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Abstract

Few-shot object detection (FSOD) aims to detect new objects based on few anno-
tated samples. To alleviate the impact of few samples, enhancing the generalization
and discrimination abilities of detectors on new objects plays an important role.
In this paper, we explore employing Singular Value Decomposition (SVD) to
boost both the generalization and discrimination abilities. In specific, we propose
a novel method, namely, SVD-Dictionary enhancement, to build two separated
spaces based on the sorted singular values. Concretely, the eigenvectors corre-
sponding to larger singular values are used to build the generalization space in
which localization is performed, as these eigenvectors generally suppress certain
variations (e.g., the variation of styles) and contain intrinsical characteristics of
objects. Meanwhile, since the eigenvectors corresponding to relatively smaller sin-
gular values may contain richer category-related information, we can utilize them
to build the discrimination space in which classification is performed. Dictionary
learning is further leveraged to capture high-level discriminative information from
the discrimination space, which is beneficial for improving detection accuracy. In
the experiments, we separately verify the effectiveness of our method on PASCAL
VOC and COCO benchmarks. Particularly, for the 2-shot case in VOC split1, our
method significantly outperforms the baseline by 6.2%. Moreover, visualization
analysis shows that our method is instrumental in doing FSOD.

1 Introduction

With the rejuvenation of deep neural networks, for object detection, many progresses [11, 12, 1, 26,
22] have been achieved. Though these methods obtain outstanding detection performances, they
usually require a large number of labeled samples for training, which are labored yet expensive to
collect and annotate. On the contrary, human beings are born with the ability to learn a new visual
concept with only few samples. To imitate such an ability of human beings, the task of few-shot object
detection (FSOD) [2, 17, 36] has been proposed, which aims to improve the detection performance
for new objects that contain few annotated training samples.

The main challenge of FSOD lies in how to learn generalized and discriminative object features from
both abundant samples in base object categories and few samples in new object categories, which
can improve the representation ability of object features and alleviate overfitting on new objects.
Following the popular methods for few-shot image classification, earlier attempts [38, 37, 33, 8] in
FSOD utilize the meta-learning strategy [29, 31, 10], whose goal is to learn detectors across tasks and
then transfer to the few-shot detection task. However, compared with traditional two-stage fine-tuning
based approaches [34, 35, 30], the meta-learning strategy fails to effectively improve generalization
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Figure 1: SVD-Dictionary enhancement for FSOD. ‘SVD-Large’ indicates that we use the eigenvec-
tors corresponding to larger singular values to build the generalization space in which localization is
performed. ‘SVD-Small’ indicates that we use the eigenvectors corresponding to smaller singular
values to build the discrimination space in which classification is performed. Meanwhile, dictionary
learning [41] is used to capture high-level discriminative information from the discrimination space,
which is beneficial for improving the detection accuracy.

and discrimination of object features and leads to weak performance. The reason may be that during
each training episode, meta-learning methods focus on transferability across different tasks and ignore
learning of generalized and discriminative feature representations.

For FSOD, the generalized representations may contain intrinsical characteristics of object features,
which is beneficial for adapting knowledge from base object categories to new object categories.
Meanwhile, the discriminative representations may contain certain category-related information,
which is helpful for boosting the detection accuracy. Furthermore, recent research [3] has shown that
from a spectral analysis perspective, the feature representations can be decomposed into eigenvectors
with importance quantified by the corresponding singular values. The eigenvectors corresponding to
larger singular values contribute to the generalization ability, as these eigenvectors could suppress
certain variations (e.g., the variations of style and texture). Meanwhile, since the eigenvectors
corresponding to relatively smaller singular values contain richer category-related information (e.g.,
the structures of objects), these eigenvectors are beneficial for discrimination. Therefore, in this
paper, we explore employing Singular Value Decomposition (SVD) (as shown in Fig. 1) to promote
detectors to learn generalized and discriminative object features.

