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A Hyperplane Rounding and Derandomization

The following is a standard geometric fact related to hyperplane rounding.
Fact A.1. Let z1 and z2 be two unit vectors in d-dimensions (for any positive integer d). If the angle
subtended by them is θ, then

Pr
g

[pos (〈z1,g〉) 6= pos (〈z2,g〉)] = θ/π, (1)

where g ∼ N(0, 1)d is a vector with each coordinate iid standard Gaussian.

Note that (i) if 〈z1, z2〉 ≥ 0, then θ ≤ π/2, and therefore the probability in (1) is at most 1/2, and
(ii) if 〈z1, z2〉 ≤ 0, then θ ≥ π/2, and therefore the probability in (1) is at least 1/2. This can be
strengthened by observing that d(cos θ)/dθ = − sin θ ∈ [−1, 0] for θ ∈ [0, π]. From the above it
follows that for any δ ∈ [0, 1],

• If 〈z1, z2〉 ≥ δ then θ ≤ π/2− δ, and therefore the probability in (1) is at most 1/2− δ/π.
• If 〈z1, z2〉 ≤ −δ then θ ≥ π/2 + δ, and therefore the probability in (1) is at least 1/2 + δ/π.

Therefore, the constant α0 in the proof of Lemma 2.3 can be taken to be 1/2π.

A.1 Derandomization of Theorem 1.1 using [4]

Consider the algorithm given by Theorem 1.1 for LLP-LTF in Section 2. The objective for which
randomized rounding is applied can be recast as a Max-Cut problem as follows. For each non-
monochromatic bag consisting of {xi,xj}, we consider the pair {zi, zj} to be separated in the
random hyperplane, while for each monochromatic bag of size 2 consisting of {xi,xj} we consider
the pair {zi,−zj} (arbitrarily negating one of them) to be separated by the random hyperplane
rounding. The procedure of [4] (as applied to Max-Cut) will deterministically find one such g which
preserves the expected number of pairs separated. The rest of the algorithm using the obtained g
remains the same. A similar process applies to the algorithm given in Section 2.1 for LLP-OR.

B Preliminaries for Hardness Result

We will use the usual Berry-Esseen theorem below, as well as the multi-dimensional version.
Theorem B.1 (Berry-Esseen Theorem, [5]). Let X1, . . . , Xn be independent random variables with
E[Xi] = 0 and Var[Xi] = σ2

i . Let σ2 =
∑
i∈n σ

2
i . Then,

sup
t∈R

∣∣∣∣∣∣ Pr
X1,...,Xn

σ−1
∑
i∈[n]

Xi ≤ t

− Φ(t)

∣∣∣∣∣∣ ≤ cγ (2)
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where c is a universal constant, Φ is the CDF of the standard Gaussian N(0, 1), and γ :=
σ−1 maxi∈[n](E

[
|Xi|3

]
/σ2

i ).
Theorem B.2 (Multi-dimensional Berry-Esseen Theorem, [6]). Let X1, . . . ,Xn be independent
random vectors in Rd with E[Xi] = 0. Let S =

∑n
i=1 Xi and Σ = Cov[S]. Then for all convex sets

A ⊆ Rd
|P [S ∈ A]− Pr[Z ∈ A| ≤ Cd1/4γ (3)

where C is a universal constant, Z ∼ N(0,Σ) and γ :=
∑n
i=1 E

[∥∥Σ−1/2Xi

∥∥3

2

]
.

Theorem B.3 (Chernoff-Hoeffding). Let X1, . . . , Xn be independent random variables, s.t. ai ≤
Xi ≤ bi, ∆i = bi − ai for i = 1, . . . , n. Then, for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ > t

]
≤ 2 · exp

(
− 2t2∑n

i=1 ∆2
i

)
.

Chebyshev’s Inequality. For any random variable X and t > 0,

Pr [|X| > t] ≤ E[X2]/t2. (4)

We will also use the following anti-concentration lemma proved in [2].
Lemma B.4. Let c1, c2, . . . , cT ∈ R

R be such that ‖c1‖ ≥ ‖c2‖ ≥ · · · ≥ ‖cT ‖. Suppose
X1,X2, . . . ,XT are R-dimensional Bernoulli random variables i.e., Xi

u.a.r∼ {0, 1}R, i ∈ [T ].
Then,

sup
θ∈R

Pr

∣∣∣∣∣∣
∑
i∈[T ]

〈ci,Xi〉+ θ

∣∣∣∣∣∣ ≤ ‖cT ‖T 1/2

 ≤ O(T−1/2).

The total variation distance between two distributions P,Q over Rd is TV(P,Q) := supA⊆Rd |P (A)−
Q(A)|. The following gives a bound on this distance between two multi-dimensional Gaussians with
the same mean.
Theorem B.5 ([1]). If Σ1 and Σ2 are positive-definite d × d matrices, and let λ1, . . . , λd be the
eigenvalues of Σ−1

1 Σ2 − Id, then for any µ ∈ Rd

TV (N (µ,Σ1) , N (µ,Σ2)) ≤ (3/2)

(
d∑
i=1

λ2
i

)1/2

The total variation between one-dimensional Gaussians is as follows.
Theorem B.6 ([1]).

TV
(
N(µ1, σ

2
1), N(µ2, σ

2
2)
)
≤ 3|σ2

1 − σ2
2 |

σ2
1

+
|µ1 − µ2|

2σ1
.

We also use the Gaussian anti-concentration bound (which is obtained by simple integration) that for
g ∼ N(0, σ2)

Pr[g ∈ [t, t+ δ]] ≤ δ/(σ
√

2π) (5)
for any t ∈ R and δ > 0.

B.1 Critical Index

We first define the following notion of regularity.

Regularity. We say that a sequence of values {ai | i ∈ I} is ν-regular if a2
i ≤ ν

∑
i′∈I a

2
i′ for all

i ∈ I .

For some M and R consider a sequence of vectors {ci ∈ RR}Mi=1 whose concatenation is c :=

⊕Mi=1ci so that ‖c‖22 =
∑M
i=1 ‖ci‖22. We will work with linear forms h =

∑M
i=1〈ci,Xi〉 where

Xi ∈ RR (1 ≤ i ≤M ) are variables.
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Let σ : [M ]→ [M ] be the unique ordering s.t.

‖cσ(1)‖2 ≥ ‖cσ(2)‖2 ≥ · · · ≥ ‖cσ(M)‖2, (6)

and,
σ(i) < σ(i′), ∀i, i′ s.t. i < i′ and ‖cσ(i)‖2 = ‖cσ(i′)‖2 (7)

For a given τ ∈ (0, 1) define iτ (c) := min{i ∈ [M ] s.t. ‖cσ(i)‖22 ≤ τ
∑
i′≥i ‖cσ(i′)‖22} be the

τ -critical index.

Define the following: Cτ (h) := {σ(i) | i < iτ (c), i ∈ [M ]}, C≤Kτ (h) := {σ(i) | i ≤ K, i < iτ},
and C reg

τ (h) := [M ] \ Cτ (h).

Now, the sequence of coefficients corresponding to C reg
τ (h) are τ -regular, since for any i ∈ C reg

τ (h),
‖ci‖22 ≤ τ

∑
i′∈Creg

τ (h) ‖ci′‖22. This regular part of c is for convenience denoted by the following
notation: creg := ⊕i∈Creg

τ (h)ci.

On the other hand, the coefficients corresponding to the non-regular part Cτ (h) are essentially
geometrically decreasing. This is formalized in the following proposition.

Proposition B.7 ([7]). For the above setting the following condition hold:

• For any i1, i2 ∈ Cτ (h), s.t. t1 := σ−1(i1), t2 := σ−1(i2), t1 < t2,

‖ci2‖2 ≤
1

τ
(1− τ)(t2−t1)‖ci1‖2.

B.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is given in Appendix A of [3], in particular the intermediate instance B
obtained in their proof is the hard instance of Theorem 3.2.

B.3 Representing Boolean Functions

Finally, we have this simple lemma on the representation of boolean functions.

Lemma B.8. Any boolean valued function f over boolean variables y1, . . . , y` can be written as

f(y1, . . . , y`) =
∑
H⊆[`]

(
aH

∏
s∈H

ys

)
, (8)

where each |aH | ≤ 2` for each H ⊆ [`].

Proof. Using the truth table of f , it can be written as an OR of up to 2` terms, one for each point
at which f evaluates to 1. Each such term is an AND of exactly ` literals which evaluates to 1 on
a distinct point on which f evaluates to 1. Any such term can be evaluated as a product of: y for
each positive literal y in it, and (1− y) for each negated literal in the term. Distributing this product
yields for each term an expression of the form on the RHS of (8) with coefficients of magnitude 1.
Summing up the expressions for all the (up to 2`) terms gives us the expression on the RHS of (8) for
f , with coefficients of magnitude at most 2`.

C Hardness Reduction and Proof of Theorem 3.3

Let δ, ` be the constants in the statement of Theorem 3.3. We choose the following parameters for the
reduction:

ε :=
ε0

1010`

(
δ

8`

)32

, Q :=
64

ε4
, τ := ε0

ε8

Q8
, K :=

32

τ
log

(
8Q

τ

)
, (9)

where ε0 ∈ (0, 1) is a small enough absolute constant to be decided later. The hardness reduction
is from an instance L of Smooth-Label-Cover given by Thm. 3.2 for a value of z (and thereby
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d := 4z) to be chosen later, and Jparam (we denote J from Thm. 3.2 as Jparam to avoid notation
conflict) as defined as follows:

Jparam :=
4

ε2

(
K`+

16d8`

τ6

)2

. (10)

We now define the set of boolean variables (feature space) over which the LLP-OR instance is
defined.

Variables. Let
M⋃
i=1

⋃
b∈{0,1}

Q⋃
q=1

{Xi,b,q} (11)

be a set of variables. We use the following notations: Xi,b := (Xi,b,1, . . . , Xi,b,Q), Xi = Xi,0⊕Xi,1

and X = ⊕Mi=1Xi, for all i ∈ [M ], b ∈ {0, 1}. Further, let S1, . . . , Sm be a partition of [M ] such
that |Sj | ≤ d for all j ∈ [m]. For each j ∈ [m], let X(j) = ⊕i∈SjXi (in any order). For coefficients
{ci,b,q | i ∈ [M ], b ∈ {0, 1}, q ∈ [Q]}, we analogously have ci,b, ci, c(j) and c.

