Supplementary Material for "Bootstrapping the error of Oja's algorithm"

Robert Lunde
University of Michigan
rlunde@umich.edu

Purnamrita Sarkar
University of Texas at Austin
purna.sarkar@austin.utexas.edu

Rachel Ward

University of Texas at Austin
rward@math.utexas.edu

Supplementary Material

In this document we provide the detailed proofs of results presented in the main manuscript. In Section A, we provide a proof for the Hoeffding expansion of the matrix product in Eq 5 of the main document. We also provide the Hoeffding decomposition for the bootstrap in Proposition A.4. In Section B we provide all results needed for a complete proof of Theorem 1. In Sections B.1, B.2, and B.3 we provide the proof of Theorem 1, the adaptation of high dimensional CLT of [8] to our setting and all supporting lemmas, respectively.

In Section C we provide all details of the proof of the Bootstrap consistency, i.e. Theorem 2 . To be specific, Section C. 1 has the proof of Theorem 2; Section C. 2 has the proof of Lemma 1 , Section C. 3 has the statement and proof of the Gaussian comparison lemma, and Section C. 4 has all the supporting lemmas. Finally, in Section D, we provide a proof of Proposition 1.

A On the Hoeffding decomposition

We discuss Hoeffding decompositions for a function f of n independent random variables $X_{1}, \ldots X_{n}$, where the random variables take values in an arbitrary space and the function takes values \rrbracket^{1} in $\mathbb{R}^{d \times d}$ or \mathbb{R}^{d}. The following exposition largely follows [6].

With Hoeffding decompositions, we project $T\left(X_{1}, \ldots, X_{n}\right)$ onto spaces of increasing complexity that are orthogonal to each other. In our setup, orthogonality means $\langle f, g\rangle_{L^{2}}=0$ where $\langle f, g\rangle_{L^{2}}=$ $\int\langle f, g\rangle d P$. Here, $\langle f, g\rangle=\operatorname{Trace}\left(f^{T} g\right)$ in the matrix case and $\langle f, g\rangle=f^{T} g$ in the vector case. The first-order projection, also known as a Hájek projection, involves projecting our function onto a space of functions of the form

$$
g^{(i)}\left(X_{i}\right)
$$

[^0]where $g^{(i)}$ satisfies $E\left[g^{(i)}\right]=0$. We will let $H^{(i)}\left(X_{i}\right)$ denote the corresponding projection. Since the functions $g^{(i)}, g^{(j)}$ are mutually orthogonal for $i \neq j$, the sum of the projections is equivalent to the projection onto the space spanned by functions of the form:
$$
\sum_{i=1}^{n} g^{(i)}\left(X_{i}\right)
$$

The higher-order spaces have the form:

$$
g^{(S)}\left(X_{i}: i \in S\right)
$$

where $S \subseteq\{1, \ldots, n\}$ and the functions satisfy $\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]=0$ for any $R \subset S$, including $R=\emptyset$, which implies $\mathbb{E}\left[g^{(S)}\right]=0$. If $R \not \subset S$ and $S \not \subset R,\left\langle g^{(S)}, g^{(R)}\right\rangle_{L^{2}}=0$ since, by conditional independence given $\left\{X_{i}: i \in R \cap S\right\}$:

$$
\begin{equation*}
\mathbb{E}\left[\mathbb{E}\left[\left\langle g^{(S)}, g^{(R)}\right\rangle \mid X_{i}: i \in R \cap S\right]\right]=\mathbb{E}\left[\left\langle\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R \cap S\right], \mathbb{E}\left[g^{(R)} \mid X_{i}: i \in R \cap S\right]\right\rangle\right]=0 \tag{S.1}
\end{equation*}
$$

Combining these projections leads to the following representation, known as the Hoeffding decomposition:

$$
T\left(X_{1}, \ldots, X_{n}\right)=\sum_{k=0}^{n} \sum_{|S|=k} H^{(S)}\left(X_{i}: i \in S\right)
$$

While the following proposition is stated for real-valued functions in [6] [Lemma 11.11], it turns out that the proof there generalizes to our setting without difficulty due to machinery for projections in Hilbert spaces.

Proposition A. 1 (Hoeffding projections). Let X_{1}, \ldots, X_{n} be arbitrary random variables and let suppose $\langle T, T\rangle_{L_{2}}<\infty$. Then the projection on the the space of functions of the form $g^{(S)}\left(X_{i}: i \in S\right)$ with $\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]=0$ for any $R \subset S$ has the form:

$$
H^{(S)}(T)=\sum_{R \subseteq S}(-1)^{|S|-|R|} \mathbb{E}\left[T \mid X_{i}: i \in R\right]
$$

For completeness, we provide a proof of the proposition below.
Proof. We begin by verifying that the space of all random matrices (vectors) satisfying $\|A\|_{L^{2}}<\infty$ forms a Hilbert Space. First, it is clear that $\langle\cdot, \cdot\rangle_{L^{2}}$ is indeed an inner product. Linearity follows from linearity of the inner product $\langle\cdot, \cdot\rangle$ and linearity of expectations and conjugate symmetry follows from this property holding pointwise in Ω for $\langle\cdot, \cdot\rangle$. Positive definiteness again follows from the fact that this property holds pointwise in Ω; then a standard contradiction argument yields that if $\langle x, x\rangle_{L^{2}}=0$, but x is not equal to 0 almost surely, there exists some M such that for some $\delta>0, P\left(\|x\|>\frac{1}{M}\right) \geq \delta$ and hence $\int\langle x, x\rangle d P \geq \delta / M>0$, a contradiction.

One can again adapt standard arguments for completeness of L_{2} spaces to our setting; namely, show that Cauchy sequences converging in L_{2} implies convergence almost everywhere, and then invoke completeness of the Hilbert space over matrices/vectors along with integral convergence theorems; see for example, the proof of Theorem 1.2, page 159 in [5].

Now to verify that this function is indeed the projection, we invoke the Hilbert Projection Theorem; see for example, Lemma 4.1 of [5]. To use this theorem, we need to check that the space spanned by functions of the form $g^{(S)}$ satisfying the condition $\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]=0$ for any $R \subset S$ is a closed subspace. Linearity of the space follows from the fact that the sum of such functions satisfies the constraint; therefore it is a subspace. To check closure, let $\|f\|^{2}=\langle f, f\rangle$ and consider some (convergent) sequence in this subspace $\left(g_{\alpha}^{(S)}\right)_{\alpha \geq 1}$ where $g_{\alpha}^{(S)} \rightarrow g^{(S)}$ and observe that, for any $R \subset S:$

$$
\begin{aligned}
\mathbb{E}\left[\left\|g_{\alpha}^{(S)}-g^{(S)}\right\|^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left\|g_{\alpha}^{(S)}-g^{(S)}\right\|^{2} \mid X_{i}: i \in R\right]\right] \\
& \geq \mathbb{E}\left[\left\|\mathbb{E}\left[g_{\alpha}^{(S)}-g^{(S)} \mid X_{i}: i \in R\right]\right\|^{2}\right] \\
& \geq \mathbb{E}\left[\left\|\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]\right\|^{2}\right]
\end{aligned}
$$

where above we used the fact that $\mathbb{E}\left[g_{\alpha}^{(S)} \mid X_{i}: i \in R\right]=0$ for all α by assumption. Since the LHS converges to 0 , it follows that $\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]$ must be equal to 0 almost surely. Since the limit satisfies $\mathbb{E}\left[g^{(S)} \mid X_{i}: i \in R\right]=0$ for all $R \subset S$, it belongs in the space, proving closure.