Particularly, we propose a method named as SVD-Dictionary enhancement for FSOD. Given an
input image, a backbone network is first used to extract the corresponding feature map. Then, SVD
is performed on the feature map. Here, we select the eigenvectors corresponding to the first k
largest singular values to compute a generalization map. And the generalization ability is enhanced
by a residual operation between the generalization map and the original feature map. Next, the
residual eigenvectors are used to calculate a discrimination map. Meanwhile, to further enhance
discrimination, we define a codebook containing multiple codewords and employ dictionary learning
[41] to capture high-level discriminative information from the discrimination map, which is good for
accurate detection. Compared with most methods [35, 33, 17] for FSOD, our method includes two
virtues. One is that during enhancing generalization, our method does not introduce extra parameters.
The other is that with the help of the discrimination map and dictionary learning, our method could
capture high-level discriminative information of different categories, which is conductive to reducing
the data-scarce impact on new object categories. During training, we first train the model on the
data-abundant base object categories. Then, the model is fine-tuned on a reconstructed training set
that contains a small number of balanced training samples from both base and new object categories.
Extensive experiments on two benchmarks demonstrate the superiorities of our method.

The contributions of our work are summarized as follows:

• To boost both the generalization and discrimination abilities, we propose to build the
generalization and discrimination spaces based on the sorted singular values.

• To further enhance the discrimination ability, we explore dictionary learning to capture
high-level discriminative information from the discrimination map.

• By plugging our method into two two-stage methods, i.e., MPSR [35] and FSCE [30], our
method significantly improves their performances on PASCAL VOC [6, 7] and COCO [20].
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2 Related Work

Few-shot image classification. The goal of few-shot image classification [29, 24] is to recognize new
categories with very few labeled samples. Recently, many progresses [5, 32, 42, 40, 13] have been
achieved. Particularly, meta-learning [10] is a widely used method to solve few-shot classification,
which aims to leverage task-level meta knowledge to help models adapt to new tasks with few labeled
samples. Based on the meta-learning policy, Snell et al. [29] proposed a prototypical network to learn
a metric space in which classification can be performed by computing distances to the prototype
representation of each category. However, the performance of this method relies on the quality of the
learned prototypes. When the training data is scarce, the learned prototypes could not represent the
information of each category sufficiently, which affects the classification performance. Liu et al. [23]
proposed a method of prototype rectification, which considers the intra-class bias and the cross-class
bias and improves the performance significantly. Apart from these methods, more methods, e.g.,
sample synthesis and augmentation, in few-shot learning can be seen in the work [24]. Whereas,
these classification methods could not be directly applied to detection that requires localizing and
recognizing objects simultaneously.

Few-shot object detection. Towards FSOD, most existing methods [18, 8, 25, 2, 39] employ a meta-
learning or fine-tuning based mechanism. Particularly, Wang et al. [33] proposed a meta-learning
framework to leverage meta-level knowledge from base object categories to facilitate the generation
of a detector for new object categories. Based on this work [33], Kang et al. [17] further proposed
a one-stage detection architecture that contains a meta feature learner and a reweighting module.
In order to alleviate the impact of complex background and multiple objects on one image, Yan et
al. [38] extended Faster R-CNN [27] and Mask R-CNN [16] by proposing meta-learning over RoI
(Region-of-Interest) features. Recently, the two-stage fine-tuning based approach (TFA) [34] reveals
a potential for addressing FSOD. By simply fine-tuning the box classifier and regressor, this method
outperforms many meta-learning based methods. Wu et al. [35] considered the impact of the scale
bias on the fine-tuning process, which further improves the detection performance.

Different from the above methods, in this paper, we explore enhancing both generalization and
discrimination for FSOD. And we propose a method of SVD-Dictionary enhancement that combines
SVD with dictionary learning. Experimental results and visualization analysis demonstrate the
superiorities of the proposed method.

3 SVD-Dictionary Enhancement for FSOD

In this paper, we follow the same settings introduced in Kang et al. [17]. Concretely, there are a set
of base object categories that contain abundant annotated samples and a set of new object categories
that contain only few (usually less than 30) annotated samples per category. The main purpose is to
improve the detection performance of new object categories.

3.1 SVD Enhancement

For FSOD, generalization and discrimination are two important criteria that characterize the goodness
of feature representation. Particularly, enhancing generalization is beneficial for adapting the knowl-
edge learned from base object categories to new object categories, which alleviates the data-scarce
impact on new object categories. Meanwhile, discrimination refers to the ability to separate different
categories based on the learned representations. And enhancing discrimination is helpful for reducing
the overfitting risk on new object categories, which improves the detection accuracy. To this end, we
explore SVD to enhance both the generalization and discrimination abilities of detectors.