For each vertex v ∈ VL there is a separate copy Xv of X defined above. In particular, the total set of
variables is ⋃

v∈VL

M⋃
i=1

⋃
b∈{0,1}

Q⋃
q=1

{Xv,i,b,q}.

represented by the (|VL| ·M · 2 ·Q)-dimensional boolean vector X. The goal is now to define a
distribution over non-monochromatic bags of size at most two.

For this we first define a distribution DX as given in Fig. 1 on X given in (11), parameterized by
a partition S1, S2, . . . , Sm of [M ]. We use as building blocks the two distributions over {0, 1}Q:
UQ := U ({e1, . . . , eQ}) (i.e., uniform over the Q-dim coordinate vectors) and ÛQ := U

(
{0, 1}Q

)
(uniform over Q-dim boolean vectors).

1. Randomly choose J ⊆ [m] by sampling each j ∈ [m] independently w.p. 1/2.
2. Randomly choose Jε ⊆ J by sampling each j ∈ J independently w.p. ε.
3. Independently for each i ∈ [M ] sample bi ∈ {0, 1} u.a.r. Set ai = 1− bi for i ∈ [M ].

4. Independently for each i ∈ ∪j∈JSj , sample Xi,ai from UQ.

5. Independently for each i ∈ ∪j∈JεSj , sample Xi,bi from ÛQ.
6. For i ∈ ∪j∈J\JεSj , set Xi,bi to 0Q.
7. For all j 6∈ J , set all Xi (i ∈ Sj) to 02Q.

Figure 1: Distribution DX

(
{Sj}mj=1

)
with partition {Sj}mj=1 of [M ].

For a given u ∈ UL and (v, u), (w, u) ∈ EL, using DX we define in Fig. 2 a distribution Du,v,w on

a pair of points – over the entire variable set (11) – (X
(1)
,X

(2)
). The final non-monochromatic bag

distribution DB is given in Fig. 3.

C.1 Proof of Completeness of Theorem 3.3

Suppose that the instance L is a YES instance i.e., there is a labeling σ = (σV , σU ) that satisfies all
the edges EL. Consider the monotone-OR F ∗ given by:

F ∗
(
X
)

=
∨
v∈VL

 ∨
b∈{0,1}

(
Q∨
q=1

Xv,σV (v),b,q

) . (12)

The following lemma shows the completeness of the reduction.
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1. Randomly choose Jv ⊆ [m] by sampling each j ∈ [m] independently w.p. 1/2. Let
Jw = [m] \ Jv .

2. Setting Sj = π−1
v,u(j) for j ∈ [m], sample X

(1)

v from DX

(
{Sj}mj=1

)
| J = Jv .

3. Setting Sj = π−1
w,u(j) for j ∈ [m], sample X

(2)

w from DX

(
{Sj}mj=1

)
| J = Jw.

4. For all v′ ∈ VL \ {v} set all {X(1)

v′,i,b,q | i ∈ [M ], b ∈ {0, 1}, q ∈ [Q]} to zero.

5. For all v′ ∈ VL \ {w} set all {X(2)

v′,i,b,q | i ∈ [M ], b ∈ {0, 1}, q ∈ [Q]} to zero.

6. Output (X
(1)
,X

(2)
).

Figure 2: Distribution Du,v,w.

1. Choose u ∈ UL u.a.r.
2. Choose v, w independently and u.a.r from NL(u) := {v′ ∈ VL | (v′, u) ∈ EL}.

3. Sample (X
(1)
,X

(2)
) from Du,v,w.

4. Output the bag B = {X(1)
,X

(2)}.

Figure 3: Bag Distribution DB .

Lemma C.1. For each bag B = {X(1)
,X

(2)} in the support of DB in Fig. 3,

F ∗
(
X

(1)
)
6= F ∗

(
X

(2)
)
.

Proof. Let j∗ := πv,u (σV (v)) = πw,u (σV (w)). Suppose that in the generation of {X(1)
,X

(2)}
from DB , (X

(1)
,X

(2)
) were sampled from Du,v,w.

In Du,v,w, it can be seen that if j∗ ∈ Jv then X
(2)

w satisfies X
(2)

w,i = 02Q for all i ∈ π−1
w,u(j∗), in

particular X
(2)

w,σV (w) = 02Q. Further, X
(2)

v′ = 0 for any v′ 6= w. Thus, F ∗ evaluates to 0 on X
(2)

.

On the other hand, from DX we know that one of {X(1)

v,σV (v),0,X
(1)

v,σV (v),1} is sampled from UQ,
therefore at least one of {Xv,σV (v),b,q | b ∈ {0, 1}, q ∈ [Q]} is set to 1 and therefore F ∗ evaluates

to 1 on X
(1)

.

An analogous argument shows that when j∗ ∈ Jw = [m] \ Jv, F ∗ evaluates to 1 on X
(2)

, and to 0

on X
(1)

.

C.2 Proof of Soundness of Theorem 3.3

In this case L is a NO instance. Consider ` linear forms

gs(X) = cs,0 +
∑
v∈VL

M∑
i=1

∑
b∈{0,1}

Q∑
q=1

cs,v,i,b,qXv,i,b,q, s ∈ [`]. (13)

For an given vertex v ∈ VL, define

hs,v(Xv) := cs,v,i,b,qXv,i,b,q. (14)

for each s ∈ [`]. Let us fix a triple (u, v, w) as a choice of DB in Fig. 3. For convenience we let
πv := πv,u and πw := πw,u. Using this along with the notation in Sec. B.1 define for each s ∈ [`]:

Bτ (hs,v) := {i ∈ C reg
τ (hs,v) | ‖cs,v,i‖22 > (τ6/(16d8))‖creg

s,v‖22}, (15)

Bτ (hs,w) := {i ∈ C reg
τ (hs,w) | ‖cs,w,i‖22 > (τ6/(16d8))‖creg

s,w‖22}, (16)
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and

Bτ (v) :=
⋃
s∈`

Bτ (hs,v) Bτ (w) :=
⋃
s∈`

Bτ (hs,w) (17)

C≤Kτ (v) :=
⋃
s∈`

C≤Kτ (hs,v) C≤Kτ (w) :=
⋃
s∈`

C≤Kτ (hs,w). (18)

Further, for each s ∈ [`]

Ssvv :=
{
i ∈ C reg

τ (hs,v) | πv(i) ∈ πv
(
C≤Kτ (v)

)}
, Svv =

⋃̀
s=1

Ssvv (19)

Ssww :=
{
i ∈ C reg

τ (hs,w) | πw(i) ∈ πw
(
C≤Kτ (w)

)}
, Sww =

⋃̀
s=1

Ssww (20)

Ssvw :=
{
i ∈ C reg

τ (hs,v) | πv(i) ∈ πw
(
C≤Kτ (w)

)}
, Svw =

⋃̀
s=1

Ssvw (21)

Sswv :=
{
i ∈ C reg

τ (hs,w) | πw(i) ∈ πv
(
C≤Kτ (v)

)}
, Swv =

⋃̀
s=1

Sswv. (22)

Using the above we have the following definition.
Definition C.2. A triple (u, v, w) chosen in DB (Fig. 3) is said to be good if the it satisfies the
following conditions:

1. Top-K Top-reg bijective.∣∣πv (C≤Kτ (v) ∪Bτ (v)
)∣∣ =

∣∣C≤Kτ (v) ∪Bτ (v)
∣∣ , (23)∣∣πw (C≤Kτ (w) ∪Bτ (w)

)∣∣ =
∣∣C≤Kτ (w) ∪Bτ (w)

∣∣ (24)

2. Top-K non-intersection.

πv
(
C≤Kτ (v)

)
∩ πw

(
C≤Kτ (w)

)
= ∅. (25)

3. Top-K heavy-reg non-intersection. For each s ∈ [`],∑
i∈Ssvw

‖cs,v,i‖22 ≤ (τ6/16)‖creg
s,v‖22, and

∑
i∈Sswv

‖cs,w,i‖22 ≤ (τ6/16)‖creg
s,w‖22. (26)

First we prove the following lemma.
Lemma C.3. There is a choice of z depending only on δ, ` such that the probability over the choice
of (u, v, w) in DB that (u, v, w) is good is at least 1− ε.

Proof. The following arguments use the bi-regulariy of L. Suppose for a contradiction that at least
ε-fraction of the triples (u, v, w) are not good. From the smoothness property of Theorem 3.2, a
random edge (v, u) incident on v for a given v ∈ VL satisfies (23) is at least:

1−
(∣∣C≤Kτ (v)

∣∣+ |Bτ (v)|
)2

Jparam
≥ 1−

(
`K + `

16d8

τ6

)2

/Jparam ≥ 1− ε2/4,

since |Bτ (hs,v)| ≤ 16d8/τ6 for any s ∈ [`] and by (10). Thus, we obtain that (u, v, w) satisfies the
Top-K Top-reg bijective property with probability at least, 1− ε2/2.

It follows that there must be at least ε− ε2/2 ≥ ε/2 fraction of triples (u, v, w) which do not satisfy
either (25) or (26) - call such triples intersecting. Given this, consider the following randomized
labeling σ to the vertices of L:

1. For every v ∈ VL:
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(a) With probability 1/2 choose σV (v) u.a.r from C≤Kτ (v).
(b) With probability 1/2:

i. Choose s ∈ [`] u.a.r.
ii. Choose σV (v) to be i ∈ C reg

τ (hs,v) with probability ‖cs,v,i‖22/‖c
reg
s,v‖22.

2. For each u ∈ UL, choose a w u.a.r. from N(u) and assign σU (u) = πw,u(σV (w)).

Consider a random edge (v, u), and let w be the choice for u in the above randomized labeling.
With probability ε/2, (u, v, w) is intersecting. In this case, if (25) is violated then with probability
1/(4`2K2), πv,u(σV (v)) = πw,u(σV (w)). On the other hand, if one of the conditions in (26) is not
satisfied for some s ∈ [`] then with probability τ6/(64K`2), πv,u(σV (v)) = πw,u(σV (w)). In both
cases, (v, u) is satisfied. Thus, there is a labeling that satisfies at least,

ε

2
·min

{
1

4`2K2
,

τ6

64K`2

}
fraction of the edges. Choosing z in Theorem 3.2 to be large enough depending only on τ,K, ε, `
(which in turn depend only on δ, ` for fixed ε0 as given in (9)) yields a contradiction.

Now, for any boolean function f over pos(g1), . . . , pos(g`) we have the following lemma.

