
from the previous layer,

P (F`|F`−1) =
∏ν`
λ=1N

(
f `λ; 0,Kfeatures (F`−1)

)
with F0 = X, (5a)

P (Y|FL+1) =
∏νL+1

λ=1 N
(
yλ; fL+1

λ , σ2I
)

(5b)

where X ∈ RP×ν0 is the input and F` ∈ RP×ν` are the features. We use P for the number of
input points and ν` for the width of layer `; thus ν0 is the number of inputs and νL+1 is the number
of outputs. In addition, the features and targets can be written as a stack of vectors, f `λ ∈ RP and
yλ ∈ RP , i.e.

F` = (f `1 f `2 · · · f `ν`) Y = (y1 y2 · · · yνL+1
).

The function Kfeatures (F`−1) takes the features at the previous layer and returns the corresponding
P × P kernel matrix. We consider isotropic kernels such as the squared exponential, which can be
written as a function of R`−1

ij , the distance between input features i and j,

Kfeatures;ij = k(R`−1
ij ),

R`−1
ij = 1

N`

∑N`
λ=1

(
F `−1
iλ − F `−1

jλ

)2

.

2.4 Deriving equivalent deep Wishart processes

Following Aitchison et al. (2021), we show how the DGP model of Eq. (5) can be expressed as a
deep Wishart process. We first consider the P × P Gram matrices defined as

G` = 1
ν`

F`F
T
` = 1

ν`

ν∑̀
λ=1

f `λ(f `λ)T ,

where f `λ are IID and multivariate-Gaussian distributed conditioned on the features at the previous
layer (Eq. 5a). Thus, G` follows the definition of the Wishart (Eq. 1), and we can sample G` directly,

P (G`|F`−1) =W
(
G`;

1
ν`

Kfeatures(F`−1), ν`

)
.

To work entirely with Gram matrices rather than features, we need to be able to compute the kernel,
Kfeatures(F`−1) as a function of the Gram matrix at the previous layer, G`−1. Remarkably, this
is possible for a large family of practically relevant kernels (Aitchison et al., 2021), for instance
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isotropic kernels and the arc-cosine (or ReLU) kernel. In particular, as we focus on isotropic kernels,
note that it is possible to recover distances from the Gram matrix:

R`ij = 1
N`

∑N`
λ=1

((
F `iλ
)2 − 2F `iλF

`
jλ +

(
F `jλ
)2)

= G`ii − 2G`ij +G`jj .

Thus, since isotropic kernels depend only on the distance, it is possible to obtain K(·), which takes
the Gram matrix from the previous layer and returns the same kernel matrix as that returned by
applying Kfeatures to the features from the previous layer:

Kfeatures(F`−1) = K(G`−1) = K( 1
ν`

F`−1F
T
`−1).

By using the equivalent kernel written as a function of the Gram matrix at the previous layer, we can
entirely eliminate intermediate layer features, resulting in a deep Wishart process,

P (G`|G`−1) =W
(
G`;

1
ν`

K(G`−1), ν`

)
with G0 = 1

ν0
XXT , (6a)

P (FL+1|GL) =
∏νL+1

λ=1 N
(
fL+1
λ ; 0,K (GL)

)
, (6b)

P (Y|FL+1) =
∏νL+1

λ=1 N
(
yλ; fL+1

λ , σ2I
)
. (6c)

2.5 The DWP formulation captures true-posterior symmetries while DGP does not

We now have two equivalent generative models: one phrased in terms of features, F` and another
phrased in terms of Gram matrices, G`. Is there any reason to prefer one over the other? It turns
out that there is. In particular, consider a transformation of the features, F′` = F`U where U is
a unitary matrix, such that UUT = I. Remarkably, the true posterior is symmetric under these
transformations, in the sense that all unitary transformations of the underlying features have the exact
same true-posterior probability density (see Aitchison et al., 2021, Appendix D.2),

P (F′1, . . . ,F
′
L,FL+1|X,Y) = P (F1, . . . ,FL,FL+1|X,Y) .