Now, we show that the stated expression is indeed the Hoeffding projection. First, to show that belongs in this space, we have, following analogous reasoning to [6], for any $C \subset A$,

$$
\begin{aligned}
\mathbb{E}\left[H^{(A)}(T) \mid X_{i}: i \in C\right] & =\sum_{B \subseteq A}(-1)^{|A|-|B|} \mathbb{E}\left[T \mid X_{i}: i \in B \cap C\right] \\
& =\sum_{D \subseteq C} \sum_{j=0}^{|A|-|C|}(-1)^{|A|-(|D|+j)}\binom{|A|-|C|}{j} \mathbb{E}\left[T \mid X_{i}: i \in D\right] \\
& =\sum_{D \subseteq C}(-1)^{|C|-|D|} \mathbb{E}\left[T \mid X_{i}: i \in D\right](1-1)^{|A|-|C|}=0
\end{aligned}
$$

where the last line follows from the Binomial Theorem. Now as a consequence of the Hilbert Projection Theorem, it suffices to show that $H^{(A)}(T)$ satisfies the property:

$$
\left\langle T-H^{(A)}(T), g^{(A)}\right\rangle_{L^{2}}=0
$$

for any $g^{(A)}$ in the space. In the matrix case, we have

$$
\begin{aligned}
\left\langle T-H^{(A)}(T), g^{(A)}\right\rangle_{L^{2}} & =\sum_{j=1}^{d} \sum_{k=1}^{d} \mathbb{E}\left[\left(T_{j k}-\mathbb{E}\left[T_{j k} \mid X_{i}: i \in A\right]\right) \cdot g_{j k}^{(A)}\right] \\
& +\sum_{j=1}^{d} \sum_{k=1}^{d} \sum_{B \subset A} \mathbb{E}\left[(-1)^{|A|-|B|} \mathbb{E}\left[T_{j k} \mid X_{i}: i \in B\right] \cdot \mathbb{E}\left[g_{j k}^{(A)} \mid X_{i}: i \in B\right]\right]
\end{aligned}
$$

The first term above is 0 since conditional expectations may be viewed as an orthogonal projection in the Hilbert Space with inner product $\int f g d P$ into the closed subspace of $\sigma\left(X_{i}: i \in A\right)$-measurable functions. The second term is zero since $\mathbb{E}\left[g_{j k}^{(A)} \mid X_{i}: i \in B\right]=0$ for any $B \subset A$. The vector case is analogous.

Since this property holds, it must be the unique (up to measure 0 sets) minimizer and projection.

Now an immediate corollary for our setting follows.
Proposition A. 2 (Orthogonality of Hoeffding projections). Let:

$$
B_{n}=\sum_{k=0}^{n} \sum_{|S|=k} H^{(S)}
$$

where $A^{(S)}$ is the Hoeffding projection corresponding to the set $S \subseteq\{1, \ldots, n\}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[\left\|B_{n}\right\|_{F}^{2}\right] & =\sum_{k=0}^{n} \sum_{|S|=k} \mathbb{E}\left[\left\|A^{(S)}\right\|_{F}^{2}\right] \\
\mathbb{E}\left[\left\|B_{n} x\right\|^{2}\right] & =\sum_{k=0}^{n} \sum_{|S|=k} \mathbb{E}\left[\left\|A^{(S)} x\right\|^{2}\right]
\end{aligned}
$$

where the last inequality holds for all $x \in \mathbb{R}^{d}$.
Proof. Letting $g^{(S)}=H^{(S)}$ and $g^{(R)}=H^{(R)}$ in Eq S.1, we have that $\left\langle H^{(S)}, H^{(R)}\right\rangle_{L^{2}}=0$ for all $R \neq S$ and the result follows.

It remains to be shown that Hoeffding decomposition has the form stated in Eq 5 . Deriving all projections in the Hoeffding decomposition for a general function is typically non-trivial, but the product structure facilitates our proof below. Before establishing the Hoeffding decomposition, following for example, [1] observe that the following inverse relation holds:

Proposition A. 3 (Conditional expectation and Hoeffding projections).

$$
\mathbb{E}\left[T \mid X_{i}: i \in S\right]=\sum_{R \subseteq S} H^{(R)}(T)
$$

Proof. Observe that:

$$
\mathbb{E}\left[T \mid X_{i}: i \in S\right]=\sum_{k=0}^{n} \sum_{|R|=k} \mathbb{E}\left[H^{(R)}(T) \mid X_{i}: i \in S\right]
$$

Since the conditional expectation is zero for $R \nsubseteq S$ and for $R \subseteq S$, the Hoeffding projection is fixed, the result follows.

Now we are ready to establish the form of the Hoeffding projection for any $S \subseteq\{1, \ldots, n\}$. We in fact prove a slightly stronger statement, which makes the induction argument more natural. In what follows let $S[i]$ denote the i th element in S. We will also use $H^{(S)}$ instead of $H^{(S)}(T)$ when it is clear from the context.

Theorem A. 1 (Hoeffding projections for Oja's algorithm). Define:

$$
T_{-j}=\prod_{i=j+1}^{n}\left(I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}\right), \quad T=T_{-0}=\prod_{i=1}^{n}\left(I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}\right),
$$

Then for any $S \subseteq\{1, \ldots, n\}$ and for all $0 \leq j<S[1]$, we have the Hoeffding projection of T_{-j} onto $\left\{X_{i}: i \in S\right\}$ may be expressed as:

$$
\begin{equation*}
H_{-j}^{(S)}=\prod_{i=j+1}^{n} A_{i}^{(S)}, \quad H^{(S)}=H_{-0}^{(S)} \tag{S.2}
\end{equation*}
$$

where:

$$
A_{i}^{(S)}= \begin{cases}\frac{\eta_{n}}{n}\left(X_{i} X_{i}^{T}-\Sigma\right) & i \in S \\ I+\frac{\eta_{n}}{n} \Sigma & i \notin S\end{cases}
$$

Proof. We will conduct (strong) induction on $k=|R|$, where $R \subseteq S$. We will start with the base case $k=1 ; k=0$ is simply the expectation. For the base case $|R|=1$, a direct calculation is possible, since:

$$
H_{-j}^{(R)}=\mathbb{E}\left[T_{-j} \mid X_{i}: i \in R\right]-\mathbb{E}\left[T_{-j}\right]
$$

which has the stated form. Now, we will suppose that the inductive hypothesis holds. In what follows, let $S[1]=k$ and define the conditional expectation for any set S as:

$$
\mathbb{E}\left[T_{-j} \mid X_{i}: i \in S\right]=\prod_{i=j+1}^{n} E_{i}^{(S)}
$$

where:

$$
E_{i}^{(S)}= \begin{cases}I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T} & i \in S \\ I+\frac{\eta_{n}}{n} \Sigma & i \notin S\end{cases}
$$