Lemma C.4. For any good triple (u, v, w), under the distribution Du,v,w,∣∣∣E [f(X
(1)

)f(X
(2)

)
]
− E

[
f(X

(1)
)
]
E
[
f(X

(2)
)
]∣∣∣ ≤ O (`224`ε1/4

)
.

Proof. From Lemma B.8, f (pos(g1), . . . , pos(g`)) can be written as:

∑
H⊆[`]

(
aH

∏
s∈H

pos(gs)

)
(27)

where each |aH | ≤ 2`. The above expression is the sum of at most 2` product terms. Thus,

f(X
(1)

)f(X
(2)

) has at most 22` product terms of the form(
aH

∏
s∈H

pos(gs)
(
X

(1)
))(

aH′
∏
s∈H′

pos(gs)
(
X

(2)
))

(28)

for some H,H ′ ⊆ [`]. By Lemma C.5 however, we know that for a good triple (u, v, w)∣∣∣∣∣E
[
aH

∏
s∈H

pos(gs)
(
X

(1)
)
aH′

∏
s∈H′

pos(gs)
(
X

(2)
)]

− E

[
aH

∏
s∈H

pos(gs)
(
X

(1)
)]

E

[
aH′

∏
s∈H′

pos(gs)
(
X

(2)
)]∣∣∣∣∣

≤ |aHaH′ | ·O
(
`2ε1/4

)
(29)

Since |aHaH′ | ≤ 22`, bounding the error separately for the 22` terms as above, we obtain the bound
in the lemma.

Over all choices of triples made in DB , the probability that f satisfies the non-monochromatic bag
consisting of

(
X

(1)
,X

(2)
)

is,

Eu,v,wEDu,v,w

[
f
(
X

(1)
)(

1− f
(
X

(2)
))

+ f
(
X

(2)
)(

1− f
(
X

(1)
))]

= Eu,v,wEDu,v,w

[
f
(
X

(1)
)

+ f
(
X

(2)
)
− 2f

(
X

(1)
)
f
(
X

(2)
)]

(30)
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Since at least (1− ε)-fraction of triples are good and using Lemma C.4, from the above we bound
the probability by

Eu
[
E
[
f
(
X

(1)
)]

+ E
[
f
(
X

(2)
)]
− 2E

[
f
(
X

(1)
)]

E
[
f
(
X

(2)
)]]

+O
(
`224`ε1/4 + ε

)
(31)

where the inner expectations are over v, w,Du,v,w. For a fixed u, since v and w are chosen indepen-
dently from N(u) we have

E
[
f
(
X

(1)
)]

= E
[
f
(
X

(2)
)]

= pu,

Using which (31) becomes,

Eu
[
2pu − 2p2

u

]
+O

(
`224`ε1/4

)
(32)

Observe that

pu = Ev∈N(u)

[
f
(
X

(1)
)]
,

where X
(1)

in the above is sampled according to Du,v,w. The choice of w is immaterial since the

marginal distribution of X
(1)

after fixing u and v is the same. Note also that pf := Eu[pu] is the bias
of f over the choice of a random bag from DB and a uniformly random feature vector from B. Now,

Eu
[
2pu − 2p2

u

]
= 2pf − 2Eu

[
p2
u

]
≤ 2pf − 2 (Eu [pu])

2
= 2pf (1− pf ),

using E[X2] ≥ (E[X])
2. Thus,

Pr
B←DB

[pos(f) is non-monochromatic on B] ≤ 2pf (1− pf ) +O
(
`224`ε1/4

)
. (33)

Since pf ∈ [0, 1], the value on the RHS of the above is at most 1/2 +O
(
`224`ε1/4

)
≤ 1/2 + δ by

the setting of our parameters (and small enough choice of the absolute constant ε0) in (9).

C.3 Analysis for a good triple

In this subsection we fix a good triple (u, v, w), and for convenience as before let πv := πv,u and

πw := πw,u. Note that X
(1)

and X
(2)

in Du,v,w are supported only on the coordinates corresponding

to v and w respectively. Therefore, in this section we will think of X
(1)

defined only over {Xv,i,b,q}
and X

(2)
defined only over {Xw,i,b,q} and let D denote this distribution over X

(1)
and X

(2)
. For

convenience, we let DX(1) and DX(2) denote the respective marginals.

For each s ∈ [`] we let gs,v and hs,v be the restrictions of gs and hs to the coordinates {Xv,i,b,q}
respectively and similarly define gs,w and hs,w.

For any H ⊆ [`] define:

fv,H(Xv) :=
∏
s∈H

pos(gs,v(Xv)), fw,H(Xw) :=
∏
s∈H

pos(gs,w(Xw)) (34)

In the remainder of this subsection we prove the following lemma.

Lemma C.5. For any H,H ′ ⊆ [`]∣∣∣ED

[
fv,H

(
X(1)

)
fw,H′

(
X(2)

)]
− EDXv

[
fv,H

(
X(1)

)]
EDXw

[
fw,H′

(
X(2)

)]∣∣∣
≤ O(`2ε1/4) (35)
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Proof. For a given s ∈ [`] let us consider the distribution of of hs,v(X(1)) =
∑
i∈[M ]〈cv,i,X

(1)
v,i 〉.

We divide this sum into four disjoint parts as follows. Let

h(0)
s,v(X

(1)) :=
∑

i∈C≤Kτ (hs,v)

〈cs,v,i,X(1)
v,i 〉 (36)

h(1)
s,v(X

(1)) :=
∑

i∈Cτ (hs,v)\C≤Kτ (hv)

〈cs,v,i,X(1)
v,i 〉 (37)

h(2)
s,v(X

(1)) :=
∑

i∈Ssvv∪Ssvw

〈cv,i,X(1)
s,v,i〉 (38)

h(3)
s,v(X

(1)) :=
∑

i∈Creg
τ (hs,v)\(Ssvv∪Ssvw)

〈cs,v,i,X(1)
v,i 〉 (39)

Similarly, we define:

h(0)
s,w(X(2)) :=

∑
i∈C≤Kτ (hs,w)

〈cs,w,i,X(2)
w,i〉 (40)

h(1)
s,w(X(2)) :=

∑
i∈Cτ (hs,w)\C≤Kτ (hw)

〈cs,w,i,X(2)
w,i〉 (41)

h(2)
s,w(X(2)) :=

∑
i∈Ssww∪Sswv

〈cs,w,i,X(2)
w,i〉 (42)

h(3)
s,w(X(2)) :=

∑
i∈Creg

τ (hs,w)\(Ssww∪Sswv)

〈cs,w,i,X(2)
w,i〉 (43)

We will first prove the following lemma.

Lemma C.6. For any s ∈ [`]

Pr
D

[
pos

(
gs,v(X

(1))
)
6= pos

(
h(0)
s,v(X

(1)) + h(3)
s,v(X

(1)) + cs,0

)]
≤ O(ε1/4) (44)

and similarly,

Pr
D

[
pos

(
gs,w(X(2))

)
6= pos

(
h(0)
s,w(X(2)) + h(3)

s,w(X(2)) + cs,0

)]
≤ O(ε1/4) (45)

Proof. We will prove (44), with (45) following analogously. We fix any s ∈ [`]. Lemma C.8 shows
that,

Pr
[
pos(gs,v) 6= pos

(
h(0)
s,v + h(2)

s,v + h(3)
s,v + cs,0

)]
≤ O(ε1/4) (46)

by our setting of the parameters and a small enough choice of ε0 in (9). Let us now bound contri-
bution of h(2)

s,v. Note that by (15) and (23), each i ∈ Ssvv satisfies ‖cv,i‖2 ≤
(
τ3/(2d4)

)
‖creg
s,v‖2.

Furthermore, by definition |Ssvv| ≤ Kd`. Thus,∣∣∣∣∣ ∑
i∈Ssvv

〈cs,v,i,X(1)
v,i 〉

∣∣∣∣∣ ≤ ∑
i∈Ssvv

‖cs,v,i‖1 ≤
√

2Q
∑
i∈Ssvv

‖cs,v,i‖2

≤
(
Kd`

√
2Q
)( τ3

2d4

)
‖creg
s,v‖2

≤ (τ3/2/4)‖creg
s,v‖2 (47)

by our setting of the parameters and a small enough choice of ε0 in (9). The above also implies (using
the fact that ‖x‖2 ≤ ‖x‖1),

∑
i∈Ssvv

‖cs,v,i‖22 ≤
∑
i∈Ssvv

‖cs,v,i‖21 ≤

( ∑
i∈Ssvv

‖cs,v,i‖1

)2

≤ (τ3/16)‖creg
s,v‖22 (48)
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Now consider any j ∈ πv(Ssvw), and let i∗ := argmax{‖cs,v,i‖2 | i ∈ Ssvw, πv(i) = j}. By
(26) ‖cs,v,i∗‖2 ≤ (τ3/4)‖creg

s,v‖2 and by (15) for any i ∈ Ssvw ∩ π−1
v (j), i 6= i∗, ‖cs,v,i‖2 ≤

(τ3/(2d4))‖creg
s,v‖2.

Therefore, for a given j ∈ πv(Ssvw),∑
i∈Ssvw∩π−1

v (j)

‖cs,v,i‖1 ≤
√

2Q
∑

i∈Ssvw∩π−1
v (j)

‖cs,v,i‖2 ≤
√

2Q
(
(τ3/4) + d(τ3/(4d4))

)
‖creg
s,v‖2

≤ τ3
√
Q‖creg

s,v‖2 (49)

Thus, ∣∣∣∣∣ ∑
i∈Ssvw

〈cs,v,i,X(1)
v,i 〉

∣∣∣∣∣ ≤ ∑
j∈πv(Ssvw)

∑
i∈Ssvw∩π−1

v (j)

‖cs,v,i‖1 ≤ τ3K`
√
Q‖creg

s,v‖2

≤ (τ3/2/4)‖creg
s,v‖2 (50)

using (49) and the size bound |πv(Ssvw)| ≤
∣∣πw (C≤Kτ (w)

)∣∣ ≤ K`, and by a small enough choice
of ε0 in (9). The derivation of (50) also implies,∑

i∈Ssvw

‖cs,v,i‖22 ≤
∑

i∈Ssvw

‖cs,v,i‖21

≤

 ∑
j∈πv(Ssvw)

∑
i∈Ssvw∩π−1

v (j)

‖cs,v,i‖1

2

≤ (τ3/16)‖creg
s,v‖22 (51)

First, using (47), (50) ∣∣∣h(2)
s,v(X

(1))
∣∣∣ ≤ (τ3/2/2)‖creg

v ‖2, (52)

and (48) and (51) also yield the following bound on the sum `22 masses,∑
i∈Ssvv∪Ssvw

‖cs,v,i‖22 ≤ (τ3/8)‖creg
v ‖22 (53)

Thus,

γ :=
∑

i∈Creg
τ (hs,v)\(Ssvv∪Ssvw)

‖cs,v,i‖22 = ‖creg
s,v‖22 −

∑
i∈Ssvv∪Ssvw

‖cs,v,i‖22

≥
(
1− τ3/8

)
‖creg
s,v‖22

≥ (1/2)‖creg
s,v‖22. (54)

Since {‖cs,v,i‖2 | i ∈ C reg
τ (hs,v)} is τ -regular by definition (refer to Sec. B.1), the above (and an

analogous analysis for hs,w) implies the following lemma.