It would be desirable for variational approximate posteriors to capture these true posterior symmetries.
However, the usual family of Gaussian approximate posteriors over features fails to capture these
symmetries because they use non-zero means. Worryingly, the failure to capture these symmetries can
bias variational inference to focus on low-mass areas of the true posterior (Moore, 2016; Pourzanjani
et al., 2017).

In contrast, the deep Wishart process sidesteps this issue by phrasing posteriors entirely in terms of
Gram matrices, G` = 1

ν`
F`F

T
` . Critically, the Gram matrix is invariant to unitary transformations of

the features,

G` = 1
ν`

F`F
T
` = 1

ν`
F`U`U

T
` FT` = 1

ν`
F′`F

′T
` .

As such, DWP approximate posteriors written in terms of G` implicitly respect this unitary symmetry
over the features.

2.6 Equivalent DWP posteriors will have better ELBOs and generalisation

Let us consider the ELBOs implied by using a DGP posterior Q ({F`}`)) and the DWP posterior
implied by this posterior, which for this section we denote Q ({G`}`). Using D = (X,Y):

LDGP = EQ[P (Y|FL+1)]−KL(Q ({F`}`) ||P ({F`}`|D)),

LDWP = EQ[P (Y|FL+1)]−KL(Q ({G`}`) ||P ({G`}`|D)).

By the data processing inequality (see e.g. Thm 6.2 in Polyanskiy & Wu (2014)), since G` is a
deterministic transformation of F`, it is straightforward to show that LDWP ≥ LDGP. This result is
one of the main motivations of the recent trend towards function-space inference (Sun et al., 2018;
Ma et al., 2019); for a deeper theoretical understanding of this result we refer the reader to Burt et al.
(2021), This fact can also be used to derive better PAC Bayes generalisation bounds (Section 6.1.3 of
Alquier (2021)).

Note that this analysis relied on the assumption that Q ({G`}`) would be the distribution implied by
Q ({F`}`)). In practice, this is will not be the case, as we wish to directly specify our distribution
in terms of Gram matrices. However, given a sufficiently flexible posterior over Gram matrices, we
should still see this advantages in practice. We now turn to developing such a distribution.
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3 Methods

As detailed in Aitchison et al. (2021), the key difficulty in obtaining a variational inference scheme
for DWPs is the difficulty of providing a sufficiently flexible approximate posterior. In particular, as
we are working with a probabilistic process, the number of input points, P , can be arbitrarily large,
and thus there is always the possibility that ν < P and hence that our sampled Gram matrices are
low-rank. We therefore need to form flexible variational approximate posteriors over rank ν Gram
matrices. An obvious first choice is the Wishart distribution itself with degrees of freedom ν, so as
to match the rank of matrices sampled from the prior. However, for fixed degrees of freedom the
Wishart variance,

V [Gij ] = ν
(
Σ2
ij + ΣiiΣjj

)
cannot be specified independently of the mean (Eq. 3), which is essential for a variational approximate
posterior that can flexibly capture potentially narrow true posteriors. An alternative approach would
be to work with a non-central Wishart, which is defined by taking Ξ, which is IID standard Gaussian
in the case of the Wishart, to have non-zero mean. However, the non-central Wishart has a probability
density function that is too difficult to evaluate in the inner loop of a deep learning algorithm (Koev
& Edelman, 2006). Instead, we develop a new Generalised Singular Wishart distribution, based on
the Bartlett decomposition, which modifies the Wishart to give independent control over the mean
and variance of sampled matrices.

3.1 The Generalised Singular Wishart

To define the Generalised Singular Wishart distribution, we first need to generalise the Bartlett
construction to potentially singular matrices (i.e. those for which ν < P ). Remembering that
Z = AAT , in the singular case A is given by

A =


A11 . . . 0

...
. . .

...
Aν1 . . . Aνν

...
...