Concretely, as shown in Fig. 2, we adopt a widely used two-stage object detector, i.e., Faster R-CNN
[27], as the basic detection model. Given an input image, we first employ the feature extractor, e.g.,
ResNet [15], to extract the corresponding feature map F ∈ Rm×w×h, where m, w, and h separately
denote the number of channels, width, and height. Then, F is reshaped as F ∈ Rm×n, where
n = w × h. SVD is used to factorize the matrix F, i.e., F = UΣVT ∈ Rm×n, into the product of
three matrices, where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ contains the sorted singular
values along its main diagonal [4]. Since the eigenvectors corresponding to larger singular values
contain more information of the original matrix F, we select the eigenvectors corresponding to the
first k largest singular values to compute the generalization map G ∈ Rm×n. Next, by feat of the
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Figure 2: The architecture of generalized and discriminative FSOD via SVD-Dictionary enhancement.
Here, ‘⊕’ indicates the residual operation. ‘RPN’ denotes Region-Proposal Network with RoI Pooling.
After extracting the corresponding feature maps of input images, SVD is utilized to compute all
singular values and eigenvectors. Then, the eigenvectors corresponding to larger singular values are
used to compute the generalization map. And the eigenvectors corresponding to smaller singular
values are used to calculate the discrimination map. Finally, dictionary learning is used to further
capture high-level discriminative information, which helps improve the ability of accurate detection.

residual operation between G and F, the generalization ability of the extracted features is enhanced.
The processes are shown as follows:

G = Um×kΣk×kVT
k×n, E = G + F, (1)

where Um×k and VT
k×n indicate that we select the first k columns and rows from the matrix U and

VT , respectively. Σk×k is a diagonal matrix with the dimension k × k. E ∈ Rm×n is the enhanced
matrix. Finally, E is reshaped as E ∈ Rm×w×h that is used to perform the following RPN operation.
It is worth noting that in the process of enhancing generalization, we only perform the SVD operation
and do not introduce extra parameters. Besides, we utilize the residual operation to obtain the output
E, which strengthens the generalization ability and retains the discriminative information in the output.
In the experiment, we observe that utilizing the operation of enhancing generalization improves the
detection performance effectively.

Next, the remaining eigenvectors and corresponding singular values are used to calculate the discrim-
ination map D ∈ Rm×n. The processes are the same as computing G. Since the map D contains
more category-related information [3], e.g., the structures of objects, it is helpful for enhancing the
discrimination ability. Similarly, for this process, we do not introduce extra parameters, either.

3.2 SVD-based Dictionary Learning

Dictionary Learning. Based on the map D, we explore employing dictionary learning [41, 14] to
capture high-level discriminative information, which is beneficial for strengthening the discrimination
ability of detectors. Concretely, we define a learned codebook C = {cj ∈ Rm, j = 1, · · · , Q}
that contains Q codewords. Each element di ∈ Rm of the map D can be assigned with a weight
aij to each codeword cj and the corresponding residual vector is denoted by rij = di − cj , where
i = 1, 2, · · · , n. Thus, dictionary learning can be calculated as follows:

xj =

n∑
i=1

aijrij , aij =
exp(−sj ||rij ||2)∑Q
j=1 exp(−sj ||rij ||2)

, (2)

where sj indicates the learnable smoothing factor for the corresponding codeword cj . Finally, the
output of dictionary learning is a fixed length representation X = {xj ∈ Rm, j = 1, · · · , Q}. Next,
we take E as the input of the RPN module to obtain a set of object proposals P ∈ Rz×m×o×o, where
z and o separately denote the number of proposals and their spatial size. And the fusion result of P
and X is taken as the input of the classifier.

P = RPN(E), y = cls([φ(P ), wcX + bc]), (3)

where φ consists of two fully-connected layers. wc and bc are learnable parameters. ‘[,]’ indicates
the fusion operation. Here, we use the concatenation operation. ‘cls’ denotes the classifier. By the
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constraint of the classification loss, we can promote the learned representation X and codebook C to
absorb category-related information, which is good for enhancing detection accuracy.