Lemma C.7. The following sequences of coefficients – of h(3)
s,v and h(3)

s,w respectively – are (2τ)-
regular:

{‖cs,v,i‖2 | i ∈ C reg
τ (hs,v) \ (Ssvv ∪ Ssvw)},

{‖cs,w,i‖2 | i ∈ C reg
τ (hs,w) \ (Ssww ∪ Sswv)},

for s ∈ [`].

Note that h(0)
s,v and h(2)

s,v depend only on X
(1)
v,i satisfying πv(i) ∈ πv

(
C≤Kτ (v)

)
∪ πw

(
C≤Kτ (w)

)
,

while h(3)
s,v depends only on those for which πv(i) 6∈ πv

(
C≤Kτ (v)

)
∪ πw

(
C≤Kτ (w)

)
. Therefore,

h
(0)
s,v + h

(2)
s,v is independent of h(3)

s,v .

From a small enough choice of ε0 in (9), Lemma D.1 along with (79) and Lemma D.3 implies that
for any t,

Pr
[
h(3)
s,v(X

(1)) ∈ [t, t+ θ]
]
≤ θ((ε/16)γ)−1/2 +O

(
ε1/4

)
, (55)
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where the probability is taken only on the setting of the variables Xi on which h(3) depends. Letting
t denote the independent fixation of h(0)

s,v + h
(2)
s,v + cs,0,

δ2 := Pr
[
pos

(
h(0)
s,v + h(2)

s,v + h(3)
s,v + cs,0

)
6= pos

(
h(0)
s,v + h(3)

s,v + cs,0

)]
≤ Pr

[
h(3)
s,v ∈

[
t−
∣∣∣h(2)
s,v

∣∣∣ , t+
∣∣∣h(2)
s,v

∣∣∣]]
(using (55) and (52)) ≤ τ3/2‖creg

s,v‖2√
(ε/16)γ

+O
(
ε1/4

)
(using (54)) ≤ 4τ3/2

√
1/ε+O

(
ε1/4

)
= O

(
ε1/4

)
(56)

by our setting of parameters and small enough ε0 in (9). The above along with (46) implies the
lemma.

Define:

f̃v,H(Xv) :=
∏
s∈H

pos(g̃s,v(Xv)), f̃w,H(Xw) :=
∏
s∈H

pos(g̃s,w(Xw)) (57)

where

g̃s,v(Xv) = h(0)
s,v(Xv) + h(3)

s,v(Xv) + cs,0, g̃s,w(Xw) = h(0)
s,w(Xw) + h(3)

s,w(Xw) + cs,0 (58)

for all s ∈ [`]. Applying a union bound along with Lemma C.6 we obtain that for any H,H ′ ⊆ [`]∣∣∣ED

[
fv,H

(
X(1)

)
fw,H′

(
X(2)

)]
− ED

[
f̃v,H

(
X(1)

)
f̃w,H′

(
X(2)

)]∣∣∣ ≤ O(`ε1/4) (59)

Observe that {h(0)
s,v}`s=1 depends only on Xv,i for πv(i) ∈ πv(C≤Kτ (v)), and {h(0)

s,w}`s=1 depends only
on Xw,i for πw(i) ∈ πw(C≤Kτ (w)). By (25) πv(C≤Kτ (v)) and πw(C≤Kτ (w)) are disjoint. Further,
{h(3)

s,v}`s=1 depend only on Xv,i such that πv(i) 6∈ πv(C≤Kτ (v)) ∪ πw(C≤Kτ (w)), and {h(3)
s,w}`s=1

depend only on Xw,i such that πw(i) 6∈ πv(C≤Kτ (v)) ∪ πw(C≤Kτ (w)). Thus, we have

1. {h(0)
s,v = ts,v}`s=1 is fixed independently of {h(3)

s,v}`s=1, {h(0)
s,w}`s=1, {h(3)

s,w}`s=1, by sampling
variables corresponding to j ∈ πv(C≤Kτ (v)). This fixes Jv ∩ πv(C≤Kτ (v)) independent of
Jw ∩ πw(C≤Kτ (w)).

2. {h(0)
s,w = ts,w}`s=1 is fixed independently of {h(3)

s,w}`s=1, {h(0)
s,v}`s=1, {h(3)

s,v}`s=1, by sampling
variables corresponding to j ∈ πw(C≤Kτ (w)). This fixes Jw ∩ πw(C≤Kτ (w)) independent
of Jv ∩ πv(C≤Kτ (v))

For now we assume the above fixations. Letting J̃v, J̃w be the restrictions of Jv, Jw to [m] \(
πv(C

≤K
τ (v)) ∪ πw(C≤Kτ (w))

)
,

ED

[
f̃v,H

(
X(1)

)
f̃w,H′

(
X(2)

)]
= EJ̃v,J̃w

[
E

[(∏
s∈H

pos(ts,v + h(3)
s,v(X

(1)) + cs,0)

)
(∏
s∈H′

pos(ts,w + h(3)
s,w(X(2)) + cs,0)

)
| J̃v, J̃w

]]

= EJ̃v,J̃w

[
E

[(∏
s∈H

pos(ts,v + h(3)
s,v(X

(1)) + cs,0)

)
| J̃v

]

E

[( ∏
s∈H′

pos(ts,w + h(3)
s,w(X(2)) + cs,0)

)
| J̃w

]]
(60)

11



since {h(3)
s,v(X(1))}`s=1 are independent of X(2) once J̃v is fixed. As observed earlier in this subsec-

tion {h(3)
s,v(X(1))}`s=1 satisfy the regularity conditions in Section D.1 with parameter 2τ . With the

setting of the parameters we have, and applying Lemma D.11 we obtain that the value of

E

[( ∏
s∈H′

pos(ts,w + h(3)
s,w(X(2)) + cs,0)

)
| J̃w

]

is within O(`ε1/4) of a fixed quantity, for all but O(`2
√
ε) fraction of the choices of J̃w. Since

the pos function takes values {0, 1} we can decouple the expectation of products into product of
expectations bounding the error as follows.∣∣∣∣∣EJ̃v,J̃w

[
E

[(∏
s∈H

pos(ts,v + h(3)
s,v(X

(1)) + cs,0)

)
| J̃v

]

E

[( ∏
s∈H′

pos(ts,w + h(3)
s,w(X(2)) + cs,0)

)
| J̃w

]]
−

EJ̃v

[∏
s∈H

pos(ts,v + h(3)
s,v(X

(1)) + cs,0)

]
· EJ̃w

[ ∏
s∈H′

pos(ts,w + h(3)
s,w(X(2)) + cs,0)

]∣∣∣∣∣
≤ O

(
`ε1/4 + `2

√
ε
)

= O(
(
`ε1/4

)
(61)

by our setting of ε and small enough choice of ε0 in (9).

Randomizing over the fixation of variables corresponding to j ∈ πv(C≤Kτ (v)) ∪ πw(C≤Kτ (w)) and
using the disjointedness of πv(C≤Kτ (v)) and πw(C≤Kτ (w)) allows us to extend the independently
sampled J̃v and J̃w above to independently sampled Jv and Jw in the product of expectations in the
LHS of (61). Combining this with bound in (61) and with (60) yields,∣∣∣ED

[
f̃v,H

(
X(1)

)
f̃w,H′

(
X(2)

)]
− ED

[
f̃v,H

(
X(1)

)]
ED

[
f̃w,H′

(
X(2)

)]∣∣∣
≤ O

(
`ε1/4

)
. (62)

Using the definitions in (57), the above combined with (59), Lemma C.6 along with a union bound
for the product of expectations above (similar to (59)) completes the proof of Lemma C.5.

C.4 Critical Index Truncation

In this subsection we consider the distribution given by DX (Fig. 1) over {Xi,b,q | i ∈ [M ], b ∈
{0, 1}, q ∈ [Q]}, with {Sj}mj=1 being the partition of [M ]. For a given linear form h with coefficients
{ci,b,q | i ∈ [M ], b ∈ {0, 1}, q ∈ [Q]}, let h̃ be a linear form whose coefficient vector c̃ is given by:

c̃i =

{
02Q if i ∈ Cτ (h) \ C≤Kτ (h)

ci otherwise.
(63)

Note that Cτ (h̃) = C≤Kτ (h̃) = C≤Kτ (h). We have the following lemma.