We will now add and subtract a product where an entry corresponding to $S[1]$ in $\mathbb{E}\left[T_{-j} \mid X_{i}: i \in S\right]$ is replaced by $\left(I+\frac{\eta_{n}}{n} \Sigma\right)$. Doing, so we have

$$
\begin{aligned}
\mathbb{E}\left[T_{-j} \mid X_{i}: i \in S\right]= & \mathbb{E}\left[T_{-j} \mid X_{i}: i \in S\right]-\left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j} \times \prod_{i=k+1}^{n} E_{i}^{(S)} \\
& +\left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j} \times \prod_{i=k+1}^{n} E_{i}^{(S)}
\end{aligned}
$$

We recognize the second summand as $\mathbb{E}\left[T_{-j} \mid X_{i}: i \in S_{-k}\right]$, where $S_{-k}=\{i \in S, i \neq k\}$. Now for the first summand, taking the difference we have the term

$$
\begin{aligned}
& \left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j-1} \times \frac{\eta_{n}}{n}\left(X_{k} X_{k}^{T}-\Sigma\right) \times \prod_{i=k+1}^{n} E_{i}^{(S)} \\
= & \left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j-1} \times \frac{\eta_{n}}{n}\left(X_{k} X_{k}^{T}-\Sigma\right) \times \mathbb{E}\left[T_{-k} \mid X_{i}: i \in S_{-k}\right]
\end{aligned}
$$

By Proposition A.3, we may represent a conditional expectation as:

$$
\begin{equation*}
\mathbb{E}\left[T_{-k} \mid X_{i}: i \in S_{-k}\right]=\sum_{R \subseteq S_{-k}} H_{-k}^{(R)} \tag{S.3}
\end{equation*}
$$

Furthermore, by the inductive hypothesis, each $H_{-k}^{(R)}$ takes the form in Eq S.2. Now, combining the two parts, we have

$$
\begin{aligned}
\mathbb{E}\left[T_{-j} \mid X_{i}: i \in S\right] & =\sum_{R \subseteq S_{-k}}\left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j-1} \times \frac{\eta_{n}}{n}\left(X_{k} X_{k}^{T}-\Sigma\right) \times H_{-k}^{(R)} \\
& +\sum_{R \subseteq S_{-k}}\left(I+\frac{\eta_{n}}{n} \Sigma\right)^{k-j} \times H_{-k}^{(R)} \\
& =\prod_{i=j+1}^{n} A_{i}^{(S)}+\sum_{R \subset S} H_{-j}^{(R)}
\end{aligned}
$$

For the last step, notice that with the exception of $R=S_{-k}$ in the first sum, each product in the sum corresponds to a Hoeffding projection of some set of size less than k by the inductive hypothesis. The first term must be the Hoeffding projection onto S (with $S[1]=k>j$) by the same argument as Eq S.3, i.e.

$$
H_{-j}^{(S)}=\prod_{i=j+1}^{n} A_{i}^{(S)},
$$

proving the desired result.
Now, since the Hoeffding decomposition is a sum of Hoeffding projections by definition, we have the following corollary.

Corollary A. 1 (Hoeffding decomposition for Oja's algorithm).

$$
B_{n}=\sum_{k=0}^{n} \sum_{|S|=k} H^{(S)}
$$

where $A^{(S)}$ is given by $H^{(S)}$ in Eq S.2.
It turns out that the bootstrap Hoeffding decomposition can be proved using the same strategy in Theorem A.1, where X_{1}, \ldots, X_{n} is treated as fixed in the bootstrap measure. We state the result below.

Proposition A. 4 (Hoeffding decomposition for the bootstrap).

$$
B_{n}^{*}=\sum_{k=0}^{n} \sum_{|S|=k} \alpha^{(S)}
$$

where $\alpha^{(S)}=\prod_{i=1}^{n} \alpha_{i}^{(S)}$ and $\alpha_{i}^{(S)}$ is given by:

$$
\alpha_{i}^{(S)}= \begin{cases}\frac{\eta_{n}}{n} W_{i} \cdot\left(X_{i} X_{i}^{T}-X_{i-1} X_{i-1}^{T}\right) & \text { if } i \in S \\ I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T} & \text { otherwise }\end{cases}
$$

B Central limit theorem for Oja's algorithm

B. 1 Proof of Theorem 1

Proof of Theorem 1. Our strategy will be to approximate $\sin ^{2}$ distance for estimated eigenvector with a quadratic form, and invoke a high-dimensional central limit theorem result. The remainder terms will be bounded using an anti-concentration result for weighted χ^{2} random variables due to [8].

Observe that $\sin ^{2}\left(\hat{v}_{1}, v_{1}\right)$ has the representation:

$$
1-\left(v_{1}^{T} \frac{B_{n} u_{0}}{\left\|B_{n} u_{0}\right\|}\right)^{2}=\frac{u_{0}^{T} B_{n}^{T}\left(I-v_{1} v_{1}^{T}\right) B_{n} u_{0}}{\left\|B_{n} u_{0}\right\|^{2}}
$$

Let $V_{\perp} V_{\perp}^{T}=I-v_{1} v_{1}^{T}$. Clearly, $V_{\perp} V_{\perp}^{T}$ is idempotent and is a projection matrix, implying that it is also symmetric. Therefore,

$$
\begin{equation*}
\frac{n}{\eta_{n}} \cdot \sin ^{2}\left(u_{n}, v_{1}\right)=\frac{\left(\sqrt{n / \eta_{n}} V_{\perp} V_{\perp}^{T} B_{n} u_{0}\right)^{T}\left(\sqrt{n / \eta_{n}} V_{\perp} V_{\perp}^{T} B_{n} u_{0}\right)}{\left\|B_{n} u_{0}\right\|^{2}} \tag{S.4}
\end{equation*}
$$

Let $a_{1}=\left(v_{1}^{T} u_{0}\right)$ denote the scalar projection of u_{0} so that $u_{0}=a_{1} v_{1}+w$, where w is in the orthogonal complement of v_{1}.