Dictionary-based Remap. To further facilitate the learned codebook C to retain more category-
related characteristics, we try to remap P to the dictionary space and perform classification. Con-
cretely, each element p ∈ Rm of P is remapped as a combination of codewords in the codebook C.
The processes are shown as follows:

rep =

Q∑
j=1

exp(ψ(p)cTj )∑Q
j=1 exp(ψ(p)c

T
j )
cj , (4)

where ψ is a fully-connected layer that maps p to the dictionary space. rep ∈ Rm indicates one
element of the remapping output Rep ∈ Rz×m×o×o. Next, Rep is taken as the input of the classifier
to output the probability:

yrep = cls([φ(P ), φ(Rep)]), (5)

where yrep indicates the output probability. Eq. (3) and Eq. (5) share the same classifier. Finally, the
KL-Divergence loss Lkl is leveraged to enforce the prediction consistency between yrep and y. By
performing classification in the dictionary space, the codebook C could be directly facilitated to learn
category-related characteristics, which is conductive to the improvement of the discrimination ability.

3.3 Two-Stage Fine-Tuning Mechanism

In this paper, we employ the commonly used detection loss [27] to optimize the model. Concretely,
the joint training loss is defined as follows:

L = Lcls + Lloc + Lrpn + λLkl, (6)

where Lcls and Lloc separately indicate the classification and bounding-box regression losses. Lrpn

is the RPN loss that is used to distinguish foreground from background and refine bounding-box
anchors. The hyper-parameter λ is set to 1.0 in the experiment.

During training, we employ the two-stage fine-tuning mechanism to optimize the proposed method.
Currently, there exist two fine-tuning training strategies. One is that during the base training and
fine-tuning stage, all the parameters of the detector are optimized simultaneously [35]. The other is
that during the fine-tuning stage, some important parameters of the detector are optimized. And the
remaining parameters are fixed [34, 30]. To demonstrate the effectiveness of the proposed method,
we separately utilize these two strategies to optimize the detector. Specifically, in the base training
stage, we employ the joint loss L to optimize the entire model based on the data-abundant base object
categories. During fine-tuning, the last fully-connected layer (for classification) of the detection head
is replaced. The new classifier is randomly initialized. For the first strategy, we follow MPSR [35] to
optimize all the parameters of the model based on a balanced training set consisting of both the few
base and new object categories. For the second strategy, we follow FSCE [30] to jointly fine-tune the
FPN [21] pathway and RPN while fixing the backbone.

3.4 Further Discussion

In this section, we further discuss SVD and dictionary learning for few-shot object detection.

For FSOD, the two-stage fine-tuning mechanism can be regarded as a method that adapts the
knowledge from base object categories to new object categories, which is effective to alleviate the
data-scarce impact. Most existing methods [34, 30] focus on designing an effective optimizing
strategy and pay little attention to improving both the generalization and discrimination during the
fine-tuning stage. Recently, FSCE [30] brings contrastive learning [19] into FSOD, which is beneficial
for enhancing discrimination. However, the contrastive loss is calculated based on object proposals,
which neglects the impact of generalization on object localization.

For FSOD, we propose an SVD-Dictionary method to enhance both generalization and discrimination.
Particularly, the eigenvectors corresponding to larger singular values are directly used to enhance
generalization without introducing extra parameters. Meanwhile, we employ dictionary learning
to capture high-level discriminative information, which leads to accurate detection. Experimental
results and visualization analysis demonstrate the superiorities of our method.

5



4 Experiments

In the experiments, the proposed method is evaluated on PASCAL VOC [6, 7] and COCO [20]
benchmarks. We strictly follow the consistent few-shot detection data construction and evaluation
protocol [17, 35, 37, 34] to ensure fair and direct comparison. Meanwhile, since our method
is trained based on the two-stage fine-tuning mechanism, we take two-stage methods, i.e., TFA
[34], MPSR [35], and FSCE [30], as the compared baselines. Code will be available in https:
//github.com/AmingWu/SVD-Dictionary-Enhancement.