Lemma C.8. If
∣∣C≤Kτ (h) ∩ Sj

∣∣ ≤ 1 for each j ∈ [m] then except with probability exp(−Kε/64)
over the choice of J, Jε,b := (bi)i∈[M ],∣∣∣Pr [h(X) > t | J, Jε,b]− Pr

[
h̃(X) > t | J, Jε,b

]∣∣∣ ≤ exp(−Kε2/64) +O
(

1/
√
εK
)
. (64)

Proof. If |Cτ (h)| ≤ K then c̃ = c and the lemma is clearly true. So we may assume that |Cτ (h)| >
K and in particular, C≤Kτ (h) = K. Firstly, observe that∣∣∣h(X)− h̃(X)

∣∣∣ ≤ ∑
i∈Cτ (h)\C≤Kτ (h)

‖ci‖1 (65)

12



Note that by Prop. B.7, letting σ be the ordering used in Sec. B.1∑
i∈Cτ (h)\C≤Kτ (h)

‖ci‖1 ≤
√

2Q
∑

K<r<iτ (c)

‖cσ(r)‖2

≤
√

2Q

τ
‖cσ(K/4)‖2

∑
i≥0

(
√

1− τ)3K/4+i

≤
√

2Q

τ
‖cσ(K/4)‖2

(
2 · (
√

1− τ)3K/4)
)
. (66)

The above, with our choice of K w.r.t to τ and small enough ε0 in (9) yields,

min{‖ci‖2 | i ∈ C≤K/4τ (h)} >
√
K

∑
i∈Cτ (h)\C≤Kτ (h)

‖ci‖1 (67)

For each i ∈ C
≤K/4
τ (h), define Zi ∈ {0, 1} as the indicator of the event that {i ∈ Sj s.t. j ∈

Jε and ‖ci,bi‖22 ≥ (1/2)‖ci‖22}. By the condition of the lemma, each i ∈ C≤K/4τ (h) belongs to Sj
for a distinct j. Thus, {Zi | i ∈ C≤K/4τ (h)} are independent random variables. Independently for
each such i s.t. i ∈ Sj , j ∈ J w.p. 1/2. With a further probability of ε, j ∈ Jε; and bi satisfies
‖ci,bi‖22 ≥ (1/2)‖ci‖22 independently w.p. at least 1/2. Thus, Pr[Zi = 1] ≥ ε/4. Applying the
Chernoff-Hoeffding (Thm. B.3) bound we obtain that

Pr

 ∑
i∈C≤K/4τ (h)

Zi <
Kε

32

 ≤ 2 · exp

(
−
(

7Kε

32

)2

K−1

)
(68)

In particular, (using (9) and small enough choice of ε0) except for probability
exp(−Kε2/64) (69)

over the choice of J, Jε,b ∑
i∈C≤K/4τ (h)

Zi ≥
Kε

32
. (70)

Fixing such a choice of J, Jε,b, and letting K ′ :=
∑
i∈C≤K/4τ (h)

Zi, by the definition of Zis and by
(67)

min{|ci,bi‖2 | i ∈ C≤K/4τ (h), Zi = 1} >
√
K ′

∑
i∈Cτ (h)\C≤Kτ (h)

‖ci‖1 (71)

Note that each {Xi,bi | i ∈ C
≤K/4
τ (h), Zi = 1} are iid distributed as ÛQ (uniformly over {0, 1}Q),

and independently from all other variables which whose contribution to h can be independently fixed
such that it equals θ+t for some θ. Thus, applying the Lemma B.4 to {ci,bi | i ∈ C

≤K/4
τ (h), Zi = 1}

yields that over the random choice of {Xi,bi | i ∈ C
≤K/4
τ (h), Zi = 1},

Pr
[
1{h(X) > t} 6= 1{h̃(X) > t}

]
≤ Pr

∣∣∣∣∣∣
∑

i∈C≤K/4τ (h) |Zi=1

〈ci,bi ,Xi,bi〉+ θ

∣∣∣∣∣∣ ≤
∣∣∣h(X)− h̃(X)

∣∣∣


(using (65)) ≤ Pr

∣∣∣∣∣∣
∑

i∈C≤K/4τ (h) |Zi=1

〈ci,bi ,Xi,bi〉+ θ

∣∣∣∣∣∣ ≤
∑

i∈Cτ (h)\C≤Kτ (h)

‖ci‖1


(using (71)) ≤ Pr

∣∣∣∣∣∣
∑

i∈C≤K/4τ (h) |Zi=1

〈ci,bi ,Xi,bi〉+ θ

∣∣∣∣∣∣ ≤ min{|ci,bi‖2 | i ∈ C
≤K/4
τ (h), Zi = 1}√

K ′


≤ O

(
1/
√
K ′
)
≤ O

(
1/
√
εK
)
. (72)

The above, along with (65) and collecting the error probabilities from the above and in (69), (70)
completes the proof.
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D Invariance for the regular parts of the linear forms

The results of this section are used in the proof of Lemma C.5 applied to h(3)
s,v and h(3)

s,w (s ∈ [`]) – for
a good triple (u, v, w) – whose coefficients are shown to be 2τ -regular (Lemma C.7).

D.1 Invariance for single regular LTF

We abstract out the properties of h(3)
s,v (resp. h(3)

s,w) implied by the 2τ -regularity as mentioned above
and the Top-K Top-reg bijective condition (Defn. C.2) with the same setting of parameters given in
(9) as follows.

Let h :=
∑M
i=1

∑
b∈{0,1}

∑
q∈[Q] ci,b,qXi,b,q be a homogeneous linear form. For a parameter τ , we

say that h is (τ, d8)-nice if:

‖ci‖22 ≤ 2τ‖c‖22 ∀i ∈ [M ], (73)∣∣{i ∈ Sj | ‖ci‖22 > (τ/(4d8))‖c‖22}
∣∣ ≤ 1 ∀j ∈ [m]. (74)

For a parameter ε to be decided later, consider the distribution DX over {Xi,b,q | i ∈ [M ], b ∈
{0, 1}, q ∈ [Q]} as given in Figure 1. Let us denote by DX [h] the distribution of h(X) over
X← DX , and by DX [h|J ] when X← DX given J For a given j ∈ [m] let us define the random
variable h(j) :=

∑
i∈Sj

∑
b∈{0,1}

∑
q∈[Q] ci,b,qXi,b,q. Let us consider the expectation and variance

of h(j) conditioned on the event Ej = {j ∈ J} in Fig. 1 denoted by

Ej = EDX

[
h(j) | Ej

]
, Vj = VarDX

[
h(j) | Ej

]
(75)

Since each j is included in J independently w.p. 1/2, it is easy to see that Ej and Vj are independent
of the choice of J . Further, given J , {h(j) | j ∈ [m]} are independent random variables. Thus, we
have the following quantities:

E(J) := EDX
[h | J ] =

m∑
j=1

1EjEj (76)

V (J) := VarDX
[h | J ] =

m∑
j=1

1EjVj (77)

Further, over the choice of J let

Ṽj := VarJ
[
1EjEj

]
=
E2
j

2
−
E2
j

4
=
E2
j

4
(78)

so that from (76) and the independence of {Ej}mj=1 with EJ [Ej ] = 1/2 we have

EJ
[
E(J)

]
=

1

2

m∑
j=1

Ej , EJ
[
V (J)

]
=

1

2

m∑
j=1

Vj , and VarJ

[
E(J)

]
=

m∑
j=1

Ṽj . (79)

We wish to prove the following lemma.
Lemma D.1. With the choice of parameters and small enough ε0 in (9), for a (τ, d8)-nice h, except
with probability O (

√
ε) over the choice of J in Figure 1 the following holds:∣∣∣∣Pr [G > t]− Pr

DX

[h(X) > t | J ]

∣∣∣∣ ≤ O (ε1/4
)
, (80)

where G ∼ N
(
EJ
[
E(J)

]
,EJ

[
V (J)

])
. In particular, applying Gaussian anti-concentration (5),

Pr
DX

[h(X) ∈ [t, t+ δ] | J ] ≤ δ
(
EJ
[
V (J)

])−1/2

+O
(
ε1/4

)
, (81)

for any t ∈ R and δ ≥ 0.
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D.2 Proof of Lemma D.1

The main idea of the proof is to use (τ, d8)-niceness of h to argue that w.h.p over choice of J ,
DX [h|J ] is close to a fixed Gaussian distribution G.

We first explicitly calculate Ej , Vj and Ṽj for a given j ∈ J .

If j 6∈ Jε then Ej =
∑
i∈Sj

∑
b∈{0,1} Pr[bi = b](1/Q)

∑Q
q=1 ci,b,q =

(1/2Q)
∑
i∈Sj

∑
b∈{0,1}

∑Q
q=1 ci,b,q, otherwise there is an additional term of∑

i∈Sj
∑
b∈{0,1} Pr[bi = 1− b](1/2)

∑Q
q=1 ci,b,q = (1/4)

∑
i∈Sj

∑
b∈{0,1}

∑Q
q=1 ci,b,q . Therefore,

Ej = (1− ε)
(

1

2Q

)∑
i∈Sj

∑
b∈{0,1}

Q∑
q=1

ci,b,q

+ε

( 1

2Q

)∑
i∈Sj

∑
b∈{0,1}

Q∑
q=1

ci,b,q +

(
1

4

)∑
i∈Sj

∑
b∈{0,1}

Q∑
q=1

ci,b,q


=

(
ε

4
+

1

2Q

)
∆j , (82)

where ∆j :=
∑
i∈Sj

∑
b∈{0,1}

∑Q
q=1 ci,b,q. For Vj we use apply the law of total variance on (75)

over the random variable 1{j∈Jε} as follows

Vj = Var
[
h(j) | Ej

]
= Var

[
E
[
h(j) | 1{j∈Jε}

]
| Ej

]
+ E

[
Var

[
h(j) | 1{j∈Jε}

]
| Ej

]
(83)

We note the both the terms on the RHS are non-negative. For the first term observe that given j ∈ J ,
j 6∈ Jε w.p. (1− ε) in which case the expectation of h(j) is (1/2Q)∆j while j ∈ Jε w.p. ε in which
case there is an additional term of (1/4)∆j . The overall expectation is just Ej . Thus,

Var
[
E
[
h(j) | 1{j∈Jε}

]
| Ej

]
=

[
(1− ε)

(
1

2Q

)2

+ ε

(
1

4
+

1

2Q

)2

−
(
ε

4
+

1

2Q

)2
]

∆2
j (84)

≥

[
ε

16
−
(
ε

4
+

1

2Q

)2
]

∆2
j

(using (78), (82)) =

[
ε

16
−
(
ε

4
+

1

2Q

)2
]
·
(
ε

4
+

1

2Q

)−2

· 4 · Ṽj (85)

The choice of Q and ε in (9) guarantees ε ≤ 1/8 and Q ≥ 2/ε. This, along with Equations (83) and
(85) imply the following lemma.
Lemma D.2. Vj ≥ (1/(32ε))Ṽj .

Next we concentrate on the second term on the RHS of (83).

