
Appendices
A Algorithm

Algorithm 1 Curriculum Offline Imitation Learning (COIL)

Require: Offline dataset D, number of trajectories picked at each curriculum N , moving window of
the return filter α, number of training iteration L, batch size B, number of pre-train times T , and
the learning rate η.
Initialize policy π with random parameter θ.
Initialize the return filter V = 0.
if D is collected by a single policy then

Do pre-training for T times using BC.
end if
while D 6= ∅ do

for all τi ∈ D do
Calculate τi(π) = {π(ai0|si0), π(ai1|si1), · · · , π(aih|sih)}.
Sort τi(π) into {π(āi0|s̄i0), π(āi1|s̄i1), · · · , π(āih|s̄ih)} in an ascending order, such that
π(āij |s̄ij) ≤ π(āij+1|s̄ij+1), j ∈ [0, h− 1]

Choose s(τi) = π(āibβhc|s̄
i
bβhc) as the criterion of τi.

end for
Select N = min{N, |D|} trajectories {τ̄}N1 with the highest s(τ) as a new curriculum.
Initialize a new replay buffer B with {τ̄}N1 .
D = D\{τ̄}N1 .
for n = 1→ L×N do

Draw a random batch {(s, a)}B1 from B.
Update πθ using behavior cloning

θ ← θ − η∇θ
B∑
j=1

[− log πθ(aj |sj)]

end for
Update the return filter V ← (1− α)V + α ·min{R(τ̄)}N1 .
Filter D by D = {τ ∈ D | R(τ) ≥ V }.

end while

B Proofs

B.1 Proof for Theorem 1

We introduce useful lemmas before providing our proof.

Lemma 1 (Total variation distance of joint distributions). Given two joint distributions ρ1(x, y) =
ρ1(x|y)ρ1(y) and ρ2(x, y) = ρ2(x|y)ρ2(y), then their total variation distance can be bounded by

DTV(ρ1(x, y)‖ρ2(x, y)) ≤ DTV(ρ1(y)‖ρ2(y)) + Ey∼ρ2 [DTV(ρ1(x|y)‖ρ2(x|y))]
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Proof. Directly extend the left hand side, we have

DTV(ρ1(x, y)‖ρ2(x, y)) =
1

2

∑
x,y

|ρ1(x, y)− ρ2(x, y)|

=
1

2

∑
x,y

|ρ1(x|y)ρ1(y)− ρ2(x|y)ρ2(y)|

=
1

2

∑
x,y

|ρ1(x|y)(ρ1(y)− ρ2(y)) + (ρ1(x|y)− ρ2(x|y))ρ2(y)|

≤ 1

2

∑
x,y

ρ1(x|y)|(ρ1(y)− ρ2(y))|+ 1

2

∑
x,y

|(ρ1(x|y)− ρ2(x|y))|ρ2(y)

=
1

2

∑
y

|(ρ1(y)− ρ2(y))|+ 1

2

∑
x,y

|(ρ1(x|y)− ρ2(x|y))|ρ2(y)

= DTV(ρ1(y)‖ρ2(y)) + Ey∼ρ2(y)[DTV(ρ1(x|y)‖ρ2(x|y))]

Therefore, we have the following proposition.

Proposition 1.

DTV(ρπ(s, a)‖ρπb(s, a)) ≤ DTV(ρπ(s)‖ρπb(s)) + Es∼ρπb (s) [DTV(π(a|s)‖πb(a|s))] (10)

Proof. Applying Lemma 1 to ρπ(s, a) = ρπ(s)π(a|s) and ρπb(s, a) = ρπb(s)πb(a|s) and completes
the proof.

Lemma 2 (Lemma 5.1 of Xu et. al [24]). Let Π be the set of all deterministic policy and |Π| = |A||S|.
Assume that there does not exist a policy π ∈ Π such that π(si) = ai,∀i ∈ {1, · · · , |D|}. Then, for
any δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds:

Es∼ρπb (s)[DTV(π(a|s)‖πb(a|s))] ≤
1

|D|

|D|∑
i=1

I
[
π(si) 6= ai

]
+

[
log |Π|+ log(2/δ)

2|D|

] 1
2

(11)

We are now ready to give the proof for Theorem 1.

