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Supplementary Material

In this document we provide the detailed proofs of results presented in the main manuscript. In
Section A, we provide a proof for the Hoeffding expansion of the matrix product in Eq 5 of the main
document. We also provide the Hoeffding decomposition for the bootstrap in Proposition A.4. In
Section B we provide all results needed for a complete proof of Theorem 1. In Sections B.1, B.2,
and B.3 we provide the proof of Theorem 1, the adaptation of high dimensional CLT of [8] to our
setting and all supporting lemmas, respectively.

In Section C we provide all details of the proof of the Bootstrap consistency, i.e. Theorem 2.
To be specific, Section C.1 has the proof of Theorem 2; Section C.2 has the proof of Lemma 1,
Section C.3 has the statement and proof of the Gaussian comparison lemma, and Section C.4 has
all the supporting lemmas. Finally, in Section D, we provide a proof of Proposition 1.

A On the Hoeffding decomposition

We discuss Hoeffding decompositions for a function f of n independent random variables X1, . . . Xn,
where the random variables take values in an arbitrary space and the function takes values1 in Rd×d
or Rd. The following exposition largely follows [6].

With Hoeffding decompositions, we project T (X1, . . . , Xn) onto spaces of increasing complexity
that are orthogonal to each other. In our setup, orthogonality means 〈f, g〉L2 = 0 where 〈f, g〉L2 =∫
〈f, g〉dP . Here, 〈f, g〉 = Trace(fT g) in the matrix case and 〈f, g〉 = fT g in the vector case. The

first-order projection, also known as a Hájek projection, involves projecting our function onto a
space of functions of the form

g(i)(Xi)

1The math generalizes to Hilbert spaces due to the Hilbert projection theorem but we specialize to these cases for
concreteness.
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where g(i) satisfies E[g(i)] = 0. We will let H(i)(Xi) denote the corresponding projection. Since the
functions g(i), g(j) are mutually orthogonal for i 6= j, the sum of the projections is equivalent to the
projection onto the space spanned by functions of the form:

n∑
i=1

g(i)(Xi)

The higher-order spaces have the form:

g(S)(Xi : i ∈ S)

where S ⊆ {1, . . . , n} and the functions satisfy E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S, including
R = ∅, which implies E[g(S)] = 0. If R 6⊂ S and S 6⊂ R, 〈g(S), g(R)〉L2 = 0 since, by conditional
independence given {Xi : i ∈ R ∩ S}:

E[E[〈g(S), g(R)〉 | Xi : i ∈ R ∩ S] ] = E
[〈
E[g(S) | Xi : i ∈ R ∩ S], E[g(R) | Xi : i ∈ R ∩ S]

〉]
= 0

(S.1)

Combining these projections leads to the following representation, known as the Hoeffding decom-
position:

T (X1, . . . , Xn) =

n∑
k=0

∑
|S|=k

H(S)(Xi : i ∈ S)

While the following proposition is stated for real-valued functions in [6][Lemma 11.11], it turns
out that the proof there generalizes to our setting without difficulty due to machinery for projections
in Hilbert spaces.

Proposition A.1 (Hoeffding projections). Let X1, . . . , Xn be arbitrary random variables and let
suppose 〈T, T 〉L2 <∞. Then the projection on the the space of functions of the form g(S)(Xi : i ∈ S)
with E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S has the form:

H(S)(T ) =
∑
R⊆S

(−1)|S|−|R| E [T | Xi : i ∈ R]

For completeness, we provide a proof of the proposition below.

Proof. We begin by verifying that the space of all random matrices (vectors) satisfying ‖A‖L2 <∞
forms a Hilbert Space. First, it is clear that 〈·, ·〉L2 is indeed an inner product. Linearity follows
from linearity of the inner product 〈·, ·〉 and linearity of expectations and conjugate symmetry
follows from this property holding pointwise in Ω for 〈·, ·〉. Positive definiteness again follows from
the fact that this property holds pointwise in Ω; then a standard contradiction argument yields
that if 〈x, x〉L2 = 0, but x is not equal to 0 almost surely, there exists some M such that for some
δ > 0, P (‖x‖ > 1

M ) ≥ δ and hence
∫
〈x, x〉dP ≥ δ/M > 0, a contradiction.

One can again adapt standard arguments for completeness of L2 spaces to our setting; namely,
show that Cauchy sequences converging in L2 implies convergence almost everywhere, and then
invoke completeness of the Hilbert space over matrices/vectors along with integral convergence
theorems; see for example, the proof of Theorem 1.2, page 159 in [5].
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Now to verify that this function is indeed the projection, we invoke the Hilbert Projection
Theorem; see for example, Lemma 4.1 of [5]. To use this theorem, we need to check that the space
spanned by functions of the form g(S) satisfying the condition E[g(S) | Xi : i ∈ R] = 0 for any R ⊂ S
is a closed subspace. Linearity of the space follows from the fact that the sum of such functions
satisfies the constraint; therefore it is a subspace. To check closure, let ‖f‖2 = 〈f, f〉 and consider

some (convergent) sequence in this subspace (g
(S)
α )α≥1 where g

(S)
α → g(S) and observe that, for any

R ⊂ S:

E[‖g(S)
α − g(S)‖2] = E[ E[‖g(S)

α − g(S)‖2 | Xi : i ∈ R] ]

≥ E
[
‖E[g(S)

α − g(S) | Xi : i ∈ R]‖2
]

≥ E
[
‖E[g(S) | Xi : i ∈ R]‖2

]
where above we used the fact that E[g

(S)
α | Xi : i ∈ R] = 0 for all α by assumption. Since the LHS

converges to 0, it follows that E[g(S) |Xi : i ∈ R] must be equal to 0 almost surely. Since the limit
satisfies E[g(S) |Xi : i ∈ R] = 0 for all R ⊂ S, it belongs in the space, proving closure.

Now, we show that the stated expression is indeed the Hoeffding projection. First, to show that
belongs in this space, we have, following analogous reasoning to [6], for any C ⊂ A,

E[H(A)(T ) | Xi : i ∈ C] =
∑
B⊆A

(−1)|A|−|B|E[T | Xi : i ∈ B ∩ C]

=
∑
D⊆C

|A|−|C|∑
j=0

(−1)|A|−(|D|+j)
(
|A| − |C|

j

)
E[T | Xi : i ∈ D]

=
∑
D⊆C

(−1)|C|−|D| E[T | Xi : i ∈ D] (1− 1)|A|−|C| = 0

where the last line follows from the Binomial Theorem. Now as a consequence of the Hilbert
Projection Theorem, it suffices to show that H(A)(T ) satisfies the property:

〈T −H(A)(T ), g(A)〉L2 = 0

for any g(A) in the space. In the matrix case, we have

〈T −H(A)(T ), g(A)〉L2 =

d∑
j=1

d∑
k=1

E[(Tjk − E[Tjk | Xi : i ∈ A]) · g(A)
jk ]

+

d∑
j=1

d∑
k=1

∑
B⊂A

E
[
(−1)|A|−|B|E[Tjk | Xi : i ∈ B] · E[g

(A)
jk | Xi : i ∈ B]

]
The first term above is 0 since conditional expectations may be viewed as an orthogonal projection in
the Hilbert Space with inner product

∫
fg dP into the closed subspace of σ(Xi : i ∈ A)-measurable

functions. The second term is zero since E[g
(A)
jk | Xi : i ∈ B] = 0 for any B ⊂ A. The vector case

is analogous.
Since this property holds, it must be the unique (up to measure 0 sets) minimizer and projection.
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Now an immediate corollary for our setting follows.

Proposition A.2 (Orthogonality of Hoeffding projections). Let:

Bn =

n∑
k=0

∑
|S|=k

H(S)

where A(S) is the Hoeffding projection corresponding to the set S ⊆ {1, . . . , n}. Then,

E
[
‖Bn‖2F

]
=

n∑
k=0

∑
|S|=k

E
[
‖A(S)‖2F

]

E
[
‖Bnx‖2

]
=

n∑
k=0

∑
|S|=k

E
[
‖A(S)x‖2

]
where the last inequality holds for all x ∈ Rd.

Proof. Letting g(S) = H(S) and g(R) = H(R) in Eq S.1, we have that 〈H(S), H(R)〉L2 = 0 for all
R 6= S and the result follows.

It remains to be shown that Hoeffding decomposition has the form stated in Eq 5. Deriving
all projections in the Hoeffding decomposition for a general function is typically non-trivial, but
the product structure facilitates our proof below. Before establishing the Hoeffding decomposition,
following for example, [1] observe that the following inverse relation holds:

Proposition A.3 (Conditional expectation and Hoeffding projections).

E [T | Xi : i ∈ S] =
∑
R⊆S

H(R)(T )

Proof. Observe that:

E[T |Xi : i ∈ S] =
n∑
k=0

∑
|R|=k

E[H(R)(T ) | Xi : i ∈ S]

Since the conditional expectation is zero for R 6⊆ S and for R ⊆ S, the Hoeffding projection is
fixed, the result follows.

Now we are ready to establish the form of the Hoeffding projection for any S ⊆ {1, . . . , n}. We
in fact prove a slightly stronger statement, which makes the induction argument more natural. In
what follows let S[i] denote the ith element in S. We will also use H(S) instead of H(S)(T ) when
it is clear from the context.