When j ∈ J \ Jε then it is easy to see that independently for each i ∈ Sj due to the random choice of
bi, exactly one of the 2Q variables ∪b∈{0,1} ∪Qq=1 {Xi,b,q} is set to 1 and the rest to 0, with equal
probability 1/(2Q) over all such choices. Thus, in this case, by independence over i the variance of
h(j) is the sum over i ∈ Sj of the variance of Γi :=

∑
b∈{0,1}

∑Q
q=1 ci,b,qXi,b,q, which for each i

can be calculated to be (
1

2Q

)
‖ci‖22 −

(
〈ci,12Q〉

2Q

)2

,

where 12Q is the all 1s vector of dimension 2Q. Thus,

Var
[
h(j) | j ∈ J \ Jε

]
=
∑
i∈Sj

[(
1

2Q

)
‖ci‖22 −

(
〈ci,12Q〉

2Q

)2
]
. (86)
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For the case when j ∈ Jε, again the distributions of Xi (i ∈ Sj) are independent, so the variance
of h(j) is the sum over i ∈ Sj of the variance of Γi. For a given i ∈ Sj , j ∈ Jε we compute this
variance by the law of total variance over conditioning on the choice of bi as follows:

E [Γi | i ∈ Sj , j ∈ Jε, bi = b = 1− a] = EXi,a∼UQ [〈ci,a,Xi,a〉] + E
Xi,b∼ÛQ [〈ci,b,Xi,b〉]

=
〈ci,a,1Q〉

Q
+
〈ci,b,1Q〉

2
, (87)

and therefore,

Var [E [Γi | bi] | i ∈ Sj , j ∈ Jε]

=
1

2

 ∑
b=1−a∈{0,1}

(
〈ci,a,1Q〉

Q
+
〈ci,b,1Q〉

2

)2
− ( 1

2Q
+

1

4

)2

· 〈ci,12Q〉2. (88)

Similarly,

Var [Γi | i ∈ Sj , j ∈ Jε, bi = b = 1− a]

= VarXi,a∼UQ [〈ci,a,Xi,a〉] + Var
Xi,b∼ÛQ [〈ci,b,Xi,b〉]

=

(
1

Q

)
‖ci,a‖22 −

(
〈ci,a,1Q〉

Q

)2

+
‖ci,b‖22

4
. (89)

and therefore,

E [Var [Γi | bi] | i ∈ Sj , j ∈ Jε] =

(
1

8
+

1

2Q

)
‖ci‖22 −

(
1

2Q2

) ∑
b∈{0,1}

〈ci,b,1Q〉2. (90)

Combining (88) and (90) and using the law of total variance we obtain,

Var [Γi | i ∈ Sj , j ∈ Jε]
= Var [E [Γi | bi] | i ∈ Sj , j ∈ Jε] + E [Var [Γi | bi] | i ∈ Sj , j ∈ Jε]

=

(
1

8
+

1

2Q

)
‖ci‖22 +

1

2

 ∑
b=1−a∈{0,1}

(
〈ci,a,1Q〉

Q
+
〈ci,b,1Q〉

2

)2


−
(

1

2Q2

) ∑
b∈{0,1}

〈ci,a,1Q〉2 −
(

1

2Q
+

1

4

)2

· 〈ci,12Q〉2

=

(
1

8
+

1

2Q

)
‖ci‖22 +

(
1

4
− 1

Q
− 1

Q2

)
〈ci,12Q〉2

4
−
(

1

4
− 1

Q

)
〈ci,a,1Q〉〈ci,b,1Q〉

=

(
1

8
+

1

2Q

)
‖ci‖22 +

(
1

16
− 1

4Q

)
(〈ci,a,1Q〉 − 〈ci,b,1Q〉)2 −

(
〈ci,12Q〉

2Q

)2

. (91)

Therefore,

Var
[
h(j) | j ∈ Jε

]
=
∑
i∈Sj

[(
1

8
+

1

2Q

)
‖ci‖22 +

(
1

16
− 1

4Q

)
(〈ci,a,1Q〉 − 〈ci,b,1Q〉)2

−
(
〈ci,12Q〉

2Q

)2
]
. (92)
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Combining (86) and (92) and using the fact that given Pr[j ∈ Jε | j ∈ J ] = ε, we obtain,

E
[
Var

[
h(j) | 1{j∈Jε}

]
| Ej

]
=

∑
i∈Sj

[(
ε

8
+

1

2Q

)
‖ci‖22 +

(
ε

16
− ε

4Q

)
(〈ci,a,1Q〉 − 〈ci,b,1Q〉)2

−
(
〈ci,12Q〉

2Q

)2
]

(93)

≥
∑
i∈Sj

[(ε
8

)
‖ci‖22 +

(
ε

16
− ε

4Q

)
(〈ci,a,1Q〉 − 〈ci,b,1Q〉)2

]
(94)

where the final inequality follows from 〈ci,12Q〉 ≤ ‖ci‖1 ≤
√

2Q‖ci‖2. Using (94) in conjunction
with (83) along with the setting of Q ≥ 4 in (9) directly yields the following lemma.

Lemma D.3. Vj ≥ (ε/8)
∑
i∈Sj ‖ci‖

2
2. In particular,

∑
j∈[m] Vj ≥ (ε/8)‖c‖22.

Next, we upper bound V 2
j in the following lemma.

Lemma D.4.
∑
j∈[m] V

2
j ≤ 2τ‖c‖42.

Proof. It can be seen from (9) that Q ≥ 4, ε ≤ 1/4 and τ ≤ 1/(20Q2). From this, (i) (84) implies

an upper bound of (1/2)∆2
j ≤ (1/2)

(∑
i∈Sj ‖ci‖1

)2

on first term on the RHS of (83), and (ii) (93)
upper bounds the second term on the RHS of (83) by

1

4

∑
i∈Sj

(
‖ci‖22 + (|〈ci,a,1Q〉|+ |〈ci,b,1Q〉|)2

)
≤ 1

4

∑
i∈Sj

(
‖ci‖21 + ‖ci‖21

)

=
1

2

∑
i∈Sj

‖ci‖21 ≤
1

2

∑
i∈Sj

‖ci‖1

2

(95)

where the first inequality follows from ‖ci‖2 ≤ ‖ci‖1, and |〈ci,a,1Q〉| + |〈ci,b,1Q〉| ≤ ‖ci,a‖1 +
‖ci,b‖1 = ‖ci‖1.

Combining the two upper bounds on the terms on the RHS of (83), we have

Vj ≤

∑
i∈Sj

‖ci‖1

2

≤ (2Q)

∑
i∈Sj

‖ci‖2

2

(96)

Let Sj 3 i∗ := arg maxi∈Sj ‖ci‖2. Then, (73) and (74) imply that

‖ci∗‖22 ≤ 2τ‖c‖22, and ‖ci‖22 ≤ (τ/(4d8))‖c‖22, ∀i ∈ Sj \ {i∗} (97)

Recall that |Sj | ≤ d, and consider the expansion of
(∑

i∈Sj ‖ci‖2
)4

into terms of the form

‖ci1‖2‖ci2‖2‖ci3‖2‖ci4‖2 for (i1, i2, i3, i4) ∈ Sj × Sj × Sj × Sj . There is one term ‖ci∗‖42 ≤
4τ2‖ci∗‖22‖c‖22 (using (97)) corresponding to i1 = i2 = i3 = i4 = i∗. Any other term has
at least one of i1, i2, i3 or i4 distinct from i∗ and – using the definition of i∗ and the condi-
tions in (97) – can be bounded by ‖ci∗‖32(τ/(4d8))‖c‖2 ≤ (τ2/(4d8))‖ci∗‖22‖c‖22. The total

number of terms is d4, and summing all of them up we obtain that
(∑

i∈Sj ‖ci‖2
)4

is at most

τ2(4 + 1/(4d4))‖ci∗‖22‖c‖22 ≤ 5τ2‖ci∗‖22‖c‖22. Using the choice of τ ≤ 1/(20Q2), (96) then
yields,

V 2
j ≤ 2τ‖ci∗‖22‖c‖22 ⇒

∑
j∈[m]

V 2
j ≤ 2τ‖c‖22

∑
j∈[m]

‖ci∗‖22 ≤ 2τ‖c‖42.
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We are now ready to show that V (J) is concentrated around its mean (1/2)
∑m
j=1 Vj (by (79)).

Lemma D.5.

Pr
J

∣∣∣V (J) − EJ
[
V (J)

]∣∣∣ =

∣∣∣∣∣∣V (J) − (1/2)

m∑
j=1

Vj

∣∣∣∣∣∣ > τ1/4
m∑
j=1

Vj =
τ1/4

2
EJ
[
V (J)

]
≤ 2 · exp(−1/τ1/4). (98)

Proof. First, observe that the setting in (9) implies τ ≤ (ε/4)8. From Lemma D.3 we obtain that the
LHS of (98) is at most,

Pr
J

[∣∣∣V (J) − EJ
[
V (J)

]∣∣∣ > τ1/4(ε/8)‖c‖22
]
≤ 2exp

(
−2τ1/2(ε/8)2‖c‖42∑m

j=1 V
2
j

)

≤ 2exp
(
−2τ1/2(ε/8)2‖c‖42

2τ‖c‖42

)
≤ 2exp(−1/τ1/4) (99)

using our bound on τ where the first inequality uses the Chernoff-Hoeffding inequality (Theorem
B.3) and the second inequality uses Lemma D.4.

Using the above we have the following lemma showing that E(J) is also highly concentrated around
its mean (1/2)

∑m
j=1Ej (by (79)).

Lemma D.6. Except with probability 2exp(−1/τ1/4) +
√
ε over the choice of J ,

∣∣∣E(J) − EJ
[
E(J)

]∣∣∣ =

∣∣∣∣∣∣E(J) − (1/2)

m∑
j=1

Ej

∣∣∣∣∣∣ < 16ε1/4
√
V (J).

Proof. Using PrJ

[
V (J) < (1/4)

∑m
j=1 Vj

]
≤ 2exp(−1/τ1/4) obtained from Lemma D.5 we have,

Pr
J

∣∣∣∣∣∣E(J) − (1/2)

m∑
j=1

Ej

∣∣∣∣∣∣ ≥ 16ε1/4
√
V (J)


≤ 2exp(−1/τ1/4) + Pr

J

∣∣∣E(J) − EJ
[
E(J)

]∣∣∣ ≥ 8ε1/4

√∑
j∈[m]

Vj

 (using (79))

≤ 2exp(−1/τ1/4) + Pr
J

∣∣∣E(J) − EJ
[
E(J)

]∣∣∣ ≥ ε−1/4

√∑
j∈[m]

Ṽj

 (using Lemma D.2)

≤ 2exp(−1/τ1/4) +
√
ε (using (79) and (4)) (100)

We now show that w.h.p. over the choice of J , the distribution of h(X) is close to a Gaussian
distribution with mean E(J) and variance V (J).

Lemma D.7. For a small enough choice of ε0 in (9), except with probability 2exp(−1/τ1/4) over
the choice of J , for all t ∈ R:

|Pr [h(X) > t | J ]− Pr [G > t]| ≤ O
(√

τ(Q/ε)3
)
,

where G ∼ N
(
E(J), V (J)

)
.

