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Abstract

Gaussian processes with derivative information are useful in many settings where
derivative information is available, including numerous Bayesian optimization
and regression tasks that arise in the natural sciences. Incorporating derivative
observations, however, comes with a dominating O(N3D3) computational cost
when training on N points in D input dimensions. This is intractable for even
moderately sized problems. While recent work has addressed this intractability in
the low-D setting, the high-N , high-D setting is still unexplored and of great value,
particularly as machine learning problems increasingly become high dimensional.
In this paper, we introduce methods to achieve fully scalable Gaussian process
regression with derivatives using variational inference. Analogous to the use of
inducing values to sparsify the labels of a training set, we introduce the concept of
inducing directional derivatives to sparsify the partial derivative information of a
training set. This enables us to construct a variational posterior that incorporates
derivative information but whose size depends neither on the full dataset size N
nor the full dimensionality D. We demonstrate the full scalability of our approach
on a variety of tasks, ranging from a high dimensional stellarator fusion regression
task to training graph convolutional neural networks on Pubmed using Bayesian
optimization. Surprisingly, we find that our approach can improve regression
performance even in settings where only label data is available.

1 Introduction

Gaussian processes (GPs) are a popular tool for probabilistic machine learning, widely used in
scenarios where uncertainty quantification for regression is necessary [27, 38, 14]. When used for
Bayesian optimization (BO) [18, 30], or in some regression settings found in the physical sciences like
estimation of arterial wall stiffness, derivative information may be available [37, 34]. In these settings,
we have not only noisy function values y = f(x) + ε but also noisy gradients ∇y = ∇xf(x) + ε at
some set of training points X ∈ RN×D. On paper, GPs are ideal models in these settings, because
they allow for training on both labels y and gradients∇y in closed form.

Though analytically convenient, Gaussian process inference with derivative information scales poorly:
computing the marginal log likelihood and predictive distribution for an exact GP in this setting
requires O(N3D3) time and O(N2D2) memory. Recent work has addressed this scalability in
certain settings, e.g. for many training points in a low-dimensional space [5] or for few training points
in a high-dimensional space [3]. Despite these advances, training and making predictions for a GP
with derivatives remains prohibitively expensive in regimes where both N and D are on the order of
hundreds or even thousands.

We introduce a novel method to scale Gaussian processes with derivative information using stochastic
variational approximations. We show that the expected log likelihood term of the Evidence Lower
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Bound (ELBO) decomposes as a sum over both training labels and individual partial derivatives. This
lets us use stochastic gradient descent with minibatches comprised of arbitrary subsets of both label
and derivative information. Just as variational GPs with inducing points replace the training label
information with a set of learned inducing values, we show how to sparsify the derivative information
with a set of inducing directional derivatives. The resulting algorithm requires only O(M3p3) time
per iteration of training, where M � N and p� D.

We demonstrate the quality of our approximate model by comparing to both exact GPs with derivative
information and DSKI from [5] on a variety of synthetic functions and a surface reconstruction task
considered by [5]. We then demonstrate the full scalability of our model on a variety of tasks that
are well beyond existing solutions, including training a graph convolutional neural network [16] on
Pubmed [28] with Bayesian optimization and regression on a large scale Stellarator fusion dataset
with derivatives. We then additionally show that, surprisingly, our variational Gaussian process
model augmented with inducing directional derivatives can achieve performance improvements in
the regression setting even when no derivative information is available in the training set.

2 Background

In this section we review the background on Gaussian processes (GP) (Section 2.1), Gaussian
processes with derivative observations (Section 2.2), and variational inference inducing point methods
for training scalable Gaussian processes (Section 2.3).

Derivative notation. Throughout this paper for compactness we abuse notation slightly and use
∂jyi to refer to the jth element of ∇yi. In this particular case, this would correspond to the partial
derivative observation in dimension j for training example xi. We also use ∂vyi to refer to the
directional derivative in the direction v, i.e. ∇y>i v.