4.1 Implementation Details and Few-Shot Detection Benchmarks

Implementation Details. For the detection model, we use Faster R-CNN [27] with the RoI Align
[16] layer. The backbone is ResNet-101 [15]. The parameters are pre-trained on ImageNet [28] for
initialization. In Eq. (1), we select the first k largest singular values to compute the generalization
map. Here, k is set to half of the total number of singular values. For dictionary learning, the
number of codewords is set to 24. All newly introduced parameters are initialized randomly. All the
experiments are trained using the standard SGD optimizer with a momentum of 0.9 and a weight
decay of 0.0001. During inference, we take the output y of Eq. (3) as the classification result.

FSOD Benchmarks. For PASCAL VOC, the overall 20 categories are divided into 15 base object
categories and 5 new object categories. All base object category data from PASCAL VOC 07+12
trainval sets is available. For each new object category, there exist K instances available and K is
set to 1, 2, 3, 5, and 10. Following existing methods [17, 34, 35], we utilize the same three random
partitions of base and new object categories, referred to as New Split 1, 2, and 3. And for the
predictions on PASCAL VOC 2007 test set, we separately report the results of nAP50 and nAP75.

For the 80 categories in COCO, 20 categories overlapped with PASCAL VOC are taken as new object
categories. The remaining 60 categories are used as base object categories. The K = 10 and 30 shots
detection performance is evaluated on 5,000 images from COCO 2014 validation set.

4.2 Performance Analysis of Few-Shot Detection

PASCAL VOC Results. Table 1 shows the results on three PASCAL VOC New Splits. We can see
that as the number of object instances increases, the performance continually improves significantly.
This shows that few samples affect the performance of object detection. Besides, compared with the
two-stage fine-tuning training mechanism, the training process of the meta-learning mechanism is
more complex. However, for FSOD, meta-learning based methods [38, 33, 37] fail to obtain superior
performance. The reason may be that these methods focus on learning task-level transferability and
ignore the learning of feature generalization and discrimination. Next, we can see that plugging
our method into MPSR [35] and FSCE [30] improves their performances significantly. Particularly,
based on nAP50 and nAP75, the performance of FSCE is significantly improved. These analyses
demonstrate that the proposed method is helpful for enhancing the generalization and discrimination
abilities of detectors, which is beneficial for FSOD.

In Fig. 3, we show some detection examples. We can see that compared with MPSR and FSCE,
our method localizes and recognizes the objects in these images accurately. Particularly, there exist
three types of error detections, i.e., missing detection that misses the detection of certain objects (e.g.,
the fifth example in the first row), uncertain detection that classifies objects into multiple different
categories (e.g., the second example in the first row), and mis-classifications of objects (e.g., the first
example in the first row). For these examples, our method reduces the appearance of these errors,
which shows improving generalization and discrimination is beneficial for accurate detection.

COCO Results. Table 2 shows the COCO results. We can also see that plugging our method into
MPSR and FSCE leads to performance improvement. Particularly, for MPSR, based on the 30-shot
case, plugging our method separately improves its performance by 2.4 % (AP), 2.4 % (AP75), and
3.7 % (APL). For FSCE, plugging our method is beneficial for boosting the detection performance.
This further shows the effectiveness of our method. Besides, FSOD-VE [37] is a recently proposed
meta-learning method, which leverages viewpoint estimation to solve FSOD. Though FSOD-VE’s
performance outperforms fine-tuning based methods [35, 30], the training process of meta-learning is
much more complex. And the performance on small objects is weaker. This shows that improving the
generalization and discrimination during the fine-tuning process is an effective solution for FSOD.
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Table 1: Few-shot detection performance (%) on PASCAL VOC New Split sets. ‘MPSR + Ours’
and ‘FSCE + Ours’ separately indicate that we plug our method into MPSR [35] and FSCE [30]. ‘ft’
denotes fine-tuning. ‘†’ represents meta-learning based methods. ‘?’ indicates that we directly run
the released code to obtain the results. The evaluation of the last two rows is based on nAP75. The
evaluation of the other rows is based on nAP50.