...
AP1 . . . APν

 , (7a)

P
(
A2
jj

)
= Gamma

(
A2
jj ;

ν−j+1
2 , 1

2

)
, P (Ai>j) = N (Aij ; 0, 1) . (7b)

Recalling that G = LAATLT and by applying the results of Appendices B and C, we have that

P (G) =

 P∏
j=1

1

L
min(j,ν)
jj

min(P,ν)∏
j=1

Gamma
(
A2
jj ;

ν−j+1
2 , 1

2

)
AP−jjj LP−j+1

jj

P∏
i=j+1

N (Aij ; 0, 1) .

In Appendix D we prove that this corresponds to the known full rank and singular Wishart distribution.
Equipped with the singular Bartlett, we can now develop a generalisation of the Wishart distribution:

Definition 1 The Generalised Singular Wishart, W (G; Σ, ν,α,β,µ,σ), is a distribution over
positive semi-definite P × P matrices, G, with positive definite scale matrix Σ = LLT ∈ RP×P ,
a positive, integer-valued degrees-of-freedom parameter ν, and Bartlett-generalising parameters
α,β,µ,σ. These latter parameters modify the Bartlett decomposition as follows:

Q
(
A2
jj

)
= Gamma

(
A2
jj ;αj , βj

)
for j ≤ ν,

Q (Ai>j) = N
(
Aij ;µij , σ

2
ij

)
for j ≤ ν.

This implies a distribution over G = LAATLT with density

Q (G) =

 P∏
j=1

1

L
min(j,ν)
jj

min(P,ν)∏
j=1

1

AP−jjj LP−j+1
jj

Gamma
(
A2
jj ;αj , βj

) P∏
i=j+1

N
(
Aij ;µij , σ

2
ij

)
.

Note that we use Q (·) to reflect the fact that we will use the Generalised Singular Wishart as the basis
for our approximate posterior. The density is derived using the same transformations and Jacobians
as for the singular Wishart above.
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3.2 Full approximate posterior distribution

Unlike the deep inverse Wishart process in Aitchison et al. (2021), it is not possible to obtain an
optimal last-layer posterior for the deep Wishart process. Therefore, we choose a form that mimics
the form of the DIWP posterior, allowing for similar across-layer dependencies:

Q (G`|G`−1) =W
(
G`; (1− q`) 1

ν`
K(G`−1) + q`V`V

T
` , ν`, α`, β`, µ`, σ`

)
, (9)

where the approximate posterior parameters are {V`,α`,β`,µ`,σ`, q`}L`=1, where 0 < q` < 1 is a
scalar, and V` ∈ RP×P . Here, the learnable parameter q` allows us to trade the off influence on the
scale matrix from the prior and the learned covariance V`V

T
` , which allows for similar across-layer

dependencies as in (Aitchison et al., 2021). ν` is fixed, as it determines the width of the layer; the
remaining parameters are simply the parameters from the Bartlett generalisation.

3.3 Doubly stochastic inducing-point variational inference in deep inverse Wishart
processes

For efficient inference in high-dimensional problems, we take inspiration from the DGP literature
(Salimbeni & Deisenroth, 2017) by considering doubly-stochastic inducing-point deep Wishart
processes. We begin by decomposing all variables into inducing and training (or test) points Xi ∈
RPi×N0 and Xt ∈ RPt×N0 where Pi is the number of inducing points, and Pt is the number of
testing/training points,

X =

(
Xi
Xt

)
, FL+1 =

(
FL+1

i
FL+1

t

)
, G` =

(
G`

ii G`
it

G`
ti G`

tt

)
,

where e.g. G`
ii is Pi × Pi and G`

it is Pi × Pt. The full ELBO including latent variables for all the
inducing and training points is