2.1 Gaussian processes

A Gaussian process (GP) is a distribution over functions f ∼ GP(µ(x), k(x,x′)) specified by mean
and covariance function µ, k [23]. Given data points X = {x1, ...,xN} and function observations
f = {f(x1), ..., f(xN )}, placing a GP prior assumes the data is normally distributed with f ∼
N (µX ,KXX) where µX is the vector of mean values atX andKXX ∈ RN×N is a covariance matrix.
Conditioning on noisy observations y = f + ε where ε ∼ N (0, σ2I) induces a posterior distribution
p(f∗|y) over the value of f at points x∗, which is Gaussian with mean µ(x∗) − Kx�X(KXX +
σ2I)−1(f − µX) and covariance k(x∗,x∗) − Kx�X(KXX + σ2I)−1KXx� . Thus, standard GP
inference takes O(N3) time. Hyperparameters such as σ, θ are generally estimated by Maximum
Likelihood. The log marginal likelihood

L(X, θ, σ|y) = −1

2
(y−µX)T (KXX +σ2I)−1(y−µX)− 1

2
log |KXX +σ2I| − n

2
log(2π) (1)

can be optimized with methods like BFGS [19] at a complexity of O(N3) flops per iteration.

2.2 Gaussian processes with derivatives

GPs can leverage derivative information to enhance their predictive capabilities. Notably, as differen-
tiation is a linear operator, the derivative of a GP is a GP [20]. Derivative observations can then be
naturally included in a GP by defining a multi-output GP over the tuple of function observations and
partial derivative observations (y,∇y) [24]. The GP has mean and covariance functions

µ∇(x) =

�
µ(x)
∇xµ(x)

�
, k∇(x,x′) =

�
k(x,x′)

�
∇x0k(x,x′)

�T
∇xk(x,x′) ∇2k(x,x′)

�
. (2)

While including partial derivative observations can enhance prediction of f , and vice versa, a price is
paid in the computational cost, as training and inference of GPs with derivatives scale as O(N3D3).
This scalability issue has been addressed in the low D setting, and is discussed in section 3.

2.3 Stochastic Variational Gaussian Processes

Inducing point methods [29, 22, 33, 10] achieve scalability by introducing a set of inducing points: an
“artificial data set” of points Z = [zj ]

M
j=1 with associated inducing values, u = [uj ]

M
j=1. Stochastic
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Variational Gaussian Processes (SVGP) [9] augment the GP prior p(f | X)→ p(f | u,X,Z)p(u | Z)
and then learn a variational posterior q(u) = N (m,S). Inference for an observation y∗ at x∗ takes
time O(M3):

q(y∗) = N (y∗;Kx�ZK
−1
ZZm, σf (x

∗)2 + σ2) (3)

where σf (x)2 = Kxx − KxZK
−1
ZZKZx + KxZK

−1
ZZSK

−1
ZZKZx is the data-dependent variance.

Using Jensen’s inequality and the variational ELBO [10, 11], SVGP develops a loss that is separable
in the training data and amenable to stochastic gradient descent (SGD) [25], as the Kullback-Leibler
(KL) divergence regularization only depends on u

ELBOSVGP =

NX
i=1

�
logN (yi|µf (xi), σ

2)− σf (xi)
2

2σ2

�
− KL [q(u)||p(u)] . (4)

In equation (4), µf (xi), σf (xi)
2 are the predicted mean and variance, respectively. The ELBO is

maximized over the variational parameters m,S and the GP hyperparameters θ. Training with SGD
on mini-batches of B data points brings the time per iteration to O(BM2 +M3).

While SVGP scales well, its predictive variances are often dominated by the likelihood noise [13].
Modeling derivatives necessarily involves heteroscedastic noise, or at least different noise for the
function values and gradients, which may make SVGP with a Gaussian likelihood ill-suited to the
task. The Parametric Gaussian Process Regressor (PPGPR) achieves heteroscedastic modeling by
using the latent function variances without modifying the likelihood by symmetrizing the dependence
of the loss on the data-dependent variance σf (xi)

2 term

ELBOPPGPR =

NX
i=1

logN (yi|µf (xi), σ
2 + σf (xi)

2)− KL[q(u)||p(u)]. (5)

In Section 5, we evaluate our approach as an extension to both SVGP and PPGPR, and find that
PPGPR gives significant performance gains.