New Split 1 New Split 2 New Split 3

Method (nAP50) / Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft [33] 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FRCN+FPN-ft [34] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
†Meta R-CNN [38] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
†MetaDet [33] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
†FSOD-VE [37] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

TFA w/fc [34] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/cos [34] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Retentive R-CNN [9] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
MPSR? [35] 40.7 41.2 48.9 53.6 60.3 24.4 29.3 39.2 39.9 47.8 32.9 34.4 42.3 48.0 49.2
MPSR + Ours 41.5 47.4 51.5 57.7 61.2 29.4 29.6 39.8 41.2 51.5 36.0 39.4 45.4 50.4 51.3
FSCE? [30] 44.2 43.2 45.7 58.3 61.0 25.4 29.5 42.1 43.6 48.7 37.2 43.5 45.8 53.3 55.8
FSCE + Ours 46.1 43.5 48.9 60.0 61.7 25.6 29.9 44.8 47.5 48.2 39.5 45.4 48.9 53.9 56.9

FSCE? (nAP75) [30] 21.9 21.2 20.1 32.7 38.8 6.9 8.4 14.7 20.3 25.9 16.3 18.3 18.9 25.4 29.6
FSCE + Ours (nAP75) 25.1 21.4 25.1 36.5 39.8 9.4 11.3 18.5 24.1 25.6 18.4 20.5 24.2 26.8 30.5

Table 2: Few-shot detection evaluation results (%) on COCO. Here, APS, APM, and APL separately
indicate the detection performances of the small, medium, and large objects.

Shots Method AP AP75 APS APM APL

10

†Meta R-CNN [38] 8.7 6.6 2.3 7.7 14.0
†MetaDet [33] 7.1 6.1 1.0 4.1 12.2
†FSOD-VE [37] 12.5 9.8 2.5 13.8 19.9
TFA w/fc [34] 10.0 9.2 – – –
TFA w/cos [34] 10.0 9.3 – – –
MPSR? [35] 9.5 9.5 3.3 8.2 15.9
MPSR + Ours 11.0 10.6 4.4 11.5 17.1
FSCE? [30] 11.3 9.6 3.7 10.7 18.6
FSCE + Ours 12.0 10.4 4.2 12.1 18.9

30

†Meta R-CNN [38] 12.4 10.8 2.8 11.6 19.0
†MetaDet [33] 11.3 8.1 1.1 6.2 17.3
†FSOD-VE [37] 14.7 12.2 3.2 15.2 23.8

TFA w/fc [34] 13.4 13.2 – – –
TFA w/cos [34] 13.7 13.4 – – –
MPSR? [35] 13.8 13.5 4.0 12.9 22.9
MPSR + Ours 16.2 15.9 4.6 14.6 26.6
FSCE? [30] 15.4 14.2 5.5 14.9 24.4
FSCE + Ours 16.0 15.3 6.0 16.8 24.9

4.3 Ablation Analysis Table 3: The performance (%) of using a
different number of singular values. Here,
‘proportion’ indicates the percentage of the
total number of singular values.

proportion/shot 1 2 3 5 10

10% 40.6 43.9 49.1 55.6 62.1

25% 38.3 44.7 49.4 56.2 61.7

50% 41.5 47.4 51.5 57.7 61.2

75% 36.3 42.9 48.7 55.1 60.9

90% 37.9 41.8 48.1 55.8 60.2

In this section, ablation analysis is performed based on
the New Split 1 of PASCAL VOC. And we plug our
method into MPSR to make the ablation analysis.

Analysis of Hyper-parameter k. In Eq. (1), we select
the first k columns and rows from U and VT that cor-
respond to the first k largest singular values to build
the generalization map. To enhance the generalization
ability, the generalization map is expected to contain
much information reflecting intrinsical characteristics
of objects. In Table 3, we analyze the impact of k. Here,
we only change the setting of k. The other modules are kept unchanged. We can see that different
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(a) 1-shot (b) 2-shot (c) 3-shot (d) 5-shot (e) 10-shot

Figure 3: Detection examples based on different shots. The first, second, and third rows separately
indicate detections based on MPSR [35], FSCE [30], and our method. We can see our method
accurately detect ‘dog’, ‘bird’, ‘person’, ‘horse’, ‘cat’, and ‘cow’.

settings of k affect the performance of FSOD. Particularly, while k is set to a large value or a small
value, the performance decreases. The reason may be that using a large value of proportion introduces
much information that is not related to intrinsical characteristics, which weakens the generalization
ability. Meanwhile, using a small value of proportion may lead to the loss of certain object-related
information, which weakens the feature representation. We observe that the performance of using
50% proportion is the best.

