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1 Implementation details

All experiments were conducted on a Linux server with a Tesla P40 GPU. Our Contrastive Graph
Poisson Network (CGPN) was implemented via PyTorch 1.4.0 [1]. We adopted the Adam optimizer
[2] for training. The graph attention networks (GATs) of CGPN-GAT only utilized a single-head
attention mechanism for simplicity. The number of GAT layers was set as two. Other hyperparameters
were adjusted based on the corresponding datasets. Tables 1, 2, 3, and 4 provide the details of the
important hyperparameters.

Table 1: Parameter settings on Cora dataset

# Labels
per class λ1 λ2

Learning
rate

Training
epochs

Hidden
units

Dropout
rate

1 0.9 1.3 0.1 500 128 0.8
2 0.1 2.0 0.1 1500 64 0.8
3 0.6 1.5 0.1 1500 64 0.8
4 0.6 1.5 0.1 1500 64 0.8
5 0.1 0.9 0.1 1500 64 0.8

Table 2: Parameter settings on CiteSeer dataset

# Labels
per class λ1 λ2

Learning
rate

Training
epochs

Hidden
units

Dropout
rate

1 0.5 1.1 0.0001 2000 512 0.8
2 1.6 1.1 0.0001 2000 512 0.8
3 1.1 0.5 0.0001 2000 512 0.8
4 1.1 0.5 0.0001 2000 512 0.8
5 0.3 0.5 0.0001 2000 512 0.7

∗This work was done when Sheng was a research intern at JD Explore Academy.
†C. Gong is the corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Table 3: Parameter settings on PubMed dataset

# Labels
per class λ1 λ2

Learning
rate

Training
epochs

Hidden
units

Dropout
rate

1 1.0 1.0 0.01 500 64 0.4
2 1.0 1.0 0.01 500 64 0.4
3 0.1 1.0 0.1 1000 64 0.4
4 1.0 1.0 0.1 1000 64 0.4
5 1.0 1.0 0.1 1000 64 0.4

Table 4: Parameter settings on Amazon Photo dataset

# Labels
per class λ1 λ2

Learning
rate

Training
epochs

Hidden
units

Dropout
rate

1 0.1 0.5 0.1 500 64 0.2
2 0.1 0.5 0.1 1000 128 0.0
3 0.7 0.5 0.1 1000 512 0.6
4 0.7 0.5 0.1 1000 512 0.6
5 0.7 0.5 0.1 1000 512 0.8

2 More performance comparison

We report the classification results of our CGPN framework and the baseline methods on the four
datasets when five labels per class are available for training. The statistics are listed in Table 5,
where the highest record at each label rate is highlighted in bold. We can observe that CGPN still
outperforms the baseline methods. The performance margin between CGPN and other competitors
demonstrates the good capability of our proposed framework in semi-supervised learning with very
limited labels.

In addition, the impact of the number of labeled nodes on classification performance has been
exhibited in Figure 1. We can observe that the performance of all the methods would be improved
with the increase of labeled data. Intuitively, CGPN could significantly improve the performance of
GCN and GAT when labeled data are extremely limited. Nevertheless, the improvements achieved by
CGPN are gradually shrinking as the number of labeled data increases. In particular, when there are
ten labeled data per class, the performance of all methods becomes similar. Therefore, one of our
future works is to enhance CGPN so that it could still significantly improve the performance of GCN
or GAT when labeled data are sufficient.

3 Detailed descriptions of all baselines

In this paper, six baselines are used for comparison to evaluate the performance of our CGPN at
limited label rates. Except for MLP, the remaining baselines are GNN-based models, and the detailed
descriptions of these models are presented as follows:

(1) GCN [3]: As one of the most classic GNN models, it defines the graph convolution in the spectral
domain and uses the first-order approximation to reduce the number of parameters.

(2) GAT [4]: It defines the graph convolution in the spatial domain by introducing the attention
mechanism to assign different weights to the neighboring nodes when aggregating information.

(3) BGCN [5]: It views the observed graph as a realization from a parametric family of random
graphs and targets inference of the joint posterior of random graph parameters and node labels.

(4) MVGRL [6]: It learns node and graph level representations by contrasting encodings from
first-order neighbors and a graph diffusion.

(5) GPRGNN [7]: It aims to jointly optimize node features and graph topological information
extraction by adaptively learning the Generalized PageRank weights.
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Table 5: Classification accuracy of different methods with five labels per class

Dataset Cora CiteSeer PubMed Photo

MLP 41.58±4.11 40.33±5.38 60.36±3.50 55.63±4.29
GCN [3] 71.35±1.85 56.89±3.67 70.57±6.59 84.07±2.57
GAT [4] 72.40±2.45 61.31±2.29 70.86±4.63 82.88±2.71

BGCN [5] 74.54±2.58 61.25±5.06 70.18±5.72 79.91±4.74
MVGRL [6] 75.19±2.85 63.94±2.15 68.15±3.86 77.52±3.01

GPRGNN [7] 74.56±1.22 60.03±1.58 70.27±1.92 84.82±1.49
APPNP [8] 72.24±6.10 64.25±4.77 70.87±5.82 81.78±3.07

CGPN-GCN 75.83±1.69 65.00±2.59 71.20±4.05 84.77±1.90
CGPN-GAT 75.65±1.36 65.65±2.77 71.04±4.27 85.53±1.79
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Figure 1: Classification performance with different numbers of labeled nodes. (a) Cora dataset; (b)
CiteSeer dataset; (c) PubMed dataset; (d) Amazon Photo dataset.
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