Theorem A.1 (Hoeffding projections for Oja’s algorithm). Define:

T−j =

n∏
i=j+1

(
I +

ηn
n
XiX

T
i

)
, T = T−0 =

n∏
i=1

(
I +

ηn
n
XiX

T
i

)
,
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Then for any S ⊆ {1, . . . , n} and for all 0 ≤ j < S[1], we have the Hoeffding projection of T−j
onto {Xi : i ∈ S} may be expressed as:

H
(S)
−j =

n∏
i=j+1

A
(S)
i , H(S) = H

(S)
−0 (S.2)

where:

A
(S)
i =

{
ηn
n (XiX

T
i − Σ) i ∈ S

I + ηn
n Σ i 6∈ S

Proof. We will conduct (strong) induction on k = |R|, where R ⊆ S. We will start with the base
case k = 1; k = 0 is simply the expectation. For the base case |R| = 1, a direct calculation is
possible, since:

H
(R)
−j = E[T−j | Xi : i ∈ R]− E[T−j ],

which has the stated form. Now, we will suppose that the inductive hypothesis holds. In what
follows, let S[1] = k and define the conditional expectation for any set S as:

E [T−j | Xi : i ∈ S] =
n∏

i=j+1

E
(S)
i ,

where:

E
(S)
i =

{
I + ηn

n XiX
T
i i ∈ S

I + ηn
n Σ i 6∈ S

We will now add and subtract a product where an entry corresponding to S[1] in E[T−j | Xi : i ∈ S]
is replaced by (I + ηn

n Σ). Doing, so we have

E[T−j | Xi : i ∈ S] = E [T−j | Xi : i ∈ S]− (I +
ηn
n

Σ)k−j ×
n∏

i=k+1

E
(S)
i

+ (I +
ηn
n

Σ)k−j ×
n∏

i=k+1

E
(S)
i

We recognize the second summand as E[T−j | Xi : i ∈ S−k], where S−k = {i ∈ S, i 6= k}. Now for
the first summand, taking the difference we have the term

(I +
ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)×

n∏
i=k+1

E
(S)
i

= (I +
ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)× E [T−k | Xi : i ∈ S−k]

By Proposition A.3, we may represent a conditional expectation as:

E [T−k | Xi : i ∈ S−k] =
∑

R⊆S−k

H
(R)
−k (S.3)
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Furthermore, by the inductive hypothesis, each H
(R)
−k takes the form in Eq S.2. Now, combining

the two parts, we have

E[T−j | Xi : i ∈ S] =
∑

R⊆S−k

(I +
ηn
n

Σ)k−j−1 × ηn
n

(XkX
T
k − Σ)×H(R)

−k

+
∑

R⊆S−k

(I +
ηn
n

Σ)k−j ×H(R)
−k

=
n∏

i=j+1

A
(S)
i +

∑
R⊂S

H
(R)
−j

For the last step, notice that with the exception of R = S−k in the first sum, each product in
the sum corresponds to a Hoeffding projection of some set of size less than k by the inductive
hypothesis. The first term must be the Hoeffding projection onto S (with S[1] = k > j) by the
same argument as Eq S.3, i.e.

H
(S)
−j =

n∏
i=j+1

A
(S)
i ,

proving the desired result.

Now, since the Hoeffding decomposition is a sum of Hoeffding projections by definition, we have
the following corollary.

Corollary A.1 (Hoeffding decomposition for Oja’s algorithm).

Bn =
n∑
k=0

∑
|S|=k

H(S)

where A(S) is given by H(S) in Eq S.2.

It turns out that the bootstrap Hoeffding decomposition can be proved using the same strategy
in Theorem A.1, where X1, . . . , Xn is treated as fixed in the bootstrap measure. We state the result
below.

Proposition A.4 (Hoeffding decomposition for the bootstrap).

B∗n =
n∑
k=0

∑
|S|=k

α(S)

where α(S) =
∏n
i=1 α

(S)
i and α

(S)
i is given by:

α
(S)
i =

{
ηn
n Wi · (XiX

T
i −Xi−1X

T
i−1) if i ∈ S

I + ηn
n XiX

T
i otherwise
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B Central limit theorem for Oja’s algorithm

B.1 Proof of Theorem 1

Proof of Theorem 1. Our strategy will be to approximate sin2 distance for estimated eigenvector
with a quadratic form, and invoke a high-dimensional central limit theorem result. The remainder
terms will be bounded using an anti-concentration result for weighted χ2 random variables due to
[8].

Observe that sin2(v̂1, v1) has the representation:

1−
(
vT1

Bnu0

‖Bnu0‖

)2

=
uT0 B

T
n (I − v1v

T
1 )Bnu0

‖Bnu0‖2

Let V⊥V
T
⊥ = I − v1v

T
1 . Clearly, V⊥V

T
⊥ is idempotent and is a projection matrix, implying that

it is also symmetric. Therefore,

n

ηn
· sin2(un, v1) =

(
√
n/ηnV⊥V

T
⊥Bnu0)T (

√
n/ηnV⊥V

T
⊥Bnu0)

‖Bnu0‖2
(S.4)

Let a1 = (vT1 u0) denote the scalar projection of u0 so that u0 = a1v1 + w, where w is in the
orthogonal complement of v1.

Our first reduction of (S.4) is to approximate the denominator with a more convenient quantity.
By Lemma B.2, we have that (S.4) may be written as

(
√
n/ηn · V⊥V T

⊥Bnu0)T (
√
n/ηn · V⊥V T

⊥Bnu0)

a2
1(1 + ηn

n λ1)2n
·R1

where

R1 =
‖Bnu0‖2

a2
1(1 + ηn

n λ1)2n
= 1−OP

(
√
d exp

(
−ηn

2
(λ1 − λ2)

)
+

√
η2
nMd log d

n

)

While the aforementioned Lemma is stated for ‖Bnu0‖
|a1|(1+ ηn

n
λ1)n

, the relationship holds for the squared

quantity since with high probability for n large enough, | ‖Bnu0‖
|a1|(1+ ηn

n
λ1)n
| ≤ 2 and |x2 − 12| ≤ 3|x− 1|

for all −2 ≤ x ≤ 2.
We will further approximate the quantity

√
n/ηn · V⊥V T

⊥Bnu0. First we will bound the contri-
bution of V⊥V

T
⊥BnV⊥V

T
⊥ . By Lemma B.3 we have that:

R2 :=

√
n

ηn
·
V⊥V

T
⊥BnV⊥V

T
⊥ u0

|a1|(1 + ηnλ1
n )n

= OP

√nd

ηn
· exp{−ηn(λ1 − λ2)}+

√
η2
nM

2
d log d

n


Now it remains to bound the term V⊥V

T
⊥Bnv1(vT1 u0). First, by Corollary A.1, Bn can be decom-

posed as:

Bn =
n∑
k=0

Tk
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where for S ⊆ {1, . . . , n}, Tk is defined as:

Tk =
∑
|S|=k

A(S) (S.5)

with A(S) taking the form in Eq S.2.
Since v1 is orthogonal to V⊥:√

n

ηn
·

V⊥V
T
⊥ T0 v1a1

|a1|(1 + ηn/nλ1)n
=

√
n

ηn
· sign(a1)(I − v1v

T
1 )v1 = 0.

Furthermore, by Lemma B.4, since
η3nM

2
d

n → 0 by assumption,

R3 :=

√
n

ηn
·
V⊥V

T
⊥ (Bn − T1)v1a1

|a1|(1 + ηn/nλ1)n
= OP

√η3
nM

2
d

n

 (S.6)

Now our term of interest is given by:

(
√
n/ηn · V⊥V T

⊥ T1v1)T (
√
n/ηn · V⊥V T

⊥ T1v1)

(1 + ηn
n λ1)2n

(S.7)

Now, observe that (I + ηn
n Σ) and v1v

T
1 share a common eigenspace and therefore commute. There-

fore, the terms in the product to the left of T1 may be written as:

V⊥V
T
⊥ (I + ηn

n Σ)i−1

(1 + ηn
n λ1)i−1

=
d∑
j=2

(
1 + ηn

n λj

1 + ηn
n λ1

)i−1

vjv
T
j := Di−1, say. (S.8)

Hence, √
n

ηn
·
V⊥V

T
⊥ T1v1

(1 + ηn
n λ1)n

=

√
ηn
n

n∑
i=1

(
1 +

ηn
n
λ1

)−1
Di−1(XiX

T
i − Σ)v1

= Sn =
√
n
(

1 +
ηn
n
λ1

)−1 1

n

n∑
i=1

Ui, say,

where

Ui = Di−1(XiX
T
i − Σ)v1. (S.9)

Observe that Sn is a sum of independent but non-identically distributed random variables with
mean 0. Therefore, if the conditions of Proposition B.1 are satisfied, we may approximate STn Sn
with ZTn Zn, where E[Zn] = 0, Var(Zn) = Var(Sn). Below define Z̃i to be a Gaussian vector with
Var(Z̃i) = Var((XiX

T
i − Σ)v1). Now define Zi = Di−1Z̃i. We now verify these conditions.
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First, we derive a lower bound on
∥∥V̄n∥∥F that will be used in all of the following bounds. Observe

that
∥∥V̄n∥∥F = ηn

n

∥∥∑
i Λi−1
⊥ MΛi−1

⊥
∥∥
F

and the klth entry of
∑

i Λi−1
⊥ MΛi−1

⊥ is lower bounded by:

ηn
n

∑
i≥1

(
1 + ηnλk+1/n

1 + ηnλ1/n

)i−1(1 + ηnλ`+1/n

1 + ηnλ1/n

)i−1

M(k, `)

≥
1− exp(−2ηn(λ1 − λ2))

(
1− η2nλ

2
1

n

)−2

2λ1 − (λk+1 + λk+1) + ηn
n (λ2

1 − λkλl)
M(k, `)

≥
1− exp(−2ηn(λ1 − λ2))

(
1− η2nλ

2
1

n

)−2

2λ1 + ηn
n λ

2
1

M(k, `)

≥ c

λ1
M(k, `)

(S.10)

for some c > 0 and n large enough since exp(−ηn(λ1 − λ2))→ 0.
For the first term of Lq, q = 3 we have

LU3,1 ≤
1√
n

max
i

E(UTi V̄nUi)3/2

‖V̄n‖3F

≤
M

3/2
d√
n

E‖V T
⊥ (XiX

T
i − Σ)v1‖3

‖V̄n‖3F
Since ‖V̄n‖ ≤Mdηn from Eq 7

≤ C
M

3/2
d η3

nλ
3
1√

n
E
(
‖V T
⊥X1X

T
1 v1‖

‖M‖F

)3

Similarly, for the Gaussian analog, we have that:

LZ3,1 ≤
1√
n

max
i

E(ZTi V̄nZi)3/2

‖V̄n‖3F

≤
M

3/2
d η

3/2
n√

n
max
i

E‖Zi‖3

‖V̄n‖3F

≤
M

3/2
d η

3/2
n√

n

E‖Z̃i‖3

‖V̄n‖3F

≤ C
M

3/2
d η3

nλ
3
1√

n
E

(
‖Z̃1‖
‖M‖F

)3

For the second term, using the definition of Ui in Eq S.9 we have:

LU3,2 ≤
1

n
max
i<j

E|UTi Uj |3

‖V̄n‖3F

=
1

n
max
i<j

E|vT1 (XiX
T
i − Σ)Di+j−2(XjX

T
j − Σ)v1|3

‖V̄n‖3F
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≤ 1

n

(
E‖V T

⊥ (XiX
T
i − Σ)v1‖3

)2
‖V̄n‖3F

≤ η3
nλ

3
1

n

(
E‖V T

⊥ (XiX
T
i )v1‖3

)2
‖M‖3F

For K3, we have:

K3
3 =

1

n

n∑
i=1

E
∣∣∣∣UTi Ui − E(UTi Ui)

f

∣∣∣∣3
≤ max

i

E(UTi Ui)
3 + (EUTi Ui)

3

f3
≤ 2 max

i

E(UTi Ui)
3

‖V̄n‖3F

≤ 2η3
nλ

3
1

E‖V T
⊥ (XiX

T
i − Σ)v1‖6

‖M‖3F

Finally, for J1 we have:

Jn =

∑n
i=1 Var(UTi Ui)

(nf)2
≤
∑n

i=1 E(UTi Ui)
2

n2f2

≤ η2
nλ

2
1

n

E[‖V⊥(X1X
T
1 − Σ)v1‖4]

‖M‖2F

The first makes L3,2, K3
3/n and Jn go to zero. The two conditions also imply

E[‖V⊥(X1XT
1 −Σ)v1‖3]

‖M‖3F
=

o(
√
n), which implies L3,1 → 0.
Finally, we collect remainder terms and show that their contribution to the inner product is

negligible using anti-concentration. Observe that,

sup
t∈R

∣∣P (n/ηn sin2(w, v) ≤ t)− P (ZTn Zn ≤ t)
∣∣

= sup
t∈R

∣∣∣∣P (R1 ·
(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)
− P

(
ZTn Zn
f
≤ t
)∣∣∣∣ (S.11)

Now will will lower bound the above quantity. Observe that

P

(
R1 ·

(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)

≥ P

(
R1 ·

STn Sn
f

(
1 +

2 ‖R2‖+ 2 ‖R3‖2√
STn Sn

)
+
R1 · ‖R2 +R3‖2

f
≤ t

)

= P

(
R′ · S

T
n Sn
f

+ R̃ ≤ t
)
, say.

(S.12)

Now, for δn = o(
√
f), we have that:

P
(
STn Sn ≤ δ2

n

)
≤ sup

t∈R

∣∣P (STn Sn ≤ t)− P (ZTn Zn ≤ t)
∣∣+ P (ZTn Zn ≤ δ2

n)→ 0 (S.13)

Note that δn = o(1) suffices since f is bounded away from zero under Eq 8 as shown in Eq S.10.
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Now, choose εn satisfying εn = o(1) εn = ω

(√
η3nM

2
d log d

n

)
, define the set:

G =

{∣∣R′ − 1
∣∣ ≤ εn, ∣∣R̃∣∣ ≤ εn}

so that P (Gc) → 0 with the choice of δn in Eq. S.13. By using the fact that, for any two sets A
and B, 1 ≥ P (A) + P (B)− P (A ∩B) and hence P (A ∩B) ≥ P (A)− P (Bc), we have that:

P

(
R′ · S

T
n Sn
f

+ R̃ ≤ t
)

= P
(
R′ · STn Sn/f + R̃ ≤ t ∩ G

)
+ P

(
R′ · STn Sn/f + R̃ ≤ t ∩ Gc

)
≥ P

(
STn Sn
f
≤ t

1 + εn
− εn

)
− P (Gc)

(S.14)

Therefore,

P

(
n/ηn sin2(w, v)

f
≤ t
)
− P

(
ZTn Zn
f
≤ t
)

≥ P

(
STn Sn
f
≤ t

1 + εn
− εn

)
− P

(
ZTn Zn
f
≤ t

1 + εn
− εn

)
+ P

(
ZTn Zn
f
≤ t

1 + εn
− εn

)
− P

(
ZTn Zn
f
≤ t
)
− P (Gc) = I + II − III

(S.15)

Now, we may upper bound III → 0 arising from our choice of δn, and II goes to 0 if the conditions
of Proposition B.1 are satisfied, and I → 0 due to Proposition B.3.

Now for the upper bound, since ‖Ri‖2 ≥ 0, observe that we may bound Eq S.11 with:

P

(
R1 ·

(Sn +R2 +R3)T (Sn +R2 +R3)

f
≤ t
)

≤ P

(
R1 ·

STn Sn
f

(
1− 2 ‖R2‖+ 2 ‖R3‖√

STn Sn

)
− R1 · ‖R2‖ ‖R3‖

f
≤ t

)

We may now lower bound the negative terms and arrive at an identical expression to the lower
bound. The result follows.

With the central limit theorem in hand, we are now ready to give the proof for Corollary 1.

Proof of Corollary 1. Observe that the approximating distribution ZTn Zn has expectation trace(V̄n)
and variance f =

∥∥V̄n∥∥F . Therefore, for any M > 0, it follows that:

P

(
n/ηn sin2(v̂1, v1)− trace(V̄n)

f
> M

)
≤ sup

t∈R

∣∣P (n/ηn sin2(v̂1, v1) > t
)
− P

(
ZTn Zn > t

)∣∣+ P

(
ZTn Zn − trace(V̄n)

f
> M

)

11



The first term goes to zero under the conditions of Theorem 1. Chebychev’s inequality implies that
there exists M > 0 such that the latter probability can be made smaller than ε/2 for any ε > 0.
Hence,

n/ηn sin2(v̂1, v1)− trace(V̄n)

f
= OP (1).

Therefore, under the conditions in Theorem 1,

sin2(v̂1, v1) =
ηn
n

[
trace(V̄n) +OP

(∥∥V̄n∥∥F )]
We now derive bounds for trace(V̄n) and

∥∥V̄n∥∥F . Let Λ⊥ be a diagonal matrix with Λ⊥(i, i) =
(1 + ηnλi+1/n)/(1 + ηnλ1/n), i = 1, . . . , d− 1. Recall that:

M := E
[
V T
⊥ (XT

1 v1)2X1X
T
1 V⊥

]
. (S.16)

V̄n =
ηn
n
V⊥

(∑
i

Λi−1
⊥ MΛi−1

⊥

)
V T
⊥

So now observe that,

∥∥V̄n∥∥F =
ηn
n

∥∥∥∥∥∑
i

Λi−1
⊥ MΛi−1

⊥

∥∥∥∥∥
F

trace(V̄n) =
ηn
n

trace

(∑
i

Λi−1
⊥ MΛi−1

⊥

)

A direct calculation shows that the k, `th entry of the sum
∑

i Λi−1
⊥ MΛi−1

⊥ is:

∑
i≥1

(
1 + ηnλk+1/n

1 + ηnλ1/n

)i−1(1 + ηnλ`+1/n

1 + ηnλ1/n

)i−1

M(k, `)

≤ nM(k, `)

ηn

(1 + λ1ηn
n )2

2λ1 − (λk+1 + λk+1) + ηn
n (λ2

1 − λkλl)

≤ n

ηn

CM(k, `)

λ1 − λ2

(S.17)

for some 0 < C <∞.
Therefore, by Eq 7, we have

trace(V̄n) ≤ C trace(M)

λ1 − λ2
≤ C Md

λ1 − λ2

‖V̄n‖F ≤
C‖M‖F
λ1 − λ2

≤ C ′ Md

λ1 − λ2

The last step is true since:

trace(M) = trace(E
[
V T
⊥ (XT

1 v1)2X1X
T
1 V⊥

]
)

12



= trace(E
[
V T
⊥ (X1X

T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

]
)

= E
(
trace

[
V T
⊥ (X1X

T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

])
= E‖V T

⊥ (X1X
T
1 − Σ)v1‖2 ≤Md

Similarly,

‖M‖F =
∥∥E [V T

⊥ (XT
1 v1)2X1X

T
1 V⊥

]∥∥
F

=
∥∥E [V T

⊥ (X1X
T
1 − Σ)v1v

T
1 (X1X

T
1 − Σ)V⊥

]∥∥
F

≤ E‖X1X
T
1 − Σ‖2op = Md

where in the last line we used the fact that
∥∥xxT∥∥

op
=
∥∥xxT∥∥

F
for x ∈ Rd since xxT is rank 1.

B.2 Adaptation of high-dimensional central limit theorem

Let U1, . . . , Un, be independent random vectors in Rp such that E(Ui) = 0 and Var(Ui) = Vi. Define
a Gaussian analog of Yi, denoted Zi, which satisfies E(Zi) = 0 and Var(Zi) = Vi. Furthermore, let
V̄n = 1

n

∑n
i=1 Vi, gi = Var(UTi Ui), f1 = trace(V̄n), and f =

∥∥V̄n∥∥F . For 0 < δ ≤ 1, q = 2 + δ, and
β ≥ 2 define the following quantities:

LUq =
1

n

n∑
i=1

E(UTi V̄nUi)q/2

nδ/2f q
+

1(
n
2

) ∑
1≤i<j≤n

E(|UTi Uj |q)
nδf q

LZq =
1

n

n∑
i=1

E(ZTi V̄nZi)q/2

nδ/2f q

Kβ
β =

1

n

n∑
i=1

E

∣∣∣∣UTi Ui − E(UTi Ui)

f

∣∣∣∣β
Jn =

∑n
i=1 gi

(nf)2

The following proposition is an adaptation of [8], which is stated for IID random variables, to
independent but non-identically distributed random variables. While the changes are minor, we
provide a proof below detailing the adaptation for completeness.