L = E

[
log P (Y|FL+1) + log

P
(
{G`}L`=1,FL+1|X

)
Q
(
{G`}L`=1,FL+1|X

)] , (10)

where the expectation is taken over Q
(
{G`}L`=1,FL+1|X

)
. The prior is given by combining all

terms in Eq. (6) for both inducing and test/train inputs,

P
(
{G`}L`=1,FL+1|X

)
=
[∏L

`=1 P (G`|G`−1)
]

P (FL+1|GL) ,

where the X-dependence enters on the right because G0 = 1
ν0

XXT . Taking inspiration from
Salimbeni & Deisenroth (2017), the full approximate posterior is the product of an approximate
posterior over inducing points and the conditional prior for train/test points,

Q
(
{G`}L`=1,FL+1|X

)
=

Q
(
{G`

ii}L`=1,F
L+1
i |Xi

)
P
(
{G`

it}L`=1, {G`
tt}L`=1,F

L+1
t |{G`

ii}L`=1,F
L+1
i ,X

)
. (11)

And the prior can be written in the same form,

P
(
{G`}L`=1,FL+1|X

)
=

P
(
{G`

ii}L`=1,F
L+1
i |Xi

)
P
(
{G`

it}L`=1, {G`
tt}L`=1,F

L+1
t |{G`

ii}L`=1,F
L+1
i ,X

)
. (12)

We discuss the second terms (the conditional prior) in Eq. (15). The first terms (the prior and
approximate posteriors over inducing points), are given by combining terms in Eq. (6) and Eq. (9),

P
(
{G`

ii}L`=1,F
L+1
i |Xi

)
=
[∏L

`=1 P
(
G`

ii|G`−1
ii

)]
P
(
FL+1

i |GL
ii

)
, (13)

Q
(
{G`

ii}L`=1,F
L+1
i |Xi

)
=
[∏L

`=2 Q
(
G`

ii|G`−1
ii

)]
Q
(
FL+1

i |GL
ii

)
. (14)

Substituting Eqs. (11–14) into the ELBO (Eq. 10), the conditional prior cancels and we obtain,

L = E

log P
(
Y|FL+1

t

)
+ log

[∏L
`=1 Q

(
G`

ii|G`−1
ii

)]
Q
(
FL+1

i |GL
ii

)[∏L
`=1 P

(
G`

ii|G`−1
ii

)]
P
(
FL+1

i |GL
ii

)
 .
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The first term is a summation across test/train datapoints, and the second term depends only on the
inducing points, so as in Salimbeni & Deisenroth (2017) we can compute unbiased estimates of the
expectation by taking only a minibatch of datapoints. We also never need to compute the density of
the conditional prior in Eq. (12), we only need to be able to sample from it,

P
(
{G`

ti,G
`
tt}L`=1,F

L+1
t |{G`

ii}L`=1,F
L+1
i ,X

)
=

P
(
FL+1

t |FL+1
i ,GL

)∏L
`=1 P

(
G`

ti,G
`
tt|G`

ii,G`−1

)
. (15)

The first distribution, P
(
FL+1

t |FL+1
i ,GL

)
, is a multivariate Gaussian, and can be evaluated using

methods from the GP literature (Rasmussen & Williams, 2006; Salimbeni & Deisenroth, 2017).
Specifically, we use the global inducing point scheme from Ober & Aitchison (2021). The second
distribution is more difficult to sample from. To address this issue, we go back to features,

F`F
T
` = νG` ∼ W (K (G`−1) , ν) , (16)

with

F` =

(
F`i
F`t

)
K (G`−1) =

(
Kii KT

ti
Kti Ktt

)
,

where F` ∈ R(Pi+Pt)×ν` , Fi ∈ RPi×ν` and Ft ∈ RPt×ν` . Our goal is to sample G`
it and G`

tt given
G`

ii. Our approach is to note that, Ft conditioned on Fi is given by a matrix normal, (Eaton et al.,
2007, page 310),

P
(
F`t
∣∣F`i ) =MN

(
KT

ti K
−1
ii Fi,Ktt·i, I

)
, (17)

where

Ktt·i = Ktt −KT
it K
−1
ii Kit.