Our first reduction of (S.4) is to approximate the denominator with a more convenient quantity. By Lemma B.2, we have that (S.4) may be written as

$$
\frac{\left(\sqrt{n} / \eta_{n} \cdot V_{\perp} V_{\perp}^{T} B_{n} u_{0}\right)^{T}\left(\sqrt{n} / \eta_{n} \cdot V_{\perp} V_{\perp}^{T} B_{n} u_{0}\right)}{a_{1}^{2}\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{2 n}} \cdot R_{1}
$$

where

$$
R_{1}=\frac{\left\|B_{n} u_{0}\right\|^{2}}{a_{1}^{2}\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{2 n}}=1-O_{P}\left(\sqrt{d} \exp \left(-\frac{\eta_{n}}{2}\left(\lambda_{1}-\lambda_{2}\right)\right)+\sqrt{\frac{\eta_{n}^{2} M_{d} \log d}{n}}\right)
$$

While the aforementioned Lemma is stated for $\frac{\left\|B_{n} u_{0}\right\|}{\left|a_{1}\right|\left(1+\frac{\eta_{n} n}{n} \lambda_{1}\right)^{n}}$, the relationship holds for the squared quantity since with high probability for n large enough, $\left|\frac{\left\|B_{n} u_{0}\right\|}{\left|a_{1}\right|\left(1+\frac{m_{n}}{n} \lambda_{1}\right)^{n}}\right| \leq 2$ and $\left|x^{2}-1^{2}\right| \leq 3|x-1|$ for all $-2 \leq x \leq 2$.

We will further approximate the quantity $\sqrt{n} / \eta_{n} \cdot V_{\perp} V_{\perp}^{T} B_{n} u_{0}$. First we will bound the contribution of $V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T}$. By Lemma B.3 we have that:

$$
R_{2}:=\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T} u_{0}}{\left|a_{1}\right|\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}=O_{P}\left(\sqrt{\frac{n d}{\eta_{n}}} \cdot \exp \left\{-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right\}+\sqrt{\frac{\eta_{n}^{2} M_{d}^{2} \log d}{n}}\right)
$$

Now it remains to bound the term $V_{\perp} V_{\perp}^{T} B_{n} v_{1}\left(v_{1}^{T} u_{0}\right)$. First, by Corollary A.1, B_{n} can be decomposed as:

$$
B_{n}=\sum_{k=0}^{n} T_{k}
$$

where for $S \subseteq\{1, \ldots, n\}, T_{k}$ is defined as:

$$
\begin{equation*}
T_{k}=\sum_{|S|=k} A^{(S)} \tag{S.5}
\end{equation*}
$$

with $A^{(S)}$ taking the form in Eq S.2.
Since v_{1} is orthogonal to V_{\perp} :

$$
\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{V_{\perp} V_{\perp}^{T} T_{0} v_{1} a_{1}}{\left|a_{1}\right|\left(1+\eta_{n} / n \lambda_{1}\right)^{n}}=\sqrt{\frac{n}{\eta_{n}}} \cdot \operatorname{sign}\left(a_{1}\right)\left(I-v_{1} v_{1}^{T}\right) v_{1}=0 .
$$

Furthermore, by Lemma B.4. since $\frac{\eta_{n}^{3} M_{d}^{2}}{n} \rightarrow 0$ by assumption,

$$
\begin{equation*}
R_{3}:=\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{V_{\perp} V_{\perp}^{T}\left(B_{n}-T_{1}\right) v_{1} a_{1}}{\left|a_{1}\right|\left(1+\eta_{n} / n \lambda_{1}\right)^{n}}=O_{P}\left(\sqrt{\frac{\eta_{n}^{3} M_{d}^{2}}{n}}\right) \tag{S.6}
\end{equation*}
$$

Now our term of interest is given by:

$$
\begin{equation*}
\frac{\left(\sqrt{n / \eta_{n}} \cdot V_{\perp} V_{\perp}^{T} T_{1} v_{1}\right)^{T}\left(\sqrt{n / \eta_{n}} \cdot V_{\perp} V_{\perp}^{T} T_{1} v_{1}\right)}{\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{2 n}} \tag{S.7}
\end{equation*}
$$

Now, observe that $\left(I+\frac{\eta_{n}}{n} \Sigma\right)$ and $v_{1} v_{1}^{T}$ share a common eigenspace and therefore commute. Therefore, the terms in the product to the left of T_{1} may be written as:

$$
\begin{equation*}
\frac{V_{\perp} V_{\perp}^{T}\left(I+\frac{\eta_{n}}{n} \Sigma\right)^{i-1}}{\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{i-1}}=\sum_{j=2}^{d}\left(\frac{1+\frac{\eta_{n}}{n} \lambda_{j}}{1+\frac{\eta_{n}}{n} \lambda_{1}}\right)^{i-1} v_{j} v_{j}^{T}:=D_{i-1}, \quad \text { say } . \tag{S.8}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{V_{\perp} V_{\perp}^{T} T_{1} v_{1}}{\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{n}} & =\sqrt{\frac{\eta_{n}}{n}} \sum_{i=1}^{n}\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{-1} D_{i-1}\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1} \\
& =S_{n}=\sqrt{n}\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} U_{i}, \quad \text { say, }
\end{aligned}
$$

where

$$
\begin{equation*}
U_{i}=D_{i-1}\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1} \tag{S.9}
\end{equation*}
$$

Observe that S_{n} is a sum of independent but non-identically distributed random variables with mean 0. Therefore, if the conditions of Proposition B. 1 are satisfied, we may approximate $S_{n}^{T} S_{n}$ with $Z_{n}^{T} Z_{n}$, where $\mathbb{E}\left[Z_{n}\right]=0, \operatorname{Var}\left(Z_{n}\right)=\operatorname{Var}\left(S_{n}\right)$. Below define \tilde{Z}_{i} to be a Gaussian vector with $\operatorname{Var}\left(\tilde{Z}_{i}\right)=\operatorname{Var}\left(\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1}\right)$. Now define $Z_{i}=D_{i-1} \tilde{Z}_{i}$. We now verify these conditions.

First, we derive a lower bound on $\left\|\overline{\mathbb{V}}_{n}\right\|_{F}$ that will be used in all of the following bounds. Observe that $\left\|\overline{\mathbb{V}}_{n}\right\|_{F}=\frac{\eta_{n}}{n}\left\|\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}\right\|_{F}$ and the $k l$ th entry of $\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}$ is lower bounded by:

$$
\begin{align*}
& \frac{\eta_{n}}{n} \sum_{i \geq 1}\left(\frac{1+\eta_{n} \lambda_{k+1} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{i-1}\left(\frac{1+\eta_{n} \lambda_{\ell+1} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{i-1} \mathbb{M}(k, \ell) \\
& \geq \frac{1-\exp \left(-2 \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right)\left(1-\frac{\eta_{n}^{2} \lambda_{1}^{2}}{n}\right)^{-2}}{2 \lambda_{1}-\left(\lambda_{k+1}+\lambda_{k+1}\right)+\frac{\eta_{n}}{n}\left(\lambda_{1}^{2}-\lambda_{k} \lambda_{l}\right)} \mathbb{M}(k, \ell) \tag{S.10}\\
& \geq \frac{1-\exp \left(-2 \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right)\left(1-\frac{\eta_{n}^{2} \lambda_{1}^{2}}{n}\right)^{-2}}{2 \lambda_{1}+\frac{\eta_{n}}{n} \lambda_{1}^{2}} \mathbb{M}(k, \ell) \\
& \geq \frac{c}{\lambda_{1}} \mathbb{M}(k, \ell)
\end{align*}
$$