Proposition B.1. Suppose that LUq → 0, LZq → 0, Jn → 0, n1−βKβ
β → 0. Then,

sup
t∈R

∣∣P (nŪTn Ūn ≤ t)− P (nZ̄Tn Z̄n ≤ t)∣∣→ 0

Proof. Since a Lindeberg argument is easier with diagonals removed, we will show that the removal
of these terms is negligible. Observe that:

sup
t∈R

∣∣P (nŪTn Ūn ≤ t)− P (nZ̄Tn Z̄n ≤ t)
∣∣

≤ sup
t′∈R

∣∣∣∣∣P
(
nŪTn Ūn − f1

f
≤ t′

)
− P

(∑
i 6=j U

T
i Uj

nf
≤ t′

)∣∣∣∣∣
13



+ sup
t′∈R

∣∣∣∣∣P
(∑

i 6=j U
T
i Uj

nf
≤ t′

)
− P

(∑
i 6=j Z

T
i Zj

nf
≤ t′

)∣∣∣∣∣
+ sup

t′∈R

∣∣∣∣∣P
(∑

i 6=j Z
T
i Zj

nf
≤ t′

)
− P

(
nZ̄Tn Z̄n − f1

f
≤ t′

)∣∣∣∣∣
= I + II + III, say.

We will start by bounding III. First note that 1√
n

∑n
i=1 Zi ∼ N (0, V̄n). Let V̄n = QTDQ denote

the eigendecomposition, with diagonal entries of D given by λ1 ≥ . . . ≥ λd and let g ∼ N (0, Id). It
follows that:

nZ̄Tn Z̄n
d
= (QD1/2QT g)T (QD1/2QT g)

d
= gTDg

Notice that V := gTDg ∼
∑d

r=1 λrηr, where η1, . . . , ηd ∼ χ2(1). Now define RZn =
1
n

∑n
i=1 Z

T
i Zi−f1

f .
Notice that:

P

(
nZ̄Tn Z̄n − f1

f
≤ t
)
− P

(∑
i 6=j Z

T
i Zj

f
≤ t

)

= P

(
nZ̄Tn Z̄n − f1

f
≤ t
)
− P

(
nZ̄Tn Z̄n − f1

f
−RZn ≤ t

)
≤ P (t′ ≤ V ≤ t′ + hn) + P (|RZn | > hn)

(S.18)

Under the conditions Jn → 0, n1−βKβ
β → 0, Nagaev’s inequality implies that one may choose

hn → 0 such that P (|RZn | > hn) → 0. The desired anti-concentration for the first term in the
previous display follows from Lemma S2 of [8]. We may also derive the lower bound P (t′ ≤ V ≤
t′ + hn)− P (|RZn | > hn) in a similar manner.

To adapt II, consider the smoothed indicator function:

gψ,t(x) =
[
1−min{1,max(x− t, 0)}4

]4
.

This function satisfies:

max
x,t
{|g′ψ,t(x)|+ |g′′ψ,t(x)|+ |g′′′ψ,t(x)|} <∞

1x≤t ≤ gψ,t ≤ 1x≤t+ψ−1 .

Therefore, we may bound the approximation error with smoothed indicator function by again using
anti-concentration of the weighted χ2. In what follows, let:

SUn =
1

nf

∑
i 6=j

UTi Uj , SZn =
1

nf

∑
i 6=j

ZTi Zj

We have that:

P (SUn ≤ t)− P (SZn ≤ t)
≤ P (SUn ≤ t)− P (SZn ≤ t+ ψ−1) + P (SZn ≤ t+ ψ−1)− P (SZn ≤ t)
≤ Egψ,t(S

U
n )− Egψ,t(SZn ) + III + P (t ≤ V ≤ t+ ψ−1).

14



An analogous argument establishes a lower bound of gψ,t(S
U
n ) − Egψ,t(SZn ) − III − P (t − ψ−1 ≤

V ≤ t). Choosing ψn → ∞, the last term goes to zero. A Lindeberg telescoping sum argument
leads to the following bound for the leading term:

∣∣Egψ,t(SUn )− Egψ,t(SZn )
∣∣ ≤ n∑

i=1

cq(E|∆i|q + E|Γi|q),

where:

Hi =
i=1∑
j=1

Ui +
n∑

j=i+1

Zi, ∆i =
UTi Hi

nf
, Γi =

ZTi Hi

nf
.

We may use analogous reasoning to bound these terms. Let ξ ∼ N(0, 1). Conditioning on U1 = ui,
by Rosenthal’s inequality:

E
[∣∣∆i

∣∣q | Ui] ≤ i−1∑
j=1

E[|UTj ui|q]
nqf q

+

n∑
j=i+1

E[|ZTj ui|q]
nqf q

+ nq/2
(
uTi V̄nui

)q/2
nqf q

≤
i−1∑
j=1

E[|UTj ui|q]
nqf q

+

n∑
j=i+1

‖ξ‖qq

(
uTi Vjui

)q/2
nqf q

+

(
uTi V̄nui

)q/2
nq/2f q

(S.19)

Taking expectations, it follows that:

n∑
i=1

E
[∣∣∆i

∣∣q] . 1(
n
2

) ∑
1≤i<j≤n

E
[
|UTi Uj |q

]
nδf q

+
1

n

n∑
i=1

E
∣∣UTi V̄nUi∣∣q/2
nδ/2f q

Now, for Γi, we may use Rosenthal’s inequality so that:

n∑
i=1

E
[∣∣Γi∣∣q] ≤ 1

n

n∑
i=1

E
∣∣UTi V̄nUi∣∣q/2
nδδf q

+
1

n

n∑
i=1

E
[∣∣ZTi V̄nZi∣∣q/2]

nδδf q
+

1

n

n∑
i=1

E
(
ZTi V̄nZi]

)q/2
nq/2f q

While omitted in the original proof, in the IID case, the latter terms may be bounded by using
an eigendecomposition along with properties of the Gaussian. However, since the Zi do not have
variance matrix Vn, we instead oppose the additional condition for LZq . By the assumptions made
in theorem, it follows that II → 0.

Finally, for I, we have that:

P

(
nŪTn Ūn − f1

f
≤ t
)
− P

(∑
i 6=j U

T
i Uj

nf
≤ t

)
≤ P (SXn ≤ t+ hn)− P (SUn ≤ t+ hn) + P (|RXn | > hn)

+ P (t ≤ V ≤ t+ 2hn) + P (|SZn | > hn)

Using bounds from II and III along with anti-concentration properties, we may conclude that
I → 0.
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B.3 Supporting lemmas for CLT

In several of our lemmas, we use the following technique from [4] that facilitates analysis for
initializations from a uniform distribution on Sd−1 particularly when d is large.

Proposition B.2 (Trace trick). Suppose that u is drawn from a uniform distribution on Sd−1.
Then, for any A ∈ Rd×d and v ∈ Rd satisfying ‖v‖ = 1, with probability at least 1− Cδ, for some
C > 0 independent of A and 0 < δ < 1,

uTATAu

(vTu)2
≤ log(1/δ) trace(AAT )

δ2

Proof. First, we recall the well-known fact that u = g/ ‖g‖, where g ∼ N(0, Id). Therefore, ‖g‖
cancels as follows:

uTATAu

(vTu)2
=
gTATAg

(vT g)2

Furthermore, observe that gTATAg may be viewed as a weighted sum of independent χ2(1)
random variables. In particular, by an eigendecomposition argument, for η1, . . . ηr ∼ χ2(1) and
A = V DV T ,

gT (V DV T )(V DV T )g = gTV D2V T g

d
= gTD2g

=

p∑
r=1

λ2
rηr = ψ, say

where above we used the fact that V T g ∼ N(0, Id). Now observe that E[ψ] =
∑p

r=1 λ
2
r = ‖A‖2F

and that ηr is sub-Exponential. Therefore, by by Bernstein’s inequality (see for example Theorem
2.8.2 of [7]), for some K > 0, C1 > 0, 0 < δ < 1,

P
(
ψ − E[ψ] > (log(1/δ)− 1) ‖A‖2F

)
≤ exp

{
−min

(
log2(1/δ) ‖A‖4S2

4K2 ‖A‖4S4
,
log(1/δ) ‖A‖2S2

2K ‖A‖2S∞

)}

≤ exp

{
−min

(
log2(1/δ)

4K2
,
log(1/δ)

2K

)}
≤ C1δ

where above ‖·‖Sp is the pth Schatten-Norm, defined as (
∑d

r=1 s
p
r)1/p, where sr is the rth singular

value and satisfies ‖·‖Sq ≤ ‖·‖Sp for p ≤ q. Now for the denominator, since vT g ∼ N(0, 1) and

(vT g)2 ∼ χ2(1), Proposition B.3 yields:

P ((vT g)2 ≤ δ2) ≤ 2δ√
π

The result follows.

The following anti-concentration result for weighted χ2 distributions is also used in several
places.
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Proposition B.3 (Weighted χ2 anti-concentration, [8]). Let a1 ≥ · · · ≥ ap ≥ 0 such that
∑p

r=1 a
2
i =

1 and suppose that ξ1, . . . , ξp ∼ χ2(1). Then,

sup
t∈R

P

(
t ≤

p∑
r=1

arξr ≤ t+ h

)
≤
√

4h

π

We now present a concentration result for matrix products that follow immediately from Corol-
lary 5.4 of [3].