Note that we sample each test/train point one-at-a-time/independently, in which case, Pt = 1 and
Σ22·1 is scalar.

Then G`, which includes G`
it and G`

tt is given by,

G` =

(
G`

ii G`
it

G`
ti G`

tt

)
= 1

ν

(
F`i
(
F`i
)T

F`i
(
F`t
)T

F`t
(
F`i
)T

F`t
(
F`t
)T
)

= 1
νF`F

T
`

For Fi, we can use any value as long as G`
ii = F`i

(
F`i
)T

, as the resulting distribution over G` arising
from Eq. (16) does not depend on the specific choice of Fi (App. E). Remembering that to sample
Gii, we explicitly sample its potentially low-rank Cholesky, L`A`, we can directly use

F`i = L`A`

However, this only works if ν ≤ Pi, in which case, L`A` ∈ RPi×ν . In the unusual case where we
have fewer inducing points than degrees of freedom, Pi < ν, then L`A` ∈ RPi×Pi , so we need to
pad to achieve the required size of Pi × ν`,

F`i = (L`A` 0) .

Finally, note that we can optimise all the variational parameters using standard reparameterised
variational inference (Kingma & Welling, 2014; Rezende et al., 2014). For an algorithm, see Alg. 1.

3.4 Computational complexity

Recalling that ν` is the width of the `th layer, Pi is the number of inducing points, and Pt is the number
of train or test points, the computational complexity of one DWP layer is given by O(P 3

i + PtP
2
i ).

This is a decrease of a factor of ν`+1 over the complexity for standard DGP inference, such as
doubly stochastic variational inference (Salimbeni & Deisenroth, 2017), which has complexity
O(ν`+1(P 3

i + PtP
2
i )). The difference arises from the fact that in a DGP, ν`+1 Gaussian processes

are sampled in each layer, whereas for a DWP we sample a single Gram matrix.
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Algorithm 1 Computing predictions/ELBO for one batch

P parameters: {ν`}L`=1.
Q parameters: {V`, q`,α`,β`,µ`,σ`}L`=1,Xi.
Inputs: Xt; Targets: Y
combine inducing and test/train inputs
X = (Xi Xt)
sample first Gram matrix and update ELBO
G0 = 1

ν0
XXT

for ` in {1, . . . , L} do
sample inducing Gram matrix and its Cholesky, L`A` and update ELBO
L`A`A

T
` LT` = G`

ii ∼ Q
(
G`

ii|G`−1
ii

)
L ← L+ log P

(
G`

ii|G`−1
ii

)
− log Q

(
G`

ii|G`−1
ii

)
sample full Gram matrix from conditional prior
Σ = 1

ν`
K(G`−1)

Σtt·i = Σtt −ΣT
it Σ
−1
ii Σit

F`i = L`A`

F`t ∼MN
(
ΣT

ti Σ
−1
ii F̂i,Σtt·i, I

)
G` =

(
G`

ii F̂`i (F̂
`
t )
T

F̂`t (F̂
`
i )
T F̂`t (F̂

`
t )
T

)
end for
sample GP inducing outputs and update ELBO
FL+1

i ∼ Q
(
FL+1

i |GL
ii

)
L ← L+ log P

(
FL+1

i |GL
ii

)
− log Q

(
FL+1

i |GL
ii

)
sample GP predictions conditioned on inducing points
FL+1

t ∼ Q
(
FL+1

t |GL,FL+1
i

)
add likelihood to ELBO
L ← L+ log P

(
Y|FL+1

t
)

4 Results

The DWP prior is equivalent to a DGP prior (Sec. 2.4) (Aitchison et al., 2021); the only difference is
that in a DGP, we use features as the latent variables, whereas in the DWP we use Gram matrices.
Using Gram matrices as in the DWP should be beneficial as the true posteriors are expected to be
simpler than in the DGP (Sec. 2.5). We perform a comparison of the posterior intermediate-layer
features implied by a DWP and those of a DGP on a toy problem in App. G; these show the benefits
of being more able to model the true posterior.