Theorem 1 (Performance bound of BC). Let Π be the set of all deterministic policy and |Π| = |A||S|.
Assume that there does not exist a policy π ∈ Π such that π(si) = ai,∀i ∈ {1, · · · , |D|}. Let π̂b be
the empirical behavior policy and the corresponding state marginal occupancy is ρπ̂b . Suppose BC
begins from initial policy π0, and define ρπ0

similarly. Then, for any δ > 0, with probability at least
1− δ, the following inequality holds:

DTV(ρπ(s, a)‖ρπb(s, a)) ≤ 1

2

∑
s/∈D

ρπb(s) +
1

2

∑
s/∈D

|ρπ(s)− ρπ0(s)|+ 1

2

∑
s/∈D

|ρπ0(s)− ρπb(s)|

+
1

2

∑
s∈D

|ρπ(s)− ρπ̂b(s)|+
1

|D|

|D|∑
i=1

I
[
π(si) 6= ai

]
+

[
log |S|+ log(2/δ)

2|D|

] 1
2

+

[
log |Π|+ log(2/δ)

2|D|

] 1
2

(12)

Proof. By Lemma 2, for any δ ∈ (0, 1), with probability at least 1− δ, the second term in Eq. (10) is
bounded by:

Es∼ρπb (s) [DTV(π(a|s)‖πb(a|s))] ≤
1

|D|

|D|∑
i=1

I
[
π(si) 6= ai

]
+

[
log |Π|+ log(2/δ)

2|D|

] 1
2

(13)
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Then we focus on the first term in Eq. (10). Introducing a new distribution ρπ̂b(s), the triangle
inequality goes that:

DTV(ρπ(s)‖ρπb(s)) ≤ DTV(ρπ(s)‖ρπ̂b(s)) +DTV(ρπ̂b(s)‖ρπb(s))

=
1

2

∑
s∈S
|ρπ(s)− ρπ̂b(s)|+DTV(ρπ̂b(s)‖ρπb(s))

=
1

2

∑
s/∈D

ρπ(s) +
1

2

∑
s∈D
|ρπ(s)− ρπ̂b(s)|+DTV(ρπ̂b(s)‖ρπb(s))

≤ 1

2

∑
s/∈D

ρπb(s) +
1

2

∑
s/∈D

|ρπ(s)− ρπb(s)|+
1

2

∑
s∈D
|ρπ(s)− ρπ̂b(s)|

+DTV(ρπ̂b(s)‖ρπb(s))

≤ 1

2

∑
s/∈D

ρπb(s) +
1

2

∑
s/∈D

|ρπ(s)− ρπ0
(s)|+ 1

2

∑
s/∈D

|ρπ0
(s)− ρπb(s)|

+
1

2

∑
s∈D
|ρπ(s)− ρπ̂b(s)|+DTV(ρπ̂b(s)‖ρπb(s))

(14)

Denote SD = {s | s ∈ D}. Noticing that ESD∼ρπb (s)[ρπ̂b(s)] = ρπb(s), by union bound and
Hoeffding’s inequality, the following inequality holds:

P [DTV(ρπ̂b(s)‖ρπb(s)) > ε] = P [∃s ∈ S, |ρπ̂b(s)− ρπb(s)| > ε]

≤
∑
s∈S

P [|ρπ̂b(s)− ρπb(s)| > ε]

≤ 2|S|e−2|D|ε2

(15)

Let δ be the right hand side, we obtain that with probability at least 1− δ, DTV(ρπ̂b(s)‖ρπb(s)) is
bounded by:

DTV(ρπ̂b(s)‖ρπb(s)) ≤
[

log |S|+ log(2/δ)

2|D|

] 1
2

(16)

Combining Proposition 1, Ineq. (13), Ineq. (14) and Ineq. (16) completes the proof.

B.2 Proof for Observation 1

Observation 1. Under the assumption that each trajectory τπ̃ in the dataset D is collected by an
unknown deterministic behavior policy π̃ with an exploration ratio β. The requirement of the KL
divergence constraint Eπ̃ [DKL(π̃(·|s)‖π(·|s))] ≤ ε suffices to finding a trajectory that at least 1− β
state-action pairs are sampled by the current policy π with a probability of more than εc such that
εc ≥ 1/ exp ε, i.e.:

E(s,a)∈τπ̃ [I(π(a|s) ≥ εc)] ≥ 1− β , (17)

Proof. We begin with the KL divergence constraint:

Eπ̃ [DKL(π̃(·|s)‖π(·|s))] ≤ ε

⇒ Eπ̃
[
log

π̃(a|s)
π(a|s)

]
≤ ε

⇒ E(s,a)∈τπ̃ [log π(a|s)] ≥ log (1− β)− ε
⇒ logE(s,a)∈τπ̃ [π(a|s)] ≥ log (1− β)− ε

⇒ E(s,a)∈τπ̃ [π(a|s)] ≥ (1− β)

exp ε

(18)

Besides, to achieve E(s,a)∈τπ̃ [I(π(a|s) ≥ εc)] ≥ 1− β, for any state-action pair in τπ̃, there are at
least 1− β of them can be sampled by π with at least the probability of εc. Therefore, we have the
following lower bound:

E(s,a)∈τπ̃ [π(a|s)] ≥ (1− β) · εc + 0 · β = (1− β) · εc (19)
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Combing Ineq. (18) and Ineq. (19) completes the proof.