for some $c>0$ and n large enough since $\exp \left(-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right) \rightarrow 0$.
For the first term of $L_{q}, q=3$ we have

$$
\begin{aligned}
L_{3,1}^{U} & \leq \frac{1}{\sqrt{n}} \max _{i} \frac{\mathbb{E}\left(U_{i}^{T} \overline{\mathbb{V}}_{n} U_{i}\right)^{3 / 2}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& \leq \frac{M_{d}^{3 / 2}}{\sqrt{n}} \frac{\mathbb{E}\left\|V_{\perp}^{T}\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1}\right\|^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \quad \text { Since }\left\|\overline{\mathbb{V}}_{n}\right\| \leq M_{d} \eta_{n} \text { from Eq } 7 \\
& \leq C \frac{M_{d}^{3 / 2} \eta_{n}^{3} \lambda_{1}^{3}}{\sqrt{n}} \mathbb{E}\left(\frac{\left\|V_{\perp}^{T} X_{1} X_{1}^{T} v_{1}\right\|}{\|\mathbb{M}\|_{F}}\right)^{3}
\end{aligned}
$$

Similarly, for the Gaussian analog, we have that:

$$
\begin{aligned}
L_{3,1}^{Z} & \leq \frac{1}{\sqrt{n}} \max _{i} \frac{\mathbb{E}\left(Z_{i}^{T} \overline{\mathbb{V}}_{n} Z_{i}\right)^{3 / 2}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& \leq \frac{M_{d}^{3 / 2} \eta_{n}^{3 / 2}}{\sqrt{n}} \max _{i} \frac{\mathbb{E}\left\|Z_{i}\right\|^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& \leq \frac{M_{d}^{3 / 2} \eta_{n}^{3 / 2}}{\sqrt{n}} \frac{\mathbb{E}\left\|\tilde{Z}_{i}\right\|^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& \leq C \frac{M_{d}^{3 / 2} \eta_{n}^{3} \lambda_{1}^{3}}{\sqrt{n}} \mathbb{E}\left(\frac{\left\|\tilde{Z}_{1}\right\|}{\|\mathbb{M}\|_{F}}\right)^{3}
\end{aligned}
$$

For the second term, using the definition of U_{i} in $\mathrm{Eq}[\mathrm{S.9}$ we have:

$$
\begin{aligned}
L_{3,2}^{U} & \leq \frac{1}{n} \max _{i<j} \frac{E\left|U_{i}^{T} U_{j}\right|^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& =\frac{1}{n} \max _{i<j} \frac{E\left|v_{1}^{T}\left(X_{i} X_{i}^{T}-\Sigma\right) D_{i+j-2}\left(X_{j} X_{j}^{T}-\Sigma\right) v_{1}\right|^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}}
\end{aligned}
$$

$$
\leq \frac{1}{n} \frac{\left(\mathbb{E}\left\|V_{\perp}^{T}\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1}\right\|^{3}\right)^{2}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \leq \frac{\eta_{n}^{3} \lambda_{1}^{3}}{n} \frac{\left(\mathbb{E}\left\|V_{\perp}^{T}\left(X_{i} X_{i}^{T}\right) v_{1}\right\|^{3}\right)^{2}}{\|\mathbb{M}\|_{F}^{3}}
$$

For K_{3}, we have:

$$
\begin{aligned}
K_{3}^{3} & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|\frac{U_{i}^{T} U_{i}-E\left(U_{i}^{T} U_{i}\right)}{f}\right|^{3} \\
& \leq \max _{i} \frac{\mathbb{E}\left(U_{i}^{T} U_{i}\right)^{3}+\left(E U_{i}^{T} U_{i}\right)^{3}}{f^{3}} \leq 2 \max _{i} \frac{\mathbb{E}\left(U_{i}^{T} U_{i}\right)^{3}}{\left\|\overline{\mathbb{V}}_{n}\right\|_{F}^{3}} \\
& \leq 2 \eta_{n}^{3} \lambda_{1}^{3} \frac{\mathbb{E}\left\|V_{\perp}^{T}\left(X_{i} X_{i}^{T}-\Sigma\right) v_{1}\right\|^{6}}{\|\mathbb{M}\|_{F}^{3}}
\end{aligned}
$$

Finally, for J_{1} we have:

$$
\begin{aligned}
J_{n} & =\frac{\sum_{i=1}^{n} \operatorname{Var}\left(U_{i}^{T} U_{i}\right)}{(n f)^{2}} \leq \frac{\sum_{i=1}^{n} \mathbb{E}\left(U_{i}^{T} U_{i}\right)^{2}}{n^{2} f^{2}} \\
& \leq \frac{\eta_{n}^{2} \lambda_{1}^{2}}{n} \frac{\mathbb{E}\left[\left\|V_{\perp}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1}\right\|^{4}\right]}{\|\mathbb{M}\|_{F}^{2}}
\end{aligned}
$$

The first makes $L_{3,2}, K_{3}^{3} / n$ and J_{n} go to zero. The two conditions also imply $\frac{\mathbb{E}\left[\left\|V_{\perp}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1}\right\|^{3}\right]}{\|\mathbb{M}\|_{F}^{3}}=$ $o(\sqrt{n})$, which implies $L_{3,1} \rightarrow 0$.

Finally, we collect remainder terms and show that their contribution to the inner product is negligible using anti-concentration. Observe that,

$$
\begin{align*}
& \sup _{t \in \mathbb{R}}\left|P\left(n / \eta_{n} \sin ^{2}(w, v) \leq t\right)-P\left(Z_{n}^{T} Z_{n} \leq t\right)\right| \\
= & \sup _{t \in \mathbb{R}}\left|P\left(R_{1} \cdot \frac{\left(S_{n}+R_{2}+R_{3}\right)^{T}\left(S_{n}+R_{2}+R_{3}\right)}{f} \leq t\right)-P\left(\frac{Z_{n}^{T} Z_{n}}{f} \leq t\right)\right| \tag{S.11}
\end{align*}
$$

Now will will lower bound the above quantity. Observe that

$$
\begin{align*}
& P\left(R_{1} \cdot \frac{\left(S_{n}+R_{2}+R_{3}\right)^{T}\left(S_{n}+R_{2}+R_{3}\right)}{f} \leq t\right) \\
\geq & P\left(R_{1} \cdot \frac{S_{n}^{T} S_{n}}{f}\left(1+\frac{2\left\|R_{2}\right\|+2\left\|R_{3}\right\|_{2}}{\sqrt{S_{n}^{T} S_{n}}}\right)+\frac{R_{1} \cdot\left\|R_{2}+R_{3}\right\|^{2}}{f} \leq t\right) \tag{S.12}\\
= & P\left(R^{\prime} \cdot \frac{S_{n}^{T} S_{n}}{f}+\widetilde{R} \leq t\right), \text { say. }
\end{align*}
$$

Now, for $\delta_{n}=o(\sqrt{f})$, we have that:

$$
\begin{equation*}
P\left(S_{n}^{T} S_{n} \leq \delta_{n}^{2}\right) \leq \sup _{t \in \mathbb{R}}\left|P\left(S_{n}^{T} S_{n} \leq t\right)-P\left(Z_{n}^{T} Z_{n} \leq t\right)\right|+P\left(Z_{n}^{T} Z_{n} \leq \delta_{n}^{2}\right) \rightarrow 0 \tag{S.13}
\end{equation*}
$$

Note that $\delta_{n}=o(1)$ suffices since f is bounded away from zero under Eq 8 as shown in Eq S.10.