Lemma B.1 (Expectation bounds for operator norms of of matrix products). Let Bk =
∏k
j=1(I +

ηnXjX
T
j /n). We have,

E‖Bk − EBk‖2 ≤
Mdeη

2
n(1 + 2 log d)k

n2
(1 + ηnλ1/n)2k. (S.20)

For the expectation, we have, if (1+2 log d)Mdη
2
n

n ≤ 1:

E‖Bk‖2 ≤ exp

(
2

√
2Md

kη2
n

n2

(
2Md

kη2
n

n2
∨ log d

))
(1 + ηnλ1/n)2k . (S.21)

Proof. We invoke Corollary 5.4 in [3] with ‖E(I + ηn/nXiX
T
i )‖ ≤ 1 + ηnλ1/n, σ2

i = Md
η2n
n2 , and

ν = Md
kη2n
n2 . Note that for a random matrix M with Schatten norm ‖M‖Sp , E‖M‖ ≤

√
E‖M‖2Sp

and hence the same argument as in their proof invoking Eq 5.5 and 5.6 works.

Lemma B.2 (Concentration of the norm for the CLT). For some C > 0, and any ε > 0, 0 < δ < 1,

P

(∣∣∣∣ ‖Bnu0‖
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ ≥ ε)

≤
d exp

(
−ηn(λ1 − λ2) + η2n

n (λ2
1 +Md)

)
+ η2n

n Md exp
(
η2n
n

)
4 log−1(1/δ)δ2ε2

(
1 +

η2nλ
2
1

n

) +
e2η2

nMd(1 + log d)

nε2
+ Cδ

Proof. Consider the bound:∣∣∣∣ ‖Bnu0‖
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ ≤ ∣∣∣∣‖Bnv1a1‖ − ‖a1T0v1‖
|a1|(1 + ηnλ1/n)n

∣∣∣∣+
‖BnV⊥(V T

⊥ u0)‖
|a1|(1 + ηnλ1/n)n

We will start by bounding the second term.
Using Proposition B.2, observe that, with probability at least 1− Cδ,

‖(BnV⊥V T
⊥ g‖2

|vT1 g|2(1 + ηnλ1/n)2n
≤

log(1/δ)trace(V⊥BnBnV
T
⊥ ))

δ2(1 + ηnλ1/n)2n

Let G denote the good set for which the upper bound above holds. Markov’s inequality on the good
set, together with Lemma 5.2 of [4] with Vn ≤Md yields that:

P

(
‖BnV⊥V T

⊥ g‖
(1 + ηnλ1/n)n

≥ ε/2 ∩ G
)
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≤
d exp

(
−ηn(λ1 − λ2) + η2n

n (λ2
1 +Md)

)
+ η2n

n Md exp
(
η2n
n

)
4δ2 log−1(1/δ) ε2

(
1 +

η2nλ
2
1

n

)
Now we will bound the first summand. By Lemma B.1 Eq S.20, we have by Markov’s inequality,

P

(
‖(Bn − T0)‖op
(1 + ηnλ1/n)n

> ε/2

)
≤ e2Md(1 + log d)

nε2

Combining the two bounds and the probability of Gc, the result follows.

Lemma B.3 (Negligibility of V⊥ for the CLT). Let V⊥ denote the matrix of eigenvectors orthogonal
to v1. Also let λi denote the ith largest eigenvalue of Σ. For some C > 0, and any ε > 0, 0 < δ < 1,

P

(√
n

ηn

∥∥V⊥V T
⊥BnV⊥V

T
⊥ u0

∥∥
|a1|(1 + ηnλ1

n )n
≥ ε

)

≤
nd log(1/δ) exp

{
−2ηn(λ1 − λ2) + η2

n(λ2
1 +Md)/n

}
ηnε2δ2

+
eM2

d (1 + 2 log d)η2
nε
−2 log(1/δ)δ−2

n2(λ1 − λ2) + η2
n(λ2

1 − λ2
2 −Md)

+ Cδ

Proof. We consider bounding the squared quantity. We have, with probability at least 1 − Cδ,
using Proposition B.2, this quantity is upper bounded by:∥∥(V⊥V

T
⊥BnV⊥V⊥)g

∥∥2

(vT1 g)2(1 + ηnλ1/n)2n

≤
trace

(
(V⊥V

T
⊥BnV⊥V

T
⊥ )(V⊥V

T
⊥BnV⊥V

T
⊥ )T

)
δn(vT1 g)2(1 + ηnλ1/n)2n

=
trace

(
V T
⊥BnV⊥V

T
⊥BnV⊥

)
δ3
n(1 + ηnλ1/n)2n

Now we will bound the expectation of the numerator.
We will denote η = ηn

n for simplicity. Let Ui = I + ηXiX
T
i and Yi = XiX

T
i −Σ. We have that:

αn := E
〈
BnV⊥V

T
⊥B

T
n , V⊥V

T
⊥
〉

= E
〈
Bn−1V⊥V

T
⊥B

T
n−1, UnV⊥V

T
⊥ U

T
n

〉
=
〈
EBn−1V⊥V

T
⊥B

T
n−1,EUnV⊥V T

⊥ U
T
n

〉
(S.22)

Now we have:

EUnV⊥V T
⊥ U

T
n = E (I + ηΣ)V⊥V

T
⊥ (I + ηΣ)T + η2EYnV⊥V T

⊥ Y
T
n

� (1 + 2ηλ2 + λ2
2η

2)V⊥V
T
⊥ + η2Md(V⊥V

T
⊥ + v1v

T
1 )

� (1 + 2ηλ2 + λ2
2η

2 + η2M2
d )V⊥V

T
⊥ + η2Mdv1v

T
1 (S.23)

Finally, using Eqs S.22 and S.23, we have:

αn ≤
(
1 + 2ηλ2 + η2(λ2

2 +Md)
)
αn−1 + η2Md

〈
EBn−1V⊥V

T
⊥B

T
n−1, v1v

T
1

〉
(S.24)
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We will use the fact that,

〈(I + ηΣ)n−1V⊥V
T
⊥ (I + ηΣ)n−1, v1v

T
1 〉 = 0.

Thus, for some N such that the condition η2
nMd(1 + 2 log d)/n ≤ 1 holds for all rows of the

triangular array with index n > N , we have by Lemma B.1,〈
EBn−1V⊥V

T
⊥B

T
n−1, v1v

T
1

〉
=
〈
E(Bn−1 − (I + ηΣ)n−1)V⊥V

T
⊥ (Bn−1 − (I + ηΣ)n−1)T , v1v

T
1

〉
≤ ‖E(Bn−1 − (I + ηΣ)n−1)V⊥V

T
⊥ (Bn−1 − (I + ηΣ)n−1)T ‖

≤ E‖Bn−1 − (I + ηΣ)n−1‖2

≤Mdeη
2n(1 + 2 log d)(1 + ηnλ1/n)2(n−1).

Thus, Eq S.24 gives:

αn ≤
(
1 + 2ηλ2 + η2(λ2

2 +Md)
)︸ ︷︷ ︸

c1

αn−1 + η4M2
d e(1 + 2 log d) (n− 1)(1 + ηλ1)2(n−1)︸ ︷︷ ︸

(n−1)cn−1
2

= c1αn−1 + η4M2
d e(1 + 2 log d)(n− 1)cn−1

2

= cn1α0 + η4M2
d e(1 + 2 log d)

∑
i

ci−1
1 (n− i)cn−i2

≤ cn2
(
d(c1/c2)n +

eM2
d (1 + 2 log d)η4n

c2 − c1

)
≤ (1 + ηnλ1/n)2n

(
d(1− λ2

1η
2
n/n) exp{−2ηn(λ1 − λ2) + η2

n(λ2
1 +Md)/n}

+
eM2

d (1 + 2 log d)η3
n/n

2

2(λ1 − λ2) + η2
n/n(λ2

1 − λ2
2 −Md)

)

where above we used the fact ex(1− x2

n ) ≤ (1 + x
n)n ≤ ex for |x| ≤ n to bound (c1/cn)n.

Lemma B.4 (Negligibility of higher-order Hoeffding projections for the CLT). Let βn = η2nMd

n and
suppose that 0 ≤ βn ≤ 1. Then, for some C > 0 and any ε > 0,

P


√

n
ηn

∥∥V⊥V T
⊥
∑

k>1 Tkv1

∥∥
(1 + ηnλ1

n )n
> ε

 ≤ Cβnηn
(1− βn)ε2

Proof. By Markov’s inequality, it follows that:

P

 √nηn ∥∥V⊥V T
⊥
∑

k>1 Tkv1

∥∥
(1 + ηnλ1

n )n
> ε

 ≤ n
η2n
E
[∥∥V⊥V T

⊥
∑

k>1 Tkv1

∥∥2
]

ε2(1 + ηnλ1
n )2n

Now, by submultiplicativity of the operator norm and the fact that E[(PS1T )T (PS2)T ] = 0 for any
two Hayek projections, the numerator is upper bounded by:
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(
n

ηn

) n∑
k=2

(ηn
n

)2k ∑
|S|=k

E
[
(v′ASu0)2

]
≤
(
n

ηn

) n∑
k=2

∑
|S|=k

(ηn
n

)2k
E
[
‖AS‖2op

]

≤
(
n

ηn

) n∑
k=2

(ηn
n

)2k ∑
|S|=k

(
1 +

ηnλ1

n

)2(n−k)

Mk
d

≤ ηnMd

(
1 +

ηnλ1

n

)2n n∑
k=2

(
Mdη

2
n

n

)k−1

≤
(

1 +
ηnλ1

n

)2n βnηnMd

1− βn
The result follows.

C Consistency of the online bootstrap

In this section, we provide the detailed proof of Bootstrap consistency, i.e Theorem 2.