3 Related Work

DSKI and DSKIP [5], derivative extensions of SKI [36] and SKIP [7], are among the first methods to
address scaling Gaussian processes with derivative information in a low dimensional setting. DSKI
and DSKIP approximate derivative kernels by differentiating interpolation kernels ∇k(x,x′) ≈P

i∇wi(x)k(xi,x
′) where wi(x) are interpolation weights used in SKI. Like SKI, DSKI suffers

from the curse of dimensionality, and matrix-vector products cost O(ND6D + M logM) time.
DSKIP improves the dependence on D, but still costs O(D2(N +M logM + r3N logD)) to form
the approximate kernel matrices, where r � N is the effective rank of the approximation. Thus
while these methods exhibit high model fidelity, they are limited to low dimensional settings.

Recently [3] introduced an exact method for training GPs with derivatives in time O(N2D+ (N2)3),
which improves on the naive O(N3D3) when N < D. This method is not applicable as N grows
moderately large, while our paper chiefly focuses on the high-N and high-D setting.

Bayesian optimization with derivatives was considered in [37]. Here, the authors consider condition-
ing on directional derivatives to achieve some level of scalability, but the dataset sizes considered
never exceed N of around 200 or D of around 8. Distinct from their consideration of directional
derivative information, we will be equipping each inducing point in a sparse GP model with its own
set of distinct directional derivatives, allowing the model to learn derivatives in many directions in
regions of space where there are a large number of inducing points.

4 Methods

Our goal is to enable training and inference on data sets with large N and D when derivatives
are available. We will present our method in three steps. First, we describe a naive adaptation of
stochastic variational Gaussian processes to the setting with derivatives. Second, we argue that this
adaptation again scales poorly in D. Finally, we show that using additional sparsity on the derivatives
gives us scalability in both N and D.
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4.1 Variational Gaussian processes with derivatives.

As described in Section 2.3, SVGP creates a dataset ofinducing pointsZ = [ zj ]Mj =1 with labels (or
inducing values) u = [ uj ]Mj =1 . Assume we are given a datasetX = [ x i ]Ni =1 with labelsy = [ yi ]Ni =1

and derivative observationsr y = [ r yi ]Ni =1 . A natural extension of SVGP to this data is to augment
the standard inducing dataset withinducing derivatives, r u = [ r uj ]Mj =1 , each of lengthD , so that
each inducing point becomes a triple(zj ; uj ; r uj ). This corresponds to a new augmented GP prior:

p(f ; r f j X ) ! p(f ; r f j u; r u; X ; Z)p(u; r u j Z): (6)

Analogous to SVGP, we introduce a variational posterior:

q(u; r u) = N
�
m r ; Sr �

= N
��

m
r m

�
;
�

S r S
r S> r 2S

��
: (7)

Here,m andr m are trainable parameters learned by maximizing the ELBO. We abuse notation and
call the second portion of the vectorr m because these variational mean parameters correspond to
theM � D inducing derivative values. This also holds for the matricesr S andr 2S.

With this augmented variational posterior, the ELBO becomes:

Eq( f ;r f ) [logp(y ; r y j f ; r f )] � KL(q(u; r u)jjp(u; r u)) : (8)

Assuming the typical iid Gaussian noise likelihood for regression and expanding the �rst term further:

Eq( f ;r f ) [logp(y ; r y j f ; r f )] =
NX

i =1

Eq( f i ) [logp(yi j f i )] +
NX

i =1

DX

j =1

Eq(@j f i ) [logp(@j yi j @j f i )] :
(9)

Here, we have used linearity of expectation and the conditional independence betweenyi and@j f i
givenf i to show that the term of the ELBO that depends on training data decomposes as a sum over
labelsyi and partial derivatives@j yi . Thus, minibatches can contain an arbitrary subset of labels
(x i ; yi ) and partial derivatives(x i ; @j yi ), and the minibatch sizeB remains independent ofN andD.

The moments ofq(f ; r f ) =
R

p(f ; r f j u; r u)p(u; r u) du dr u are similar to those in SVGP, but
the kernel matrices have been augmented with derivatives (i.e., using the kernelkr (x ; x0)):

� f ;r f = K r
XZ

�
K r

ZZ

� � 1
m r ; � f ;r f = K r

XX + K r
XZ K r� 1

ZZ (Sr � K r
ZZ )

�
K r

ZZ

� � 1
K r

ZX : (10)

Here,K r
XX is aB � B matrix that corresponds to a randomly sampled subset of label and partial

derivative information.K r
XZ is B � M (D + 1) , and bothSr andK r

ZZ areM (D + 1) � M (D +
1). Similarly, the KL divergenceKL(q(u; r u)jjp(u; r u)) involves multivariate Gaussians with
covariance matrices of sizeM (D + 1) � M (D + 1) . As a result, the running time complexity of an
iteration of training under this framework isO(M 3D 3) which, grows rapidly with dimension.