Table 4: The performance (%) of using a
different number of codewords in the code-
book of dictionary learning.

number/shot 1 2 3 5 10

16 39.2 48.3 51.3 55.8 60.5

20 40.1 48.1 49.6 56.1 60.7

24 41.5 47.4 51.5 57.7 61.2

28 41.9 47.6 50.9 56.5 60.4

32 42.1 46.2 51.3 56.9 60.3

Analysis of SVD-based Generalization and Dictio-
nary Learning. To demonstrate the effectiveness of
the proposed method, we remove the module of dictio-
nary learning and only keep the SVD-based generaliza-
tion. From the 1-shot to 10-shot case, the performance
is 41.2%, 44.3%, 49.7%, 54.8%, and 60.9%. We can
see that employing dictionary learning is helpful for
improving detection performance. Particularly, taking
the 2-shot case as an example, the performance is im-
proved by 3.1%. This indicates based on the output of
SVD operation, dictionary learning is able to leverage
multiple codewords to capture high-level discrimina-
tive information that is helpful for accurate detection. Meanwhile, this also shows that the learned
codewords contain category-related information, which enhances the discrimination ability of the
detector. Besides, we can see the current performance of only using SVD-based generalization still
outperforms MPSR. Taking the 2-shot and 5-shot cases as examples, the performance is separately
improved by 3.1% and 1.2%. This indicates that utilizing eigenvectors corresponding to larger
singular values to build the generalization map is beneficial for extracting generalized information
without introducing extra parameters, thereby boosting the performance of FSOD.

Table 5: The performance (%) of base and
new object categories.

Method Base AP50 New AP50
1 3 5 1 3 5

MPSR [35] 59.9 68.5 69.4 40.7 48.9 53.6
MPSR + Ours 61.3 69.4 69.8 41.5 51.5 57.7

FSCE [30] 78.3 74.2 76.6 44.2 45.7 58.3
FSCE + Ours 78.6 74.8 77.8 46.1 48.9 60.0

Analysis of the Number of Codewords in Dictionary
Learning. In this paper, we define a codebook contain-
ing multiple codewords to sufficiently capture category-
related discriminative information from the discrimina-
tion map corresponding to relatively smaller singular
values. In Table 4, we analyze the impact of using a dif-
ferent number of codewords. We can see that when the
number is small, e.g., 16, the performance decreases.
The reason may be that a small number of codewords
are not sufficient to capture much discriminative information, which affects the detection performance.
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(a) Input Image (b) G Map (c) D Map (d) Input Image (e) G Map (f) D Map

Figure 4: Visualization of the generalization (G) map and discrimination (D) map. The first, second,
third, fourth, and fifth rows separately denote 1-shot, 2-shot, 3-shot, 5-shot, and 10-shot cases. For
each feature map, the channels corresponding to the maximum value are selected for visualization.

Besides, when the number is large, e.g., 32, the performance also decreases. The reason may be
that employing more codewords increases the parameters, which leads to overfitting on new object
categories. For our method, the performance of using 24 codewords is the best.

The Performance of Base Object Categories. In Table 5, we can see that plugging our method into
MPSR [35] and FSCE [30] improves not only the performance of new object categories but also the
performance of base object categories. This further shows our method is beneficial for enhancing
generalization and discrimination, which is conductive to the improvement of detection performance.

4.4 Visualization Analysis

In Fig. 4, we give visualization examples of the generalization (G) map and discrimination (D)
map. We can see that the generalization map corresponding to large singular values focuses on
the representative object characteristics, e.g., the head of the dog and bird, which are helpful for
improving generalization and accuracy of localization. Meanwhile, the discrimination map contains
rich information of background and object, which enables the following dictionary learning to
sufficiently capture high-level discriminative information. This further shows that our method is
effective to enhance both the generalization and discrimination abilities for FSOD.

5 Conclusion

In this paper, for FSOD, we focus on improving generalization and discrimination via SVD-Dictionary
enhancement. Specifically, the eigenvectors corresponding to larger singular values are used to
calculate a generalization map. And the eigenvectors corresponding to relatively smaller singular
values are garnered to compute a discrimination map. Meanwhile, dictionary learning is employed to
capture high-level discriminative information from the discrimination map. The experimental results
and visualization analysis demonstrate the superiorities of our proposed method.
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