For more quantitative experiments, we trained a DWP and a DGP with the exact same generative
model with a squared exponential kernel on the UCI datasets from Gal & Ghahramani (2015). We
trained both models for 20000 gradient steps using the Adam optimizer Kingma & Ba (2015); we
detail the exact experimental setup in Appendix F. We report ELBOs and test log likelihoods for
depth 5 in Table 1; we report other depths and quote the relevant results from Aitchison et al. (2021)
for reference in Appendix H. We found that the DWP often outperformed the DGP model, especially
evident if we look at the ELBOs and smaller datasets (boston, concrete, energy, and yacht). On larger
datasets, the benefits often disappear, as accurate uncertainty modelling is less relevant. Note that
we compared against the recently introduced DGP method based on global inducing points (Ober &
Aitchison, 2021). Global inducing point methods were particularly important in our setting because
we use a standard feedforward architecture without skip connections to ensure equivalence between
the DGP and DWP. Standard DSVI has considerable difficulties with optimizing the approximate
posterior in such models; to get optimization to work effectively Salimbeni & Deisenroth (2017)
were forced to modify the prior to introduce skip connections.
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Table 1: ELBOs and log-likelihoods for UCI datasets from (Gal & Ghahramani, 2015) for a five-layer
network. See Appendix H for other depths. Significantly better results are highlighted.

dataset DWP DGP

boston -0.38 ± 0.01 -0.45 ± 0.01
concrete -0.49 ± 0.00 -0.50 ± 0.00

energy 1.41 ± 0.00 1.39 ± 0.00
kin8nm -0.14 ± 0.00 -0.13 ± 0.00

ELBO naval 3.65 ± 0.07 3.91 ± 0.10
power 0.03 ± 0.00 0.02 ± 0.00

protein -1.01 ± 0.00 -1.00 ± 0.00
wine -1.19 ± 0.00 -1.19 ± 0.00
yacht 1.65 ± 0.01 1.37 ± 0.03

boston -2.39 ± 0.04 -2.44 ± 0.04
concrete -3.13 ± 0.01 -3.14 ± 0.02

energy -0.70 ± 0.03 -0.70 ± 0.03
kin8nm 1.40 ± 0.00 1.38 ± 0.01

LL naval 8.21 ± 0.05 8.31 ± 0.07
power -2.77 ± 0.01 -2.78 ± 0.01

protein -2.73 ± 0.00 -2.73 ± 0.00
wine -0.96 ± 0.01 -0.96 ± 0.01
yacht -0.43 ± 0.10 -0.88 ± 0.08

4.1 Runtimes & training curves

In Sec. 3.4, we showed that DWPs have a lower computational complexity than DGPs, because of the
need for DGPs to sample ν` features in each layer, whereas DWPs only need to sample one Gram
matrix. Here, we briefly discuss the runtimes of our implementations. We show a plot of the training
curves for one split of boston with a 5-layer DGP and DWP in Fig. 1, plotted against both runtime
and epoch. From these plots, we make two observations. First, the DWP trains much more quickly
than the DGP in terms of runtime. However, it seems to require slightly more epochs than the DGP
to converge (note that the spike at the start of the DGP curve is an artifact of the tempering scheme
we use). In Appendix H, we provide a table of time per epoch, which shows that we obtain faster
runtime for protein and for shallower models, although the gains are slightly more modest due to the
models being shallower and the fact that we run protein on a GPU, as opposed to a CPU for boston.

5 Related Work

The DWP prior was introduced by Aitchison et al. (2021). However, they were not able to do
variational inference with the DWP because they did not have a sufficiently flexible approximate
posterior over positive semi-definite matrices. Instead, they were forced to work with a deep inverse
Wishart process, which is easier because the inverse Wishart itself is a suitable approximate posterior.
Here, we give a flexible generalised Wishart distribution over positive semi-definite matrices which is
suitable for use as a variational approximate posterior in the DWP. As the deep Wishart process prior
is equivalent to a DGP prior, we were able to directly compare DGP and DWP inference in models
with the exact same prior. Such a comparison with equivalent priors was not possible in Aitchison
et al. (2021), because their deep inverse Wishart process priors are not equivalent to DGP priors.