4.2 Variational Gaussian processes with directional derivatives.

The procedure above is deceptively expensive despite the asymptotic complexity of a single iteration.
Because a minibatch of sizeB contains an arbitrary subset of theN labels andND partial derivatives
rather than simply a subset of theN labels, each epoch in the above procedure must process roughly
N + ND

B minibatches, rather than the usualN
B . Additionally, becauseK r

ZZ is of sizeM (D + 1) �
M (D + 1) , the above procedure is also analogous to SVGP usingM (D + 1) inducing points rather
than usingM . While minibatch training adapts readily toN (D + 1) training examples, it is rare to
use signi�cantly more than1000inducing points, which can require specialized numerical tools to
make scale even toM = 10000 [21]. In practice,M (D + 1) would rapidly result in matricesK r

ZZ
that make training infeasibly slow.

To make the matrixK r
ZZ not directly scale with the input dimensionality, we replace the induc-

ing derivatives from equation(7) with inducing directional derivatives. Rather than the triplet
(zi ; ui ; r u i ) with r u i having dimensionD, each inducing point is now equipped with a set ofp
distinct directional derivatives(zi ; ui ; @V i 1 ui ; :::; @V ip ui ) in the directionsv i 1; :::; v ip . We include
the inducing directionsV = [ V 1 � � � V M ] 2 RMp � D as trainable parameters.
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GPs with Directional Derivatives. Similar to how we built the derivative kernel matrix in Section
2.2, we may de�ne a multi-output GP over an unknown function and its directional derivatives. For a
point zi and some directionv i and another point and directionzj andv j the directional-derivative
covariance function is:

k@v i @v j (zi ; zj ) =
�

k(zi ; zj ) r z j k(zi ; zj )> v j

v >
i r z i k(zi ; zj ) v >

i r 2
z i z j

K (zi ; zj )v j

�
; (11)

which is of size2 � 2 rather than(D + 1) � (D + 1) as withkr (�; �).

GivenMp inducing directionsV , p per each of theM inducing points, the relevant kernel matrices (1)
between all pairs of inducing values and directional derivatives,K ZZ , and (2) between all inducing
values and training examples with full partial derivative observations,K XZ , are:

K ZZ =

"
K ZZ r Z K ZZ V

V
>

r Z K ZZ V
>

r 2
ZZ K ZZ V

#

; K XZ =
�

K XZ r Z K XZ V
r X K XZ r 2

Z K XZ V

�
; (12)

the �rst of which has shapeM (p + 1) � M (p + 1) . ConstructingK ZZ ; K XZ is inexpensive as we
compute them directly from the directional derivative kernel(11), rather than computing the full
gradient kernelkr and multiplying by the directionsV which would incur a cost ofO(M 2D 2).

Variational inference with this model is nearly identical to inference with full inducing gradients. We
de�ne a variational posterior, this time over theM (p+ 1) inducing values and directional derivatives:

q(u; @V u) = N
�
m; S

�
(13)

wherem 2 RM (p+1) andS 2 RM (p+1) � M (p+1) . The model is trained by optimizing the variational
ELBO

Eq( f ;r f ) [logp(y ; r y j f ; r f )] � KL(q(u; @V u)jjp(u; @V u)) : (14)

over the variational parametersm; S, the inducing pointsZ, the inducing directionsV , and the hy-
perparameters. Because the structure of the ELBO remains unchanged, the training labels and partial
derivatives can again be subsampled to form minibatches of sizeB , yieldingK XZ 2 RB � M (p+1) :
Inference proceeds by computingq(f ; r f ) from (10) by replacing the kernel matricesK r

XZ and
K r

ZZ with our directional derivative variantsK XZ andK ZZ .