C.1 Proof of bootstrap consistency

Proof of Theorem 2. Similar to the CLT, we will establish the negligibility of remainder terms and
then use anti-concentration terms to argue that the contribution to the Kolmogorov distance is
small. We then show that the bootstrap covariance of the main term approaches the weighted χ2

approximation in Theorem 1 with high probability. Let v̂1 denote the leading eigenvector estimated
from Oja’s algorithm and let V̂⊥ denote its orthogonal complement. Again, we have that:

n

ηn
sin2(v∗1, v̂1) =

n

ηn

(B∗nu0)T V̂⊥V̂
T
⊥ (B∗nu0)

‖B∗nu0‖2

=
(
√
n/ηnV̂⊥V̂

T
⊥B

∗
nu0)T (

√
n/ηnV̂⊥V̂

T
⊥B

∗
nu0)

‖B∗nu0‖2

We aim to show that the bootstrap distribution conditional on the data is close to the weighted
χ2 approximation with high probability; therefore we may work the good set An. With the a slight
abuse of notation, in the remainder terms below, OP will be on the measure restricted to An.

We first approximate the norm using Lemma C.3. Analogous to the CLT, the corresponding
remainder is given by:

R∗1 =
‖B∗nu0‖2

a2
1(1 + ηn

n λ1)2n
= 1−OP

(
√
d exp

(
−ηn

2
(λ1 − λ2)

)
+

√
η2
nMd log d

n
+
ηnαn√
n

)
Next, we bound the contribution of the higher-order Hoeffding projections. This step is different
from the CLT in the sense that we handle both v1 and V⊥, using the fact that on the good set,
even the Frobenius norm of certain terms are well-behaved. By Lemma C.4 we have that:

R∗3 :=

√
n

ηn
·
V̂⊥V̂

T
⊥ (B∗n − T ∗1 )u0

|a1|(1 + ηn/nλ1)n
= OP

exp

√CM2
dη

2
n log d

n

√α4
nη

3
n

n
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Next, we bound the contribution of V⊥ to the Hájek projection using Lemma C.6, as long as

λ1Md(log d)2 η
2
n
n → 0,

R∗2 =

√
n

ηn
·
V̂⊥V̂

T
⊥ T
∗
1 V⊥V

T
⊥ u0

|a1|(1 + ηn/nλ1)n
= OP

(√
αnMdη2

n

n(λ1 − λ2)

)
The final remainder term arises from the disparity between the orthogonal complements and the
residuals of matrix products from their expectation. By Lemma C.2, with ∆i = XiX

T
i −Xi−1X

T
i−1,

R∗4 =

√
n

ηn

∥∥∥∥∥ V̂⊥V̂
T
⊥ T
∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n
− ηn

n

∑
i

WiDi−1∆iv1

∥∥∥∥∥ = OP

(√
Mdαnη3

n log d

n

)
Now, define:

S∗n =

√
n

ηn

V⊥V
T
⊥ T
∗
1 v1

(1 + ηnλ1
n )n

Consider the following bound:

P

{
sup
t∈R

∣∣P ∗(n/ηn sin2(v∗1, v̂1) ≤ t)− P (ZTZ ≤ t)
∣∣ > ε

}
= PAn

{
sup
t∈R

∣∣∣∣P ∗(R∗1 · (S∗n +R∗2 +R∗3 +R∗4)T (S∗n +R∗2 +R∗3 +R∗4)

f
≤ t
)
− P

(
ZTZ

f
≤ t
)∣∣∣∣ > ε

}
+PAcn

{
sup
t∈R

∣∣∣∣P ∗(R∗1 · (S∗n +R∗2 +R∗3 +R∗4)T (S∗n +R∗2 +R∗3 +R∗4)

f
≤ t
)
− P

(
ZTZ

f
≤ t
)∣∣∣∣ > ε

}
(S.25)

The second term is easily upper-bounded by P (Acn)→ 0, so we will bound the first term. To lower
bound the Kolmogorov metric, we may follow the same reasoning used in Eqs S.12, S.14, S.15, to
deduce, on the good set An, we have the lower bound:

P ∗
(
S∗Tn S∗n
f

≤ t

1 + εn
− εn

)
− P

(
ZTZ

f
≤ t

1 + εn
− εn

)
+ P

(
ZTZ

f
≤ t

1 + εn
− εn

)
− P

(
ZTZ

f
≤ t
)
− P ∗ (Gboot ∩ An) = I∗ + II∗ + III∗

where Gboot satisfies P (Gcboot) = 0 and for some εn → 0, is defined as:

Gboot = {|R∗1 − 1| ≤ εn, |R∗2|, |R∗3|, |R∗4| ≤ εn }

For I, we may use Lemma 1, which establishes that bootstrap version of the covariance matrix,
which consists of empirical covariances, is close to the Gaussian approximation, implying, by our
Gaussian comparison result Lemma C.1:

I∗ = OP

(E[
∥∥XiX

T
i − Σ

∥∥4
]

n(λ1 − λ2) ‖M‖2F

)1/4


For II∗, we may use the anti-concentration result and P ∗(Gboot ∩An)
P−→ 0 by Markov’s inequality

since the Lemmas hold for the unconditional measure, which is the expectation of the bootstrap
measure. We may use analogous reasoning to the CLT for the upper bound and the result follows.
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C.2 Proof of Lemma 1

Proof. Let Yi := XiX
T
i − Σ. Also let Mi = E[Di−1Yiv1v

T
1 YiDi−1]. First note that

E∗ZZT − V̄n =
ηn
2n

∑
i

Di−1(Yi − Yi−1)v1v
T
1 (Yi − Yi−1)Di−1

=
ηn
n

∑
i

(
Di−1Yiv1v

T
1 YiDi−1 −Mi

)
+
(
Di−1Yi−1v1v

T
1 Yi−1Di−1 −Mi

)
2

+
ηn
n

∑
i

(
Di−1Yiv1v

T
1 Yi−1Di−1 +Di−1Yi−1v1v

T
1 YiDi−1

)
(S.26)

We first compute trace.

trace(E∗ZZT − V̄n) =
ηn
2n

∑
i

(
‖Di−1Yiv1‖2 − E‖Di−1Yiv1‖2

)︸ ︷︷ ︸
U1,i

+
ηn
2n

∑
i

(
‖Di−1Yi−1v1‖2 − E‖Di−1Yi‖2

)︸ ︷︷ ︸
U2,i

+
ηn
n

∑
i

v1YiD2(i−1)Yi−1v1︸ ︷︷ ︸
U3,i

The last step is true because D2
i−1 = D2(i−1). We start with the first term.

EU2
i,1 ≤ E‖Di−1Yiv1‖4 ≤ E‖Yi‖4

(
1 + ηnλ2/n

1 + ηnλ1/n

)4(i−1)

Var(
∑
i

U1,i) ≤ E‖Y1‖4
∑
i

(
1 + ηnλ2/n

1 + ηnλ1/n

)4(i−1)

≤ n

ηn(λ1 − λ2)

≤ n

ηn
E‖Y1‖4 min

(
1

λ1 − λ2
, ηn

)
Finally,

E[U2
3,i] ≤ E

(
v1YiD2(i−1)Yi−1v1

)2 ≤M2
d

(
1 + ηnλ2/n

1 + ηnλ1/n

)2(i−1)

Thus, we have

ηn
2n

∑
i

U1,i = OP

(√
E‖Y1‖4

n(λ1 − λ2)

)
We also have,

ηn
2n

∑
i

U2,i = OP

(√
E‖Y1‖4

n(λ1 − λ2)

)
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Also note that while U3,i terms are 1-dependent, they are in fact uncorrelated. Thus, we have:

Var(
∑
i

U3,i) ≤
M2
dn

(λ1 − λ2)
,

and,

trace(E∗ZZT − V̄n) = OP

√E‖XiXT
i − Σ‖4

n(λ1 − λ2)


Now we bound the Frobenius norm. We will start with the expected Frobenius norm of the

first term of Eq S.26.

A1 = E

∥∥∥∥∥ 1

2n

n∑
i=1

Di−1Yiv1v
T
1 YiDi−1 −Mi

∥∥∥∥∥
2

F

≤ 1

4n2

∑
i

E‖Di−1Yiv1v
T
1 YiDi−1‖2F ≤

E‖Y1‖4

4nηn(λ1 − λ2)

Similarly,

A2 = E

∥∥∥∥∥ 1

n

∑
i

Di−1Yiv1v
T
1 Yi−1Di−1

∥∥∥∥∥
2

F

≤ 1

nηn(λ1 − λ2)
M2
d

Thus ,

∥∥E∗ZZT − V̄n
∥∥
F

= OP

√E‖X1XT
1 − Σ‖4

n(λ1 − λ2)



C.3 The Gaussian comparison lemma

We use the following lemma to compare to Gaussian random variables with mean 0 and different
covariance matrices. Our result is related to [2], but our lemma below is easier to implement and
does not require that 3‖Σ‖2 ≤ ‖Σ‖2F .