18



Proof. For j ∈ [m], let ρj := EDX

[∣∣h(j) − Ej
∣∣3 | Ej]. It is easy to see that the maximum vaue

of
∣∣h(j) − Ej

∣∣ is at most 2
∑
i∈Sj ‖ci‖1 ≤

√
8Q
∑
i∈Sj ‖ci‖2. Using the definition of i∗ as in the

proof of Lemma D.4 and following a similar set of arguments, we upper bound the expansion of(∑
i∈Sj ‖ci‖2

)3

with the sum of one term ‖ci∗‖32 ≤
√

2τ‖ci∗‖22‖c‖2 and at most d3 other terms

each of value at most ‖ci∗‖22(τ/(4d8))‖c‖2. This sum therefore is at most 2
√
τ‖ci∗‖22‖c‖2. Using

this and Lemma D.3 we obtain the following,

ρj ≤ 64
√
Q3τ‖ci∗‖22‖c‖2 ≤ 29

(√
Q3τ/ε

)
‖c‖2Vj ≤ 212

(√
τ(Q/ε)3

)
Vj

√√√√1

4

m∑
j=1

Vj (101)

From Lemma D.5 we obtain that PrJ

[
V (J) < (1/4)

∑m
j=1 Vj

]
≤ 2exp(−1/τ1/4), and except for

this probability over the choice of J by (101),

ρj ≤ 212
(√

τ(Q/ε)3
)
Vj
√
V (J), (102)

for each j ∈ [m]. Using the above along with (75), and applying the Berry-Esseen theorem (Theorem
B.1) we obtain the error in (2) to be,

O

(
1√
V (J)

·max
j∈J

ρj
Vj

)
= O

(√
τ(Q/ε)3

)
,

completing the proof.

From Theorem B.6 we have,

TV
(
N
(
E(J), V (J)

)
, N
(
EJ
[
E(J)

]
,EJ

[
V (J)

]))
≤

3
∣∣V (J) − EJ

[
V (J)

]∣∣
V (J)

+

∣∣E(J) − EJ
[
E(J)

]∣∣
2
√
V (J)

. (103)

Lemma D.5 implies that the first term on the RHS above is at most 3τ1/4/(2 − τ1/4) ≤ 4τ1/4

except w.p. 2exp(−1/τ1/4) over the choice of J . On the other hand, Lemma D.6 upper bounds the
second term on the RHS of (103) by 8ε1/4 except w.p. 2exp(−1/τ1/4) +

√
ε over the choice of J .

Combining this with Lemma D.7 yields that except with probability 6exp(−1/τ1/4) +
√
ε over the

choice of J , for all t ∈ R:∣∣∣Pr [h(X) > t | J ]− Pr
[
N
(
EJ
[
E(J)

]
,EJ

[
V (J)

])
> t
]∣∣∣

≤ O
(√

τ(Q/ε)3
)

+O
(
τ1/8

)
+O

(
ε1/4

)
(104)

which implies Lemma D.1 using our choice of parameters and small enough ε0 in (9).

D.3 Invariance of product of regular LTFs

We will use the setup of Sec. D.1 and instead of one linear form, we consider ` linear forms h1, . . . , h
`

as: hs :=
∑M
i=1

∑
b∈{0,1}

∑
q∈[Q] cs,i,b,qXi,b,q , (s ∈ [`]) which are all (τ, d8)-nice as defined in (73)

and (74). Without loss of generality we shall assume that the sum of squares of coefficients for each
of hs (s ∈ [`]) is 1 i.e.,

‖cs‖22 = 1, ∀s ∈ [`] (105)

As in previous section h(j)
s will denote the contribution to hs from the variables corresponding to

Sj (j ∈ [m]). Also, Es,j , Vs,j , E
(J)
s and V (J)

s shall denote the quantities defined in (75), (76), (77)
corresponding to hs (s ∈ [`]). Along with this, we will reuse some of the derivations in the previous
subsection for a single linear form h.

Let us define the following random (given a fixed X) versions of the above linear forms, with
independent Gaussian noise added to them.

h̃s(X) :=

m∑
j=1

∑
i∈Sj

∑
b∈{0,1}

∑
q∈[Q]

cs,i,b,qXi,b,q + ζs,j

 , ∀s ∈ [`], (106)
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where ζs,j are independent mean-zero Gaussian random variables given by

ζs,j ∼ N

0,
ε2

64

∑
i∈Sj

‖cs,i‖22

 (107)

Note that the above along with (105) implies that ζs :=
∑m
j=1 ζs,j , s = 1, . . . , `, are iid

N(0, (ε2/64)) Gaussians. Let ζ denote the choices of ζs,j (s ∈ [`], j ∈ [m] The following lemma is
derived from a union bound application of Lemma D.1.
Lemma D.8. For any t1, . . . , t`, with except with probability O(`

√
ε) over the choice of J in DX

(Fig. 1) ∣∣∣∣∣Pr
DX

[∧̀
s=1

(hs(X) > ts) |J

]
− Pr

DX ,ζ

[∧̀
s=1

(
h̃s(X) > ts

)
|J

]∣∣∣∣∣ ≤ O (`ε1/4
)
. (108)

Proof. We first observe that all ζs (s ∈ [`]) will, by Chebyshev’s inequality, have magnitude at
most ε3/4/8 except with probability `

√
ε. Further, using union bound over Lemma D.1, except with

probability O(`
√
ε) over the choice of J , (81) holds for each hs. Now, from (79) and Lemma D.3

EJ
[
V

(J)
s

]
is at least (ε/16). Thus, taking δ in (81) to be the (high probability) upper bound of

ε3/4/8 on the magnitude of ζs for each hs, we obtain the error on the RHS of (81) to be O(ε1/4) for
each s ∈ [`]. A further union bound completes the proof.

D.4 Concentration of covariance

Fix for this subsection fix s, r ∈ [`] (not necessarily distinct). We will show a high probability bound
on the concentration on Cov(h̃s, h̃r|J).

For a given J , the variables corresponding to Sj are independent of any Sj′ , j′ 6= j. Further the
{ζs,j | variables are independent. Thus, we have

C(J) := Cov(h̃s, h̃r | J) =

m∑
j=1

Cov
(
h(j)
s + ζs,j , h

(j)
r + ζr,j | J

)
=

m∑
j=1

Cov
(
h(j)
s , h(j)

r | J
)

=

m∑
j=1

Cj1Ej , (109)

where
Cj := Cov

(
h(j)
s , h(j)

r | Ej
)

(110)

Note that by linearity of expectation,

EJ
[
C(J)

]
= (1/2)

m∑
j=1

Cj (111)

Using the fact that 2 Cov(A,B) = Var(A + B)−Var(A)−Var(B) we have,
m∑
j=1

C2
j ≤

1

4

m∑
j=1

Var
(
h(j)
s + h(j)

r | Ej
)2

(112)

Using the same arguments used in the proof of Lemma D.4, we can obtain analogous to (96) the
following:

C2
j ≤ 1

4
(2Q)2

∑
i∈Sj

(‖cs,i‖2 + ‖cr,i‖2)

4

≤ 2 · (2Q)2


∑
i∈Sj

‖cs,i‖2

4

+

∑
i∈Sj

‖cr,i‖2

4
 (113)
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where the second inequality follows Holder’s inequality (in particular (a+ b)4 ≤ 8(a4 + b4). The
rest of the arguments from the proof of Lemma D.4) lead to,

m∑
j=1

C2
j ≤ 4τ(‖cs‖42 + ‖cr‖42) ≤ 8τ (114)

Applying the Chernoff-Hoeffding bound (Thm. B.3) along the lines in Lemma D.5 we obtain the
following,

Pr
J

[∣∣∣C(J) − EJ
[
C(J)

]∣∣∣ =

∣∣∣∣∣C(J) − (1/2)

m∑
i=1

Cj

∣∣∣∣∣ > 2τ1/4

]
≤ 2 · exp(−8τ1/2/8τ) ≤ 2 · exp(−1/

√
τ). (115)

Note that the above also gives a slightly different, as compared to Lemma D.5, bound for s = r with
C(J) = V

(J)
s and Cj = Vs,j .

Next we apply the multi-dimensional version of Berry Esseen theorem on h̃s (s ∈ [`]) together.

D.5 Applying multi-dimensional Berry-Esseen

From (115), the analysis in Lemma D.6 (the last three inequalities in (100)), and from Lemma D.5
along with the choice of parameters and small enough ε0 in (9), we obtain using union bound over all
pairs s, r ∈ [`], and all s ∈ [`] that except with probability O(`2

√
ε) over the choice of J ,∣∣∣Cov(h̃s, h̃r | J)− EJ

[
Cov(h̃s, h̃r | J)

]∣∣∣ ≤ 2τ1/4 (116)

is satisfied for all pairs s, r ∈ [`] (including s = r) and∣∣∣E(J)
s − EJ

[
E(J)
s

]∣∣∣ ≤ 8ε1/4

√∑
j∈[m]

Vs,j , (117)

and, ∣∣∣∣∣V (J)
s − (1/2)

m∑
i=1

Vs,j

∣∣∣∣∣ ≤ τ1/4
m∑
i=1

Vs,j , (118)

are satisfied for all s ∈ [`]. For the remainder of this subsection we shall fix such a choice of J . All
expectations of the form E are after fixing J , while EJ are expectations over choices of J in DX

Consider independent random vectors {Zj ∈ R` | j ∈ [m]} where Zj,s = h
(j)
s (X). Let Z :=∑m

j=1 Zj . Further, let {Z̃j ∈ R` | j ∈ [m]} independent random vectors such that Z̃j,s :=

Zj,s + ζs,j = h
(j)
s (X) + ζs,j . By the definition of h̃s we have

Z̃ :=

m∑
j=1

Z̃j = (h1(X) + ζ1, . . . , h`(X) + ζ`)
T

=
(
h̃1(X), . . . , h̃`(X)

)T
, (119)

First let Σ, Σ̃ be the the covariance matrices of Z, Z̃ respectively. Since {ζs}`s=1 are iid
N(0, (ε2/64)) (ref. (107)) and independent of Z, we have that,

Σ̃ = Σ +
ε2

64
I. (120)

As a pre-requisite to applying the multi-dimensional Berry-Esseen theorem the we need to upper
bound

∑m
j=1 E

[
‖Z̃j − E[Z̃j ]‖32

]
. We first observe that

∥∥∥Z̃j − E[Z̃j ]
∥∥∥3

2
=

(∑̀
s=1

∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣2)3/2

(By Holder’s Ineq.) ≤

`1/3(∑̀
s=1

∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣3)2/3

3/2

=
√
`
∑̀
s=1

∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣3 (121)
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So we need to only bound E

[∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣3], for which we consider the following two cases.