Learning inducing directions The above algorithm requires the selection of a setV =
[V 1 � � � V M ] of inducing directions. In the setting where all inducing points have a shared set
of p global inducing directions, there is an optimal �xed choice for the inducing directions [2, 5].
However, for a variational GP with directional derivatives, sharing inducing directions does not
improve scalability as the size of the kernel matricesK XZ ; K ZZ is unchanged from the case where
each inducing point hasp distinct inducing directions. Thus we may improve model �exibility and
performance by allowingeach inducing point to have distinct directions at no additional computation
complexity(see the supplementary materials for a comparison against shared inducing directions). In
this case, a principled approach to setting the inducing directions is to include them as a set ofmpd
trainable parameters, and learn them when maximizing the ELBO(14). Learning inducing directions
allows nearby inducing points to balance the directions from which they capture information, and
encourages the model to capture the locally most informative directions. We adopt this approach in
our experiments in section 5.

Derivative modeling with p � D . A key feature of this framework is that it allows for the use of
a different numberp of directional derivatives per inducing point than the number of partial derivative
observations per training point. Particularly for kernel matrices involving training examples with full
partial derivative information, usingp � D directional derivatives keeps the matrix dimension small
and independent ofD . Nevertheless, allowing each inducing point to have its own set of learnable
directions enables the model to learn many derivative directions where necessary in the input space
by placing multiple inducing points with different directions nearby. A notable case is when each
inducing pointzi has thep = D canonical inducing directionsV i = I , through which we recover
the full variational GP with derivatives as described in section 4.1.
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Complexity. For a minibatch sizeB , when learningp directional derivatives per inducing point,
the matricesK XZ andK ZZ becomeB � M (p + 1) andM (p + 1) � M (p + 1) respectively. As
a result, the time complexity of variational GP inference with directional derivatives isO(M 3p3).
When usingp directions per inducing point, this is computationally equivalent to running SVGP
with p + 1 times as many inducing points. To counteract the additional matrix size, one may use the
whitened formulation of variational inference [17] for GPs when computing equation(10)and use
contour integral quadrature as in [21].

5 Experiments

In this section we evaluate the empirical performance of variational GPs with directional derivatives.
In sections 5.1 and 5.2 we benchmark the performance of our method on small regression problems
where we can compare to prior work such as exact GPs with derivatives and DSKI. In sections 5.3,
5.4, and 5.5 we compare to variational GPs without derivatives on high dimensional regression and
Bayesian optimization (BO) tasks which are well beyond the scalability means of all prior work
we are aware of. In section 5.6 we perform an ablation study to understand the effect of increasing
the number of inducing directions. In section 5.7 we investigate the value of learning directional
derivative information even when derivative observations are not available. All of our GP models
use a constant prior and Gaussian kernel (or associated directional derivative kernel) and were
accelerated through GPyTorch [8] on a single GPU. Code is available athttps://github.com/
mishapadidar/GP-Derivatives-Variational-Inference .

5.1 Synthetic functions

In this section, we consider low-dimensional regression with derivatives on test functions including
Branin (2D), SixHumpCamel (2D), Styblinksi-Tang (2D) and Hartmann (6D) from [32], a mod-
i�ed 20D Welch test function [1] (Welch-m)1, and a 5D sinusoidf (x) = sin(2 � jjxjj2) (Sin-5).
We compare variational GPs without derivatives (SVGP, PPGPR) to variational GPs with deriva-
tives (GradSVGP, GradPPGPR), exact GPs with derivatives (GradGP), non-variational GPs with
derivatives (DSKI), and variational GPs withp = 2 directional derivatives per inducing point
(DSVGP2,DPPGPR2). Exact and variational GPs with full derivatives are only tractable in low-
dimensional settings due to the scalability issues mentioned in sections 3 and 4.1. Therefore, to apply
GradSVGP and GradPPGPR on the 20D Welch-m function, we �rst perform dimension reduction
onto a low dimensional active subspace [2], similar to [5]. To show the limitation of GradSVGP and
GradPPGPR, we modi�ed the Welch function to have a low-quality low-dimensional active subspace.

In this low-dimensional setting, we �nd that variational GPs with directional derivatives, DSVGP2 and
DPPGPR2, perform comparably to the methods that incorporate full derivatives (DKSI, GradSVGP,
GradPPGPR, GradGP); see Table 1. In Figure 1 we compare the negative log likelihood of each
method as the inducing matrix size grows on the Sin-5 and Hartmann test functions. We �nd
that DSVGP2 and DPPGPR2 often outperform other methods due to their ability of incorporating
derivative information while only modestly increasing the inducing matrix size.