Now, choose ϵ_{n} satisfying $\epsilon_{n}=o(1) \epsilon_{n}=\omega\left(\sqrt{\frac{\eta_{h}^{3} M_{d}^{2} \log d}{n}}\right)$, define the set:

$$
\mathcal{G}=\left\{\left|R^{\prime}-1\right| \leq \epsilon_{n},|\widetilde{R}| \leq \epsilon_{n}\right\}
$$

so that $P\left(\mathcal{G}^{c}\right) \rightarrow 0$ with the choice of δ_{n} in Eq. S.13. By using the fact that, for any two sets A and $B, 1 \geq P(A)+P(B)-P(A \cap B)$ and hence $P(A \cap B) \geq P(A)-P\left(B^{c}\right)$, we have that:

$$
\begin{align*}
& P\left(R^{\prime} \cdot \frac{S_{n}^{T} S_{n}}{f}+\widetilde{R} \leq t\right) \\
= & P\left(R^{\prime} \cdot S_{n}^{T} S_{n} / f+\widetilde{R} \leq t \cap \mathcal{G}\right)+P\left(R^{\prime} \cdot S_{n}^{T} S_{n} / f+\widetilde{R} \leq t \cap \mathcal{G}^{c}\right) \tag{S.14}\\
\geq & P\left(\frac{S_{n}^{T} S_{n}}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right)-P\left(\mathcal{G}^{c}\right)
\end{align*}
$$

Therefore,

$$
\begin{align*}
& P\left(\frac{n / \eta_{n} \sin ^{2}(w, v)}{f} \leq t\right)-P\left(\frac{Z_{n}^{T} Z_{n}}{f} \leq t\right) \\
\geq & P\left(\frac{S_{n}^{T} S_{n}}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right)-P\left(\frac{Z_{n}^{T} Z_{n}}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right) \tag{S.15}\\
& +P\left(\frac{Z_{n}^{T} Z_{n}}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right)-P\left(\frac{Z_{n}^{T} Z_{n}}{f} \leq t\right)-P\left(\mathcal{G}^{c}\right)=I+I I-I I I
\end{align*}
$$

Now, we may upper bound $I I I \rightarrow 0$ arising from our choice of δ_{n}, and $I I$ goes to 0 if the conditions of Proposition B. 1 are satisfied, and $I \rightarrow 0$ due to Proposition B.3.

Now for the upper bound, since $\left\|R_{i}\right\|_{2} \geq 0$, observe that we may bound Eq S.11 with:

$$
\begin{aligned}
& P\left(R_{1} \cdot \frac{\left(S_{n}+R_{2}+R_{3}\right)^{T}\left(S_{n}+R_{2}+R_{3}\right)}{f} \leq t\right) \\
\leq & P\left(R_{1} \cdot \frac{S_{n}^{T} S_{n}}{f}\left(1-\frac{2\left\|R_{2}\right\|+2\left\|R_{3}\right\|}{\sqrt{S_{n}^{T} S_{n}}}\right)-\frac{R_{1} \cdot\left\|R_{2}\right\|\left\|R_{3}\right\|}{f} \leq t\right)
\end{aligned}
$$

We may now lower bound the negative terms and arrive at an identical expression to the lower bound. The result follows.

With the central limit theorem in hand, we are now ready to give the proof for Corollary 1 .
Proof of Corollary 1. Observe that the approximating distribution $Z_{n}^{T} Z_{n}$ has expectation $\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)$ and variance $f=\left\|\mathbb{V}_{n}\right\|_{F}$. Therefore, for any $M>0$, it follows that:

$$
\begin{aligned}
& P\left(\frac{n / \eta_{n} \sin ^{2}\left(\hat{v}_{1}, v_{1}\right)-\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)}{f}>M\right) \\
\leq & \sup _{t \in \mathbb{R}}\left|P\left(n / \eta_{n} \sin ^{2}\left(\hat{v}_{1}, v_{1}\right)>t\right)-P\left(Z_{n}^{T} Z_{n}>t\right)\right|+P\left(\frac{Z_{n}^{T} Z_{n}-\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)}{f}>M\right)
\end{aligned}
$$

The first term goes to zero under the conditions of Theorem 1. Chebychev's inequality implies that there exists $M>0$ such that the latter probability can be made smaller than $\epsilon / 2$ for any $\epsilon>0$. Hence,

$$
\frac{n / \eta_{n} \sin ^{2}\left(\hat{v}_{1}, v_{1}\right)-\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)}{f}=O_{P}(1) .
$$

Therefore, under the conditions in Theorem 1,

$$
\sin ^{2}\left(\hat{v}_{1}, v_{1}\right)=\frac{\eta_{n}}{n}\left[\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)+O_{P}\left(\left\|\overline{\mathbb{V}}_{n}\right\|_{F}\right)\right]
$$

We now derive bounds for $\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)$ and $\left\|\overline{\mathbb{V}}_{n}\right\|_{F}$. Let Λ_{\perp} be a diagonal matrix with $\Lambda_{\perp}(i, i)=$ $\left(1+\eta_{n} \lambda_{i+1} / n\right) /\left(1+\eta_{n} \lambda_{1} / n\right), i=1, \ldots, d-1$. Recall that:

$$
\begin{gather*}
\mathbb{M}:=\mathbb{E}\left[V_{\perp}^{T}\left(X_{1}^{T} v_{1}\right)^{2} X_{1} X_{1}^{T} V_{\perp}\right] . \tag{S.16}\\
\overline{\mathbb{V}}_{n}=\frac{\eta_{n}}{n} V_{\perp}\left(\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}\right) V_{\perp}^{T}
\end{gather*}
$$

So now observe that,

$$
\begin{array}{cc}
\left\|\overline{\mathbb{V}}_{n}\right\|_{F}=\frac{\eta_{n}}{n}\left\|\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}\right\|_{F} \\
\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)=\frac{\eta_{n}}{n} \operatorname{trace}\left(\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}\right)
\end{array}
$$