Lemma C.1. [Comparison lemma for inner products of Gaussian random variables]
Suppose that Z ∼ N(0,V), Ž ∼ N(0, V̌), f = ‖V‖F , and ∆1 = tr(V − V̌). Then, there exists

some constant K > 0 such that for any ε > 0,

sup
t

∣∣P (ZTZ ≤ t)− P (ŽT Ž ≤ t)
∣∣ .√ |∆1|+ ε

f
+ exp

{
−

(
ε2

K2‖V− V̌‖2F

∧ ε

K‖V− V̌‖

)}
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Proof. Let λ1 ≥ . . . ≥ λp denote the eigenvalues V, γ ≥ . . . ≥ γp denote the eigenvalues of V̌.
Recall that ZTZ ∼

∑p
r=1 λrηr, Ž

T Ž ∼
∑p

r=1 γrηr, where ηr ∼ χ2(1). It follows that:

P (ZTZ ≤ t)− P (ŽT Ž ≤ t)

= P

(∑p
r=1 λrηr
f

≤ t

f

)
− P

(∑p
r=1 λrηr +

∑p
r=1(γr − λr)ηr −∆1

f
≤ t−∆1

f

)
≤ P

(
t′

f
≤
∑p

r=1 λrηr
f

≤ t′ + |∆1|+ ε

f

)
+ P

(∣∣∣∣∣
p∑
r=1

(γr − λr)ηr −∆1

∣∣∣∣∣ > ε

)

Observe that
∑p

r=1(λr − γr)2 ≤ ‖V − V̌‖2F by Hoffman-Wielandt inequality and maxr |λr − γr| ≤
‖V− V̌‖op by Weyl’s inequality. Since χ2(1) is sub-Exponential, by Bernstein’s inequality (see for
example Theorem 2.8.2 of [7]:

P

(∣∣∣∣∣
p∑
r=1

(γr − λr)ηr −∆1

∣∣∣∣∣ > ε

)
≤ exp

{
−

(
ε2

K2‖V− V̌‖2F

∧ ε

K‖V− V̌‖

)}

C.4 Other supporting lemmas for bootstrap consistency

Before presenting our supporting lemmas, we present some events we will use frequently. Let Asin

denote the set

Asin :=

{
1− (vT1 v̂1)2 ≤ γsin

δsin

}
. (S.27)

Using Corollary 1, and the remark thereafter, we have:

P

(
1− (vT1 v̂1)2 ≥ γsin

δsin

)
≤ δsin, (S.28)

where, under the assumptions of Theorem 1,

γsin = C3
Mdηn

n(λ1 − λ2)
(S.29)

Also let,

An =

{
max

1≤i≤n
‖Xi‖22 ≤ αn

}
(S.30)

Lemma C.2. [Bounding the norm of bootstrap residual from T ∗1 ] Let ∆i = XiX
T
i −Xi−1X

T
i−1 and

assume the conditions in Theorem 1. Let Di = V⊥Λi⊥V
T
⊥ , where Λ⊥(k, `) =

1+ηnλk+1/n
1+ηnλ1/n

1(k = `).
For any ε, δ > 0, we have:

P

({√
n

ηn

∥∥∥∥∥ V̂⊥V̂
T
⊥ T
∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n
− ηn

n

∑
i

WiDi−1∆iv1

∥∥∥∥∥ ≥ ε
}
∩ An

)

≤ C ′′αnMdη
3
n log d

nε2δ
+ δ
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Proof.

V̂⊥V̂
T
⊥ T
∗
1 v1(vT1 u0)

|vT1 u0|(1 + ηnλ1/n)n−1

= sign(vT1 u0)
ηn
n

∑
i

WiDi−1∆iv1

+ sign(vT1 u0)
ηn
n

(V̂⊥V̂
T
⊥ − V⊥V T

⊥ )
∑
i

WiDi−1∆iv1︸ ︷︷ ︸
r1

+ sign(vT1 u0)
ηn
n


∑
i

Wi

(
R1,i−1∆iv1

(1 + λ1ηn/n)i

)
︸ ︷︷ ︸

r2

+
Wi(I + ηnλ1/n)i−1∆iRi,nv1

(1 + λ1ηn/n)n−1︸ ︷︷ ︸
r3

+Wi
R1,i−1∆iRi,nv1

(1 + λ1ηn/n)n−1︸ ︷︷ ︸
r4


Define

B1,j =

j∏
i=1

(
I +

ηn
n
XiX

T
i

)
Bj,n =

n∏
i=j

(
I +

ηn
n
XiX

T
i

)
(S.31)

When j = 0, B1,j = I.
Using Lemma B.1 we have:

R1,i = B1,i − (I + ηnΣ/n)i Ri,n = Bi,n − (I + ηnΣ/n)n−i (S.32)

E‖R1,i−1‖2 ≤ eMd(1 + 2 log d)
η2
n

n2
i (1 + ηnλ1/n)2i (S.33)

E‖Ri,n‖2 ≤ eMd(1 + 2 log d)
η2
n

n2
(n− i) (1 + ηnλ1/n)2(n−i) (S.34)

We have, on the good set Asin,

E∗‖r1‖2 ≤ nαn
γsin

δsin

We also have:

E
[
E∗‖r2‖21(An)

]
≤ η2

n

n2
αn
∑
i

E[‖R2
1,i1(An)‖2]

≤ eMd(1 + 2 log d)αnη
2
n

The last step is true because E[‖R2
1,i1(An)‖2] ≤ E[‖R2

1,i‖2]. Similarly

E
[
E∗‖r3‖21(An)

]
≤ eMd(1 + 2 log d)αnη

2
n
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and

E
[
E∗‖r4‖21(An)

]
≤ e2M2

d (1 + 2 log d)2αnη
4
n/n

Finally, we have:

P

ηnn ‖∑
j

rj‖2 ≥ ε

 ∩ An
 ≤ P

4
ηn
n

∑
j

‖rj‖2 ≥ ε

 ∩ An


≤
∑
i

P

({
‖ri‖2 ≥

nε

16ηn

}
∩ An ∩ Asin

)
+ δsin

≤ C
∑
i

E
[
E∗‖ri‖21(An ∩ Asin)

]
× ηn
nε

+ δsin

(i)

≤ C ′
(
nαn

γsin

δsin
+Md log dαnη

2
n

)
× ηn
nε

+ δsin

(ii)

≤ C ′′
αnMdη

3
n log d

nεδsin
+ δsin

Step (i) is true because Md log dη2
n/n→ 0. Step (ii) is true because of Eq S.29. Now setting δsin to

any δ > 0 gives the result.

Lemma C.3 (Concentration of the norm for the bootstrap). Let u0 be uniformly distributed on Sd−1

and a1 = u′0v1 and V⊥V
T
⊥ is orthogonal complement. Suppose that (αn)n≥1 satisfies 0 ≤ (ηnαn)2

n ≤ 1.
Then, for any ε > 0, 0 < δ < 1 and some C > 0,

P

({∣∣∣∣ ‖B∗nu0‖
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ ≥ εn} ⋂
An
)

≤
d exp

(
−ηn(λ1 − λ2) + η2n

n (λ2
1 +Md)

)
+ η2n

n Md exp
(
η2n
n

)
8 log−1(1/δ)δ2 ε2

(
1 +

η2nλ
2
1

n

)
+
e2η2

nMd(1 + log d)

2nε2
+
Cβ∗n log(1/δ)

(1− β∗n)δ2ε2
+ Cδ,

where β∗n is defined in (S.36) and An is defined in Eq S.30.

Proof. First note that we may reduce the problem as follows:

P

({∣∣∣∣ ‖B∗nu0‖
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ ≥ ε} ∩ An)
≤ P

({
‖B∗nu0 −Bnu0‖2
|a1|(1 + ηnλ1/n)n

+

∣∣∣∣ ‖Bnu0‖2
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ > ε

}
∩ An

)
≤ E

[
P ∗
(
‖B∗nu0 −Bnu0‖2
|a1|(1 + ηnλ1/n)n

>
ε

2

)
1(An)

]
+ P

(∣∣∣∣ ‖Bnu0‖2
|a1|(1 + ηnλ1/n)n

− 1

∣∣∣∣ > ε

2

)
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The bound for the second term follows from Lemma B.2. For the first term, we invoke Proposi-
tion B.2 so that, with probability at least 1− Cδ,

‖(B∗n −Bn)g‖22
(vT1 g)2(1 + ηnλ1/n)2n

≤
log(1/δ) ‖B∗n −Bn‖2F
δ2(1 + ηnλ1/n)2n

Now, using the fact that for any two Hayek projections P ∗S and P ∗T , E[(P ∗S)TP ∗T ] = 0 and for
any two matrices ‖AB‖F ≤ ‖A‖F ‖B‖op, we have on the high probability set:

E∗‖B∗n −Bn‖2F

≤
n∑
k=1

∑
|S|=k

(ηn
n

)2k
k∏
i=1

∥∥∥XS[i]X
′
S[i] −XS[i]−1X

′
S[i]−1

∥∥∥2

F

k+1∏
j=1

∥∥∥B(S)
j,n

∥∥∥2

op
,

where B(S)
j,n denotes a contiguous block of I + ηn

n XiX
T
i only. More precisely, suppose |S| = k. Let

S[i] denote the ith element of S, with S[0] = 0 and S[k + 1] = n − 1. For each 1 ≤ j ≤ k + 1 if
S[j] > S[j − 1] + 1 define Bj,n as:

B(S)
j,n =

S[j]−1∏
i=S[j−1]+1

(
I +

ηn
n
XiX

T
i

)
(S.35)

otherwise, set B(S)
j,n = I. Now, we may repeat arguments in Lemma C.4 equations (S.37), (S.38),

and (S.39) to conclude that, for some C > 0,

P

(
log(1/δ) ‖B∗n −Bn‖2F
δ2(1 + ηnλ1/n)2n

> ε
⋂
An
)
≤ C log(1/δ)β∗n

(1− β∗n)δ2ε2

The result follows.