5.2 Implicit Surface Reconstruction

In order to further validate the �delity of our method's derivative modeling, we consider the surface
reconstruction task considered in [5]. We compare to DSKI with the goal of achieving comparable
performance, as DSKI is nearly exact for this problem. In Figure 2, we reconstruct the Stanford
Bunny by training DSVGP withp = 3 inducing directions for1200epochs and DSKI on 11606
noisy observations of 34818 locations and corresponding noise-free surface normals (gradients of the
bunny level sets). DSVGP smoothly reconstructs the bunny and is comparable to DSKI.

5.3 Training Graph Convolutional Neural Networks with Bayesian Optimization

In this section, we demonstrate the full scalability of our approach by training theD = 4035
parameters of a two layer graph convolutional neural network (GCN) [16] on the node classi�cation

1The Welch test function has intrinsically a 6D active space. We modi�ed it to have a low-quality 6D active
subspace and to show the limitation of GradSVGP and GradPPGPR.
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Branin Camel StyTang Sin-5 Hartmann Welch-m
RMSE
(1e-3) NLL

RMSE
(1e-3) NLL

RMSE
(1e-3) NLL

RMSE
(1e-1) NLL

RMSE
(1e-1) NLL

RMSE
(1e-2) NLL

SVGP 1.45 -3.12 5.28 -2.95 3.64 -3.06 6.64 0.99 1.02 -0.69 16.20 -0.39
PPGPR 1.60 -3.21 6.46 -3.10 4.64 -3.17 4.35 0.35 3.02 -1.28 18.08 -0.56

GradGP 15.4 -0.87 25.1 -0.22 44.4 -0.822.59 -.23 0.50 -0.74 16.3 -0.38
GradSVGP 0.35 -3.65 2.09-3.62 1.00 -3.65 4.85 2.31 2.08 0.59 18.94 42.82

GradPPGPR 0.67 -3.32 23.1 -3.14 2.91 -3.30 4.83 0.37 3.95 -1.16 18.92 -0.25
DSVGP2 0.29 -3.10 1.82 -2.50 0.86 -2.97 3.03 1.87 0.92 -0.75 3.74 -0.74

DPPGPR2 0.47 -3.32 8.43 -3.24 1.75 -3.31 4.30 0.05 2.69-1.64 26.08 -0.71
DSKI 0.91 -4.47 3.85 -3.00 1.59 -4.74 N/A N/A N/A N/A N/A N/A

Table 1: Regression results on Branin (2D), SixHumpCamel (2D), Styblinksi-Tang (2D), Sin-5 (5D),
Hartmann (6D) and Welch-m (20D), each with10000training and10000testing points. Following
[5], we train GradGP on10000=(D + 1) points. The inducing matrix size is 800 for all variational
inducing point methods, while DSKI is trained on800 inducing points per dimension. See the
supplementary material for error bars.

Figure 1: Negative Log Likelihood (NLL) for the various GPs when using different inducing matrix
sizes to regress on Sin-5 (Left) and Hartmann (Right). DPPGPR2 often outperforms other methods
due to its ability to incorporate derivative information while only modestly increasing the inducing
matrix size. DSKI is removed because it does not have comparable matrix size. In both �gures,
shaded regions correspond to standard errors.

Figure 2: Surface reconstruction of the Stanford bunny: (Left) Original surface, (Middle) DSVGP
with 800 inducing points and 3 directions, (Right) D-SKI with303 inducing grid points.

task of the Pubmed citation dataset [28] using Bayesian optimization. The Bayesian optimization
setting compounds the need for scalability, as the GP model must be retrained after each batch of
data is acquired. For example, in the last500of 2500optimization iterations with a batch size of 10,
a GP must be �t50 times to datasets withN (D + 1) � 2500(4035 + 1)> 106 combined function
and partial derivative labels. Any one of these datasets would be intractable to existing methods for
training GPs with gradient observations.

7


	Introduction
	Background
	Gaussian processes
	Gaussian processes with derivatives
	Stochastic Variational Gaussian Processes

	Related Work
	Methods
	Variational Gaussian processes with derivatives.
	Variational Gaussian processes with directional derivatives.

	Experiments
	Synthetic functions
	Implicit Surface Reconstruction
	Training Graph Convolutional Neural Networks with Bayesian Optimization
	Stellarator Regression
	Rover Trajectory Planning
	Ablation Study Over Number of Inducing Directions
	UCI Regression

	Discussion
	Acknowledgements