Case 1: j ∈ J . In this case,∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣3 ≤ (|Zj,s − E[Zj,s]|+ |ζj,s|)3

(By Holder’s Ineq.) ≤
(

22/3
(
|Zj,s − E[Zj,s]|3 + |ζj,s|3

)1/3
)3

≤ 4 ·
(
|Zj,s − E[Zj,s]|3 + |ζj,s|3

)
(122)

Note that |Zj,s − E[Zj,s]| =
∣∣∣h(j)
s − Es,j

∣∣∣. Thus, from the first inequality of (101) in the proof of
Lemma D.7,

E
[
|Zj,s − E[Zj,s]|3

]
≤ 64

(√
Q3τ/ε

)
‖cs‖2

∑
i∈Sj

‖cs,i‖22. (123)

For the remaining term |ζj,s|3 using the known upper bound of 2σ3 on the third moment of N(0, σ2)
we obtain:

E
[
|ζj,s|3

]
≤ 2

 ε2

64

∑
i∈Sj

‖cs,i‖22

3/2

≤ 4

 ε2

64

∑
i∈Sj

‖cs,i‖22

√τ‖cs‖2 (124)

using (74) along the lines of previous analyses.

Case 2: j 6∈ J . In this case Z̃j,s = ζj,s. Thus we have,

E

[∣∣∣Z̃j,s − E[Z̃j,s]
∣∣∣3] = E

[
|ζj,s|3

]
≤ 4

 ε2

64

∑
i∈Sj

‖cs,i‖22

√τ‖cs‖2 (125)

Combining the above and with our setting parameters in (9) we have our desired bound as:

m∑
j=1

E
[
‖Z̃j − E[Z̃j ]‖32

]
≤ 29 ·

(√
τQ3`/ε

)∑̀
s=1

‖cs‖2 m∑
j=1

∑
i∈Sj

‖cs,i‖22


= 29 ·

(√
τQ3`/ε

)∑̀
s=1

(
‖cs‖2

M∑
i=1

‖cs,i‖22

)

= 29 ·
(√

τQ3`/ε
)∑̀
s=1

‖cs‖2‖cs‖22

= 29 ·
(√

τQ3`3/ε
)

(126)

where we use the normalization ‖cs‖2 = 1 (s ∈ [`]). From (120) we get that the minimum eigenvalue
of Σ̃ is at least ε2/64. Thus, the maximum eigenvalue of Σ̃−1/2 is at most 8/ε. This implies,

m∑
j=1

E

[∥∥∥Σ̃−1/2
(
Z̃j − E[Z̃j ]

)∥∥∥3

2

]
≤

m∑
j=1

E

[(
(8/ε)

∥∥∥Z̃j − E[Z̃j ]
∥∥∥

2

)3
]

=

(
8

ε

)3 m∑
j=1

E
[
‖Z̃j − E[Z̃j ]‖32

]
(by (126)) ≤ 221 ·

(√
τQ3`3/ε7

)
:= ξ (127)

Using the above and applying the multi-dimensional Berry-Esseen theorem (Theorem B.2) we obtain
that for any convex set A in R`,∣∣∣Pr

[
Z̃ ∈ A

]
− Pr

[
Υ̃ ∈ A

]∣∣∣ ≤ O (`1/4ξ) (128)
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where ξ is as in (127) and Υ̃ ∈ R` is distributed as N
(
E[Z̃], Σ̃

)
.

In the above, the parameters of N
(
E[Z̃], Σ̃

)
depend on the specific choice of J . Next we shall

replace it with a distribution independent of J using the concentration of the means and covariances
that we assumed while fixing J in this subsection.

D.5.1 Making the joint distribution independent of J

Consider a matrix Σ′ the (s, r)th entry being EJ
[
Cov(h̃s, h̃r | J)

]
. It is easy to see that Σ′ =

EJ [Σ] and therefore Σ′ is a symmetric positive semidefinite matrix. Now, define

Σ := Σ′ +
ε2

64
I. (129)

Clearly, Σ is positive-definite. Further, from (120) and our assumption on the choice of J in (116),∥∥∥Σ − Σ̃
∥∥∥2

F
= ‖Σ′ −Σ‖2F ≤ 2`2τ1/4. (130)

Since the minimum eigenvalue of Σ̃ is at least (ε2/64), the sum of squares of eigenvalues of
Σ̃−1

(
Σ − Σ̃

)
is (using (130)) at most

`

(
64

ε2

)
‖Σ′ −Σ‖2F ≤ (128`3τ1/4/ε2).

Thus, applying Thm. B.5 we have the following lemma.
Lemma D.9. For any convex subset A ⊆ R`,∣∣∣Pr

[
Υ ∈ A

]
− Pr

[
Υ̃ ∈ A

]∣∣∣ ≤ (3/2)
√

(128`3τ1/4/ε2) ≤ (16`3/2/ε)τ1/8. (131)

where Υ̃ is as in (128) and Υ is distributed as N
(
E[Z̃],Σ

)
While the covariance matrix Σ is independent of the choice of J , the expectation vector E[Z̃] still is.
We use (117) and (118) to eliminate this dependence as follows.

Lemma D.10. Let µ ∈ R` be such that its sth entry is EJ
[
E

(J)
s

]
. Let Υ be as in Lemma D.9, and

let Υ be distributed as N
(
µ,Σ

)
. Then, for any t1, . . . , t`,∣∣∣∣∣Pr

[∧̀
s=1

(Υs > ts)

]
− Pr

[∧̀
s=1

(Υs > ts)

]∣∣∣∣∣ ≤ O(`ε1/4) (132)

Proof. First observe that since Υ and Υ have identical covariance matrices, we can take
Υ = Υ + µ− E[Z̃] (133)

Next, since ζs,j are mean zero (s ∈ [`], j ∈ [m]), we have

E[Z̃] = E[Z] = (E[h1|J ], . . . ,E[h`|J ])T| =
(
E

(J)
1 , . . . , E

(J)
`

)T
.

For any s ∈ [`] from (117) we have that,∣∣∣µs − E(J)
s

∣∣∣ ≤ 8ε1/4

√∑
j∈[m]

Vs,j =: αs,

while sth diagonal entry of Σ i.e., Var[Υs|J ] is, by (129) and (118)

EJ [Var[hs] | J ] ≥ 1

4

∑
j∈[m]

Vs,j =: βs.

Combining the above and applying the Gaussian anticoncentration (5), we get that for any ts,
Pr
[
1Υs>ts 6= 1Υs>ts

]
≤ Pr [Υs ∈ [ts − αs, ts + αs]]

≤ αs/
√
βs ≤ O(ε1/4) (134)

Taking a union bound over all s ∈ [`] yields the lemma.
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D.5.2 Main Lemma

Combining Lemma D.8, the analysis in Sec. D.5 culminating in (128), along with Lemmas D.9 and
D.10 and the setting of our parameters and choice of small enough ε0 in (9), we obtain the following
main result of this section
Lemma D.11. Let Υ be distributed as N

(
µ,Σ

)
(as in Lemma D.10 which is independent of any of

the choices of DX . Then, except with probability O(`2
√
ε) over the choice of J , for any t1, . . . , t`,∣∣∣∣∣Pr

[∧̀
s=1

(Υs > ts)

]
− Pr

DX

[∧̀
s=1

(hs(X) > ts) | J

]∣∣∣∣∣ ≤ O(`ε1/4) (135)

E Generalization Error for Minimizing Unsatisfied Bags of size 2

The work of [8] showed a generalization error bound for the proportion function f which maps a
vector y of r binary labels in a bag to R. The sufficient property of f used is that f is 1-Lipschitz
w.r.t. the infinity norm of y.

To apply their analysis for bounding the generalization error when minimizing the unsatisfied bags of
size at most 2 we first observe there are three proportions possible: 0, 0.5 and 1. These are the bag
labels given by the feature-vector classifier. Let us assume all bags are of size 2 by replicating the
feature vectors in the bags of size 1.

Now consider f which maps (i) the 0-bags to 0, and (ii) the 0.5-bags and 1-bags to 1. Clearly, f
is 1-Lipshitz w.r.t. to the infinity norm. Applying the results of [8] we get the generalization error
bound when classifying between 0-bags and the {0.5, 1}-bags. Further, by flipping the labels of the
feature-vectors we obtain the same generalization error bound when classifying between the 1-bags
and the {0.5, 0}-bags since the negation of a classifier has the same VC-dimension. Additionally
we have the constraint that the proportions of the 0-bags, 0.5-bags and 1-bags sum to 1. Combining
these arguments we obtain the same (up to a factor of 3) generalization error bound for minimizing
the number of unsatisfied bags of size at most 2 by a feature-vector level classifier.
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[6] Martin Raič. A multivariate berry–esseen theorem with explicit constants. Bernoulli, 25(4A),
Nov 2019. ISSN 1350-7265. doi: 10.3150/18-bej1072. URL http://dx.doi.org/10.3150/
18-BEJ1072.

[7] R. A. Servedio. Every linear threshold function has a low-weight approximator. In 21st Annual
IEEE Conference on Computational Complexity (CCC’06), pages 18–32, 2006.

[8] F. X. Yu, K. Choromanski, S. Kumar, T. Jebara, and S. F. Chang. On learning from label
proportions. CoRR, abs/1402.5902, 2014. URL http://arxiv.org/abs/1402.5902.

24

http://arxiv.org/abs/1810.08693
http://eccc.hpi-web.de/report/2010/177
http://dx.doi.org/10.3150/18-BEJ1072
http://dx.doi.org/10.3150/18-BEJ1072
http://arxiv.org/abs/1402.5902

	Hyperplane Rounding and Derandomization
	Derandomization of Theorem 1.1 using MR95

	Preliminaries for Hardness Result
	Critical Index
	Proof of Theorem 3.2
	Representing Boolean Functions

	Hardness Reduction and Proof of Theorem 3.3
	Proof of Completeness of Theorem 3.3
	Proof of Soundness of Theorem 3.3
	Analysis for a good triple
	Critical Index Truncation

	Invariance for the regular parts of the linear forms
	Invariance for single regular LTF
	Proof of Lemma D.1
	Invariance of product of regular LTFs
	Concentration of covariance
	Applying multi-dimensional Berry-Esseen
	Making the joint distribution independent of J
	Main Lemma


	Generalization Error for Minimizing Unsatisfied Bags of size 2