Lemma C.4 (Negligibility of higher-order Hoeffding projections for the bootstrap). Suppose αn
is defined so that 0 ≤ β∗n ≤ 1, where

β∗n = exp

√CM2
dη

2
n log d

n

 4η2
nα

2
n

n
(S.36)

Then for any ε > 0, 0 < δ < 1 and for some C > 0,

P



√

n
ηn

∥∥∥V̂⊥V̂ T
⊥
∑

k>1 T
∗
ku0

∥∥∥
|a1|(1 + ηnλ1

n )n
> εn


⋂
An


≤ exp

√CM2
dη

2
n log d

n

 log(1/δ)

δ2

α2
nβ
∗
nηn

(1− β∗n)ε2
+ Cδ,

where An is defined in Eq S.30.
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Proof. Using the trace trick in Proposition B.2 again, we have that, with probability at least 1−Cδ
for some C > 0,

n
ηn

∥∥∥V̂⊥V̂ T
⊥
∑

k>1 T
∗
k g
∥∥∥2

(vT1 g)2(1 + ηnλ1
n )2n

≤
n
ηn

log(1/δ)
∥∥∑

k>1 Tk
∥∥2

F

δ2(1 + ηnλ1
n )2n

The Hoeffding decomposition (Proposition A.4), together with the fact that ‖AB‖F ≤ ‖A‖F ‖B‖op
implies:

E∗
∥∥∥∥∥∑

k>1

T ∗k

∥∥∥∥∥
2

F

 = E∗
[∑
k>1

‖T ∗k ‖
2
F

]

≤
n∑
k=2

∑
|S|=k

(ηn
n

)2k
k∏
i=1

∥∥∥XS[i]X
T
S[i] −XS[i]−1X

T
S[i]−1

∥∥∥2

F

k+1∏
j=1

∥∥∥B(S)
j,n

∥∥∥2

op

(S.37)

Now, that expectation corresponding to a given summand is given by:∫
An

∥∥∥XS[i]X
T
S[i] −XS[i]−1X

T
S[i]−1

∥∥∥2

F

k+1∏
j=1

∥∥∥B(S)
j,n

∥∥∥2
dP

≤
∫
An

k∏
i=1

4α2
n

k+1∏
j=1

∥∥∥B(S)
j,n

∥∥∥2
dP

≤
(
4α2

n

)k k+1∏
j=1

E
[∥∥∥B(S)

j,n

∥∥∥2
]

(S.38)

where B(S)
j,n is defined in Eq S.35.

To bound E
[∥∥∥B(S)

j,n

∥∥∥2
]
, we invoke Lemma B.1 Eq S.21. For some C > 0 uniformly in S:

k+1∏
j=1

E
[∥∥∥B(S)

j,n

∥∥∥2
]
≤ exp

√CM2
dη

2
n log d

n

k+1(
1 +

ηnλ1

n

)2(n−k)
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Therefore, by Markov’s inequality,

P



√

n
ηn

∥∥∥V̂⊥V̂ T
⊥
∑

k>1 T
∗
ku0

∥∥∥
(1 + ηnλ1

n )n
> εn


⋂
An


≤ n

δ3ε2nηn
exp

√CM2
dη

2
n log d

n

 n∑
k=2

4η2
nα

2
n

n
exp

√CM2
dη

2
n log d

n

k

≤ α2
nηnδ

−3
n ε−2

n exp

√CM2
dη

2
n log d

n

 n∑
k=1

4η2
nα

2
n

n
exp

√CM2
dη

2
n log d

n

k

≤ exp

√CM2
dη

2
n log d

n

 α2
nβ
∗
nηn

(1− β∗n)ε2nδ
3
n

(S.39)

where the last line follows from a geometric series argument.

Lemma C.5.
n∑
i=0

(
1− ηn/n(λ1 − λ2)

1 + ηnλ1/n

)2i

≤ n

ηn
min

(
ηn,

1

λ1 − λ2

)
Proof. This follows from the definition of a geometric series.

Lemma C.6 (Bounding the leading Hoeffding projection for the bootstrap on V⊥). Let λ1Md(log d)2 η
2
n
n →

0, and nd exp(−ηn(λ1 − λ2))→ 0. For any ε, δ > 0, and C1, C2 ≥ 0, we have:

P

({√
n

ηn

‖V̂⊥V̂ T
⊥ T
∗
1 V⊥V

T
⊥ u0‖

(1 + ηnλ1/n)n|vT1 u0|
≥ ε

}
∩ An

)
≤ C1αnMdη

2
n log(1/δ)

n(λ1 − λ2)δ3

1

ε2
+ C2δ

Proof. Using Proposition B.2, with probability at least 1− δ,

‖V̂⊥V̂ T
⊥ T
∗
1 V⊥V

T
⊥ u0‖2

(1 + ηnλ1/n)2n‖vT1 u0‖2
≤

log(1/δ)
∥∥∥V̂⊥V̂ T

⊥ T
∗
1 V⊥V

T
⊥

∥∥∥2

F

δ2(1 + ηnλ1/n)2n

=
log(1/δ)trace(V̂⊥V̂

T
⊥ T
∗
1 V⊥V

T
⊥ T
∗
1 V̂⊥V̂

T
⊥ )

δ2(1 + ηnλ1/n)2n

=
log(1/δ)

∥∥∥V̂⊥V̂ T
⊥ T
∗
1 V⊥

∥∥∥2

F

δ2(1 + ηnλ1/n)2n
(S.40)

First note that,

‖V⊥V T
⊥ − V̂⊥V̂ T

⊥ ‖2F = ‖v1v
T
1 − v̂1v̂

T
1 ‖2F = 2(1− (vT1 v̂1)2)
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Thus, we have

E∗‖V̂⊥V̂ T
⊥ T
∗
1 V⊥‖2F

=
η2
n

n2

∑
i

‖V̂⊥V̂ T
⊥ B1,i−1(XiX

T
i −Xi−1X

T
i−1)Bi+1,nV⊥‖2F

≤ 4
η2
n

n2

∑
i

6∑
j=1

‖rj,i‖2F , (S.41)

where B1,i are defined in Eq S.32, and the residual vectors rk,i are defined as follows. Recall the
definition of R1,i and Ri,n from Eq S.32. Now define the following vectors which contribute to the
remainder.

r1,i = V̂⊥V̂
T
⊥R1,i−1(Yi − Yi−1)Ri+1,nV⊥

r2,i = V̂⊥V̂
T
⊥R1,i−1(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

r3,i = V⊥V
T
⊥ (I + ηn/nΣ)n−i(Yi − Yi−1)Ri+1,nV⊥

r4,i = V⊥V
T
⊥ (I + ηn/nΣ)n−i(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

r5,i = (V̂⊥V̂
T
⊥ − V⊥V T

⊥ )(I + ηn/nΣ)n−i(Yi − Yi−1)Ri+1,nV⊥

r6,i = (V̂⊥V̂
T
⊥ − V⊥V T

⊥ )(I + ηn/nΣ)n−i(Yi − Yi−1)(I + ηn/nΣ)n−iV⊥

First we will bound ‖r1,i‖2F . Recall the set An where the maximum norm is bounded from S.30.

E1,i :=

∫
An
‖r1,i‖2FdP ≤ 2αn

∫
An
‖R1,i−1‖2‖Ri+1,n‖2dP

≤ 2αn

∫
‖R1,i‖2‖Ri+1,n‖2dP ≤ 2αnE‖R1,i‖2E‖Ri+1,n‖2 (S.42)

Similarly,

E2,i =

∫
An
‖r2,i‖2FdP ≤ 2αn (1 + ηnλ2/n)2(n−i) E‖R1,i−1‖2 (S.43)

E3,i =

∫
An
‖r3,i‖2FdP ≤ 2αn (1 + ηnλ2/n)2(i−1) E‖Ri+1,n‖2 (S.44)

Similarly,

E4,i =

∫
An
‖r4,i‖2FdP ≤ 2αn (1 + ηnλ2/n)2(n−1) (S.45)

Recall the set Asin from Eq S.27. With probability at least 1− δsin,

E5,i =

∫
An∩Asin

‖r5,i‖2FdP ≤ 4αn
γsin

δsin
(1 + ηnλ1/n)2(i−1) E‖Ri+1,n‖2
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E6,i =

∫
An∩Asin

‖r6,i‖2FdP ≤ 2αn
γsin

δsin
(1 + ηnλ1/n)2(i−1) (1 + ηnλ2/n)2(n−i)

Observe that, using Eq S.32, we have,
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∑
i
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2M2
d (1 + 2 log d)2η4

n
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∑
i
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With probability at least 1− δsin, we have

E4 :=
∑
i
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n
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(
ηn,

1
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If λ1Md(log d)2 η
2
n
n → 0, then E4 ≤ C1E5 for some positive constant C1. If nd exp(−2ηn(λ1−λ2))→ 0,

then E3 ≤ C2E5.
Thus, under these conditions,

E1, E2 ≤ C4E5

With probability at least 1− δsin, for some positive constant C ′,∑5
i=1 Ei

(1 + ηnλ1/n)2n
≤ C ′αn

γsin

δsin

Finally, using Eq S.41 we get:∫
Asin∩An E
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⊥ T
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1 V⊥‖2FdP

(1 + ηnλ1/n)2n
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η2
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n

γsin

δsin
(S.46)

Let A1 denote the set where Eq S.40 holds.
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≤ E
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∥∥∥V̂⊥V̂ T

⊥ T
∗
1 V⊥

∥∥∥2

F

(1 + ηnλ1/n)2n
× log(1/δ)n

εδ2ηn
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+ 2δ + δsin

(i)

≤ C ′′αnηn log(1/δ)

δsinδ2

γsin

ε
+ 2δ + δsin
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≤ C ′′′αnMdη
2
n log(1/δ)

n(λ1 − λ2)δsinδ2

1

ε
+ 2δ + δsin

Step (i) follows from Eq S.46. Step (ii) follows from the definition of γsin in Eq S.29. Now setting
γsin = δ, we get the result.

D Proof of Proposition 1

Proof of Proposition 1. Since ‖X1j‖ψ2
≤ νj it follows that

∥∥∥X2
1j

∥∥∥
ψ1

≤ ν2
j . Observe that (X2
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2
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1. By multivariate Holder inequality with pj =
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2
j and property (e) of Proposition 2.7.1

of [7], for |λ| < 1/(
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Therefore,
∥∥∥∑d

i=1X
2
1i

∥∥∥
ψ1

≤
∑d

i=1 ν
2
i . Since a subexponential random variable T satisfy the tail

condition:

P (T − E[T ] > t) ≤ exp(−t/Kν)

for another universal constant K > 0, the second claim follows by a union bound and noting that
E[‖X1‖22] ≤

∑d
i=1 ν

2
i < C2 since absolute summability implies square summability.
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