There is an alternative line of work using generalised Wishart processes (Wilson & Ghahramani,
2011, as opposed to our deep Wishart processes). Note that the “generalised Wishart process”
terminology does not seem to have spread as widely as it should, but it is very useful in our
context. A generalised Wishart process specifies a distribution over an infinite number of finite-
dimensional Wishart-distributed matrices. These matrices might represent e.g. the noise covariance
in a dynamical system, in which case there might be an infinite number of such matrices, one for each
time or location in the state-space (Wilson & Ghahramani, 2011; Heaukulani & van der Wilk, 2019;
Jorgensen et al., 2020). In contrast, the Wishart process (Dawid, 1981; Bru, 1991) describes finite
dimensional marginals of a single, potentially infinite dimensional matrix. In our context, we stack
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Figure 1: ELBO versus time and epoch for five-layer models on one split of boston

(non-generalised) Wishart processes to form a deep Wishart process. Importantly, these generalised
Wishart priors do not have the flexibility to capture a DGP prior because the underlying features at all
locations are jointly multivariate Gaussian (Sec. 4 in Wilson & Ghahramani, 2011) and therefore lack
the required nonlinearities between layers. Further, not only do the underlying stochastic processes
(deep vs generalised Wishart process) differ, inference is also radically different. In particular, work
on the generalised Wishart performs inference on the underlying multivariate Gaussian feature vectors
(Eq. 1 e.g. Eq. 15-18 in Wilson & Ghahramani 2011, Eq. 12 in Heaukulani & van der Wilk 2019
or Eq. 24 in Jorgensen et al. 2020). Unfortunately, variational approximate posteriors defined over
multivariate Gaussian feature vectors fail to capture symmetries in the true posterior (Sec. 2.5).
In contrast, we define approximate posteriors directly over the symmetric positive semi-definite
Gram matrices themselves, which required us to develop new, more flexible distributions over these
matrices.

6 Limitations

There are a few limitations of our work. First, it is only possible to derive equivalent DWPs for certain
kernels - namely, those where we can skip the feature representation and work entirely in Gram
matrices. While this holds for a large range of kernels, such as isotropic kernels and the arc-cosine
kernel, it does not hold for some common kernels such as automatic relevance determination (ARD)
kernels. However, we note that we are able to use any kernel for the first layer, and that in practice we
did not find that ARD kernels in intermediate layers significantly improved performance, as all the
features have a shared prior. The second limitation is that it is not currently possible to incorporate
modifications to the basic DGP model such as skip connections (Duvenaud et al., 2014; Salimbeni &
Deisenroth, 2017). Such modifications would require the use of the non-central Wishart distribution,
which is difficult to evaluate in the inner loop of a deep learning algorithm (Koev & Edelman,
2006). Third, the generalisation of our work to more complex architectures such as convolutional
models is non-trivial, and will be left to future work. Finally, it seems that the performance is not
as competitive for larger datasets, where uncertainty representation is of more limited use - we will
explore improving this in future work.

7 Conclusions

We introduced a flexible distribution over positive semi-definite matrices which formed the basis of a
variational approximate posterior for the deep Wishart process. We adapted the doubly stochastic
variational inference scheme from Aitchison et al. (2021) to the deep Wishart process. Thus, we were
able to directly compare the performance for inference in a DWP vs. DGP with exactly the same prior.
This isolates the effects on performance of the prior and the inference procedure. We found DWPs
often have improved performance over their corresponding equivalent DGP models, particularly in
the ELBOs, indicating improved uncertainty representation.

There are no anticipated social impacts as the work is largely theoretical.
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