C Implementation Details

C.1 Implementation for Estimating the Empirical Discrepancy

In this part we explain how we estimate the empirical discrepancy outside the dataset, i.e., the term
1
2

∑
s/∈D |ρ̂π(s)− ρ̂π0

(s)| in Theorem 1.

Figure 8: An illustration to the UMAP transformation. Left: states sampled by a random policy in 2-dimensional
space transformed by UMAP. Right: expert data to train UMAP in 2-dimensional space.

Due to the difficulty of estimating the empirical state marginal occupancy measure ρ̂π(s) for a policy
π, especially in continuous or high-dimensional tasks, we estimation its value in 2-dimensional space
by projection.

In detail, we choose UMAP [15] as the projection algorithm and train the projecting function in
Hopper using 64 000 transitions sampled by the expert agent. To evaluate a policy, we sample
the same number of transitions, and then project them onto a 2-dimensional space by the trained
projecting function. Fig. 8 illustrates the projected state distribution, where the left denote the state
sampled by a random policy, and the right is the expert data.

For empirical estimation, we subsequently discretize the projected 2-dimensional state space into
small grid regions, and estimated the distribution via Kernel Density Estimation (KDE) [19] with
Gaussian kernel. Suppose gπ(∆) is the Gaussian kernel density function of the transformed data
sampled by policy π, and the dataset is D. Denote the region that contains state s as ∆(s). Then the
empirical discrepancy can be approximated by

1

2

∑
s6=D

|ρ̂π(s)− ρ̂π0
(s)| ≈ 1

2

∑
all ∆

|gπ(∆)− gπ0
(∆))| − 1

2

∑
s∈D
|gπ(∆(s))− gπ0

(∆(s))| (20)

C.2 Implementation for the Main Experiment

The implementation of COIL and BC are based on a Pytorch code framework4. As for compared
baselines, we take their official implementation:

• CQL [13]: https://github.com/aviralkumar2907/CQL

• BAIL [2]: https://github.com/lanyavik/BAIL

• AWR [17]: https://github.com/xbpeng/awr

It should be noted that the public code of AWR is for online RL tasks and we have to modify the
code to obtain an offline version, following the instructions in their paper [17].

16

https://github.com/aviralkumar2907/CQL
https://github.com/lanyavik/BAIL
https://github.com/xbpeng/awr


Table 3: Important Hyperparameters.

rd: random mr: medium-replay md: medium me: medium-expert
Environments Hopper Walker2d HalfCheetah

final rd mr md me final rd mr md me final rd mr md me
Optimizer AdamOptimizer
Discount factor γ 0.99
Batch size 256
Tuning range of the filter window size α [0.8, 0.85, 0.9]
Tuning range of the number of selected trajectories N [1,2] [5,10] [1,2,5] [5,10]
Tuning range of L [50, 100, 200] [100, 200, 400]
Tuning range of ηπ [3e-5, 1e-4]

D Important Hyperparameters

The main hyperparameters used in our experiments are shown in Tab. 3. Based on the evaluation
results of the terminating policy of COIL, might be helpful guidelines for utilizing COIL with
different tuning choices are as follows:

Policy learning rate ηπ . Similar to CQL [13], we evaluated COIL with a policy learning rate in the
range of [3e − 5, 1e − 4]. We find that 1e − 4 almost uniformly attain good performance and we
chose 1e − 4 as the default across all datasets. Besides, we recommend increasing the number of
gradient steps L to be compatible with a low learning rate on the same task.

Gradient steps for each curriculum L. The gradient steps correspond to how long that BC should
be utilized for imitating the target policy at the current level. For easier tasks as Hopper and Walker,
we evaluate COIL in the range of [50, 100, 200] and for harder tasks like Halfcheetah, we tune in the
range of [100, 200, 400]. The default choice is 100.

Number of selected trajectories N and Filter window size α. These two hyperparameters affect
the experimental results more significantly. Moreover, as mentioned in Section 6.3, they can be
tuned based on the distribution of the dataset. Detailed guidelines can be found in Section 6.3 and
Appendix E.2.

E Additional Results

E.1 Results of the Motivating Example

Here we provide additional results for the motivated example experiments performed on the Hopper
environment.

Table 4: Numerical values of results presented in Fig. 2b, the means and standard deviations are calculated over
3 random seeds.