A direct calculation shows that the $k, \ell^{\text {th }}$ entry of the sum $\sum_{i} \Lambda_{\perp}^{i-1} \mathbb{M} \Lambda_{\perp}^{i-1}$ is:

$$
\begin{align*}
& \sum_{i \geq 1}\left(\frac{1+\eta_{n} \lambda_{k+1} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{i-1}\left(\frac{1+\eta_{n} \lambda_{\ell+1} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{i-1} \mathbb{M}(k, \ell) \\
& \leq \frac{n \mathbb{M}(k, \ell)}{\eta_{n}} \frac{\left(1+\frac{\lambda_{1} \eta_{n}}{n}\right)^{2}}{2 \lambda_{1}-\left(\lambda_{k+1}+\lambda_{k+1}\right)+\frac{\eta_{n}}{n}\left(\lambda_{1}^{2}-\lambda_{k} \lambda_{l}\right)} \tag{S.17}\\
& \leq \frac{n}{\eta_{n}} \frac{C \mathbb{M}(k, \ell)}{\lambda_{1}-\lambda_{2}}
\end{align*}
$$

for some $0<C<\infty$.
Therefore, by Eq 7, we have

$$
\begin{aligned}
\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right) & \leq C \frac{\operatorname{trace}(\mathbb{M})}{\lambda_{1}-\lambda_{2}} \leq C \frac{M_{d}}{\lambda_{1}-\lambda_{2}} \\
\qquad\left\|\overline{\mathbb{V}}_{n}\right\|_{F} & \leq \frac{C\|\mathbb{M}\|_{F}}{\lambda_{1}-\lambda_{2}} \leq C^{\prime} \frac{M_{d}}{\lambda_{1}-\lambda_{2}}
\end{aligned}
$$

The last step is true since:

$$
\operatorname{trace}(\mathbb{M})=\operatorname{trace}\left(\mathbb{E}\left[V_{\perp}^{T}\left(X_{1}^{T} v_{1}\right)^{2} X_{1} X_{1}^{T} V_{\perp}\right]\right)
$$

$$
\begin{aligned}
& =\operatorname{trace}\left(\mathbb{E}\left[V_{\perp}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1} v_{1}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) V_{\perp}\right]\right) \\
& =\mathbb{E}\left(\operatorname{trace}\left[V_{\perp}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1} v_{1}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) V_{\perp}\right]\right) \\
& =\mathbb{E}\left\|V_{\perp}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1}\right\|^{2} \leq M_{d}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\|\mathbb{M}\|_{F} & =\left\|\mathbb{E}\left[V_{\perp}^{T}\left(X_{1}^{T} v_{1}\right)^{2} X_{1} X_{1}^{T} V_{\perp}\right]\right\|_{F} \\
& =\left\|\mathbb{E}\left[V_{\perp}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) v_{1} v_{1}^{T}\left(X_{1} X_{1}^{T}-\Sigma\right) V_{\perp}\right]\right\|_{F} \\
& \leq \mathbb{E}\left\|X_{1} X_{1}^{T}-\Sigma\right\|_{o p}^{2}=M_{d}
\end{aligned}
$$

where in the last line we used the fact that $\left\|x x^{T}\right\|_{o p}=\left\|x x^{T}\right\|_{F}$ for $x \in \mathbb{R}^{d}$ since $x x^{T}$ is rank 1 .

B. 2 Adaptation of high-dimensional central limit theorem

Let U_{1}, \ldots, U_{n}, be independent random vectors in \mathbb{R}^{p} such that $E\left(U_{i}\right)=0$ and $\operatorname{Var}\left(U_{i}\right)=\mathbb{V}_{i}$. Define a Gaussian analog of Y_{i}, denoted Z_{i}, which satisfies $E\left(Z_{i}\right)=0$ and $\operatorname{Var}\left(Z_{i}\right)=\mathbb{V}_{i}$. Furthermore, let $\overline{\mathbb{V}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{V}_{i}, g_{i}=\operatorname{Var}\left(U_{i}^{T} U_{i}\right), f_{1}=\operatorname{trace}\left(\overline{\mathbb{V}}_{n}\right)$, and $f=\left\|\overline{\mathbb{V}}_{n}\right\|_{F}$. For $0<\delta \leq 1, q=2+\delta$, and $\beta \geq 2$ define the following quantities:

$$
\begin{aligned}
L_{q}^{U} & =\frac{1}{n} \sum_{i=1}^{n} \frac{E\left(U_{i}^{T} \overline{\mathbb{V}}_{n} U_{i}\right)^{q / 2}}{n^{\delta / 2} f^{q}}+\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} \frac{E\left(\left|U_{i}^{T} U_{j}\right|^{q}\right)}{n^{\delta} f^{q}} \\
L_{q}^{Z} & =\frac{1}{n} \sum_{i=1}^{n} \frac{E\left(Z_{i}^{T} \overline{\mathbb{V}}_{n} Z_{i}\right)^{q / 2}}{n^{\delta / 2} f^{q}} \\
K_{\beta}^{\beta} & =\frac{1}{n} \sum_{i=1}^{n} E\left|\frac{U_{i}^{T} U_{i}-E\left(U_{i}^{T} U_{i}\right)}{f}\right|^{\beta} \\
J_{n} & =\frac{\sum_{i=1}^{n} g_{i}}{(n f)^{2}}
\end{aligned}
$$

The following proposition is an adaptation of [8], which is stated for IID random variables, to independent but non-identically distributed random variables. While the changes are minor, we provide a proof below detailing the adaptation for completeness.
Proposition B.1. Suppose that $L_{q}^{U} \rightarrow 0, L_{q}^{Z} \rightarrow 0, J_{n} \rightarrow 0, n^{1-\beta} K_{\beta}^{\beta} \rightarrow 0$. Then,

$$
\sup _{t \in \mathbb{R}}\left|P\left(n \bar{U}_{n}^{T} \bar{U}_{n} \leq t\right)-P\left(n \bar{Z}_{n}^{T} \bar{Z}_{n} \leq t\right)\right| \rightarrow 0
$$

Proof. Since a Lindeberg argument is easier with diagonals removed, we will show that the removal of these terms is negligible. Observe that:

$$
\begin{aligned}
& \sup _{t \in \mathbb{R}}\left|P\left(n \bar{U}_{n}^{T} \bar{U}_{n} \leq t\right)-P\left(n \bar{Z}_{n}^{T} \bar{Z}_{n} \leq t\right)\right| \\
\leq & \sup _{t^{\prime} \in \mathbb{R}}\left|P\left(\frac{n \bar{U}_{n}^{T} \bar{U}_{n}-f_{1}}{f} \leq t^{\prime}\right)-P\left(\frac{\sum_{i \neq j} U_{i}^{T} U_{j}}{n f} \leq t^{\prime}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sup _{t^{\prime} \in \mathbb{R}}\left|P\left(\frac{\sum_{i \neq j} U_{i}^{T} U_{j}}{n f} \leq t^{\prime}\right)-P\left(\frac{\sum_{i \neq j} Z_{i}^{T} Z_{j}}{n f} \leq t^{\prime}\right)\right| \\
& +\sup _{t^{\prime} \in \mathbb{R}}\left|P\left(\frac{\sum_{i \neq j} Z_{i}^{T} Z_{j}}{n f} \leq t^{\prime}\right)-P\left(\frac{n \bar{Z}_{n}^{T} \bar{Z}_{n}-f_{1}}{f} \leq t^{\prime}\right)\right| \\
& =I+I I+I I I, \text { say. }
\end{aligned}
$$