Agent Initial 1 Trajectory 4 Trajectories 256 Trajectories 1024 Trajectories

Random 49.9 (3.0) 255.0 (355.1) 374.1 (392.8) 2802.9 (846.4) 3004.7 (656.4)
1/3 Return 1362.6 (853.7) 2930.3 (886.9) 2709.5 (974.2) 3096.4 (630.9) 3310.2 (442.0)
1/3 Trained 3289.1 (3.43) 3014.4 (926.0) 3428.4 (392.9) 3582.2 (115.9) 3588.3 (163.7)
2/3 Trained 3558.0 (6.0) 3609.8 (14.2) 3602.6 (80.3) 3612.4 (78.8) 3610.6 (13.9)

Demonstration 3622.3 (22.0) - - - -

Table 5: Numerical values of results presented in Fig. 2c, the means and standard deviations are calculated over
3 random seeds.

Agent 1 Trajectory 4 Trajectories 256 Trajectories

Random 0.706 (0.111) 0.737 (0.124) 0.518 (0.077)
1/3 Trained 0.528 (0.006) 0.549 (0.007) 0.340 (0.004)
2/3 Trained 0.541 (0.001) 0.551 (0.006) 0.313 (0.005)

We do not evaluate the empirical discrepancy in the case of 1024 trajectories because the projected
points are so dense that the grid size is required to be rather small, which leads to an unacceptable
computing time.

4https://github.com/Ericonaldo/ILSwiss

17

https://github.com/Ericonaldo/ILSwiss


E.2 Additional Ablation Studies

E.2.1 Ablation on Trajectory Number N
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(a) Returns of used datasets.
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Figure 9: Returns of trajectories in halfcheetah-final and halfcheetah-medium-expert, and final per-
formances of COIL on them with different N .

We further show how the number of chosen trajectories N can be determined by the dataset. Fig. 9b
shows the results on halfcheetah-final and halfcheetah-medium-expert for examples. Ob-
viously, trajectories in halfcheetah-final are densely and smoothly arranged than those in
halfcheetah-medium-expert, indicating that the discrepancy between the behavior policies con-
tained in the final dataset may be smaller. As revealed in Theorem 1, as the distance between the
behavior policies becomes farther, more training samples are required for a good imitation. Therefore,
a larger N should be chosen for halfcheetah-medium-expert than the other one. Fig. 9b shows
consistent results to our expectation, where a large value of N = 10 puts the best performance
on halfcheetah-medium-expert, and medium values of N (4 or 5) provide better behaviors on
halfcheetah-final.

E.2.2 Further Ablation on Return Filter
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(a) α = 0.0.
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(b) α = 0.5.
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(c) α = 1.0.

Figure 10: Training curves and orders of selected trajectories with different α on hopper-final.

To further illustrate the functionality of the return filter we conduct more ablation experiments on the
hyperparameter α, where we set α as 1.0 (no return filter), 0.0 (no moving average) and 0.5 (rapid
moving average). Obviously, without a return filter (α=1.0), the agent imitates earlier trajectories
in the final which deteriorates the final performance; without a moving average (α=1.0), the agent
quickly drops the candidate trajectories which leads it to learn nothing; the results with a rapid
moving average (α=0.5), are better and more stable but it still fails to imitate the best behavior data.
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Therefore, the return filter is a key ingredient for COIL that should be designed carefully when
applied on different datasets.

E.3 Complete Training Curves on Final Datasets

We show the complete training curves of COIL, CQL, AWR and BAIL on final datasets. We do not
cover D4RL benchmarks since those numerical results of baselines are directly borrowed from Fu et
al. [5]. As is observed in Fig. 11, CQL works well on Halfcheetah; but on Hopper and Walker, the
other imitation-based methods are more effective to reach a better performance. Saliently, COIL only
needs fewer gradient steps to terminate with an excellent policy, such that we have to use a different
scale of axis (the top axis) to illustrate COIL clearly.
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(a) Hopper-final.
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(b) Walker2d-final.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gradient Steps 1e6

2000

4000

6000

8000

10000

A
ve

ra
ge

 R
et

ur
n

CQL
AWR
BAIL

0 20000 40000 60000 80000 100000

COIL

(c) HalfCheetah-final.

Figure 11: Comparison of training curves between COIL, CQL, AWR, and BAIL on final datasets. Except BAIL
has a large batch size (1000), the other methods keep the same batch size (256). Different methods terminate
with different gradient steps. The top axis (blue) of each figure illustrates the gradient step of COIL in a small
magnitude, showing the highest efficiency of our method. And the bottom axis (black) denotes the gradient step
for the other baselines.
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