We will start by bounding $I I I$. First note that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i} \sim \mathcal{N}\left(0, \overline{\mathbb{V}}_{n}\right)$. Let $\overline{\mathbb{V}}_{n}=Q^{T} D Q$ denote the eigendecomposition, with diagonal entries of D given by $\lambda_{1} \geq \ldots \geq \lambda_{d}$ and let $g \sim \mathcal{N}\left(0, \mathrm{I}_{d}\right)$. It follows that:

$$
\begin{aligned}
& n \bar{Z}_{n}^{T} \bar{Z}_{n} \stackrel{d}{=}\left(Q D^{1 / 2} Q^{T} g\right)^{T}\left(Q D^{1 / 2} Q^{T} g\right) \\
& \stackrel{d}{=} g^{T} D g
\end{aligned}
$$

Notice that $V:=g^{T} D g \sim \sum_{r=1}^{d} \lambda_{r} \eta_{r}$, where $\eta_{1}, \ldots, \eta_{d} \sim \chi^{2}(1)$. Now define $R_{n}^{Z}=\frac{\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{T} Z_{i}-f_{1}}{f}$. Notice that:

$$
\begin{align*}
& P\left(\frac{n \bar{Z}_{n}^{T} \bar{Z}_{n}-f_{1}}{f} \leq t\right)-P\left(\frac{\sum_{i \neq j} Z_{i}^{T} Z_{j}}{f} \leq t\right) \\
= & P\left(\frac{n \bar{Z}_{n}^{T} \bar{Z}_{n}-f_{1}}{f} \leq t\right)-P\left(\frac{n \bar{Z}_{n}^{T} \bar{Z}_{n}-f_{1}}{f}-R_{n}^{Z} \leq t\right) \tag{S.18}\\
\leq & P\left(t^{\prime} \leq V \leq t^{\prime}+h_{n}\right)+P\left(\left|R_{n}^{Z}\right|>h_{n}\right)
\end{align*}
$$

Under the conditions $J_{n} \rightarrow 0, n^{1-\beta} K_{\beta}^{\beta} \rightarrow 0$, Nagaev's inequality implies that one may choose $h_{n} \rightarrow 0$ such that $P\left(\left|R_{n}^{Z}\right|>h_{n}\right) \rightarrow 0$. The desired anti-concentration for the first term in the previous display follows from Lemma S 2 of [8]. We may also derive the lower bound $P\left(t^{\prime} \leq V \leq\right.$ $\left.t^{\prime}+h_{n}\right)-P\left(\left|R_{n}^{Z}\right|>h_{n}\right)$ in a similar manner.

To adapt $I I$, consider the smoothed indicator function:

$$
g_{\psi, t}(x)=\left[1-\min \{1, \max (x-t, 0)\}^{4}\right]^{4} .
$$

This function satisfies:

$$
\begin{aligned}
& \max _{x, t}\left\{\left|g_{\psi, t}^{\prime}(x)\right|+\left|g_{\psi, t}^{\prime \prime}(x)\right|+\left|g_{\psi, t}^{\prime \prime \prime}(x)\right|\right\}<\infty \\
& \mathbb{1}_{x \leq t} \leq g_{\psi, t} \leq \mathbb{1}_{x \leq t+\psi^{-1}} .
\end{aligned}
$$

Therefore, we may bound the approximation error with smoothed indicator function by again using anti-concentration of the weighted χ^{2}. In what follows, let:

$$
S_{n}^{U}=\frac{1}{n f} \sum_{i \neq j} U_{i}^{T} U_{j}, \quad S_{n}^{Z}=\frac{1}{n f} \sum_{i \neq j} Z_{i}^{T} Z_{j}
$$

We have that:

$$
\begin{aligned}
& P\left(S_{n}^{U} \leq t\right)-P\left(S_{n}^{Z} \leq t\right) \\
\leq & P\left(S_{n}^{U} \leq t\right)-P\left(S_{n}^{Z} \leq t+\psi^{-1}\right)+P\left(S_{n}^{Z} \leq t+\psi^{-1}\right)-P\left(S_{n}^{Z} \leq t\right) \\
\leq & E g_{\psi, t}\left(S_{n}^{U}\right)-E g_{\psi, t}\left(S_{n}^{Z}\right)+I I I+P\left(t \leq V \leq t+\psi^{-1}\right)
\end{aligned}
$$

An analogous argument establishes a lower bound of $g_{\psi, t}\left(S_{n}^{U}\right)-E g_{\psi, t}\left(S_{n}^{Z}\right)-I I I-P\left(t-\psi^{-1} \leq\right.$ $V \leq t)$. Choosing $\psi_{n} \rightarrow \infty$, the last term goes to zero. A Lindeberg telescoping sum argument leads to the following bound for the leading term:

$$
\left|E g_{\psi, t}\left(S_{n}^{U}\right)-E g_{\psi, t}\left(S_{n}^{Z}\right)\right| \leq \sum_{i=1}^{n} c_{q}\left(E\left|\Delta_{i}\right|^{q}+E\left|\Gamma_{i}\right|^{q}\right)
$$

where:

$$
H_{i}=\sum_{j=1}^{i=1} U_{i}+\sum_{j=i+1}^{n} Z_{i}, \quad \Delta_{i}=\frac{U_{i}^{T} H_{i}}{n f}, \quad \Gamma_{i}=\frac{Z_{i}^{T} H_{i}}{n f} .
$$

We may use analogous reasoning to bound these terms. Let $\xi \sim N(0,1)$. Conditioning on $U_{1}=u_{i}$, by Rosenthal's inequality:

$$
\begin{align*}
\mathbb{E}\left[\left|\Delta_{i}\right|^{q} \mid U_{i}\right] & \leq \sum_{j=1}^{i-1} \frac{\mathbb{E}\left[\left|U_{j}^{T} u_{i}\right|^{q}\right]}{n^{q} f^{q}}+\sum_{j=i+1}^{n} \frac{\mathbb{E}\left[\left|Z_{j}^{T} u_{i}\right|^{q}\right]}{n^{q} f^{q}}+n^{q / 2} \frac{\left(u_{i}^{T} \overline{\mathbb{V}}_{n} u_{i}\right)^{q / 2}}{n^{q} f^{q}} \\
& \leq \sum_{j=1}^{i-1} \frac{\mathbb{E}\left[\left|U_{j}^{T} u_{i}\right|^{q}\right]}{n^{q} f^{q}}+\sum_{j=i+1}^{n}\|\xi\|_{q}^{q} \frac{\left(u_{i}^{T} \mathbb{V}_{j} u_{i}\right)^{q / 2}}{n^{q} f^{q}}+\frac{\left(u_{i}^{T} \overline{\mathbb{V}}_{n} u_{i}\right)^{q / 2}}{n^{q / 2} f^{q}} \tag{S.19}
\end{align*}
$$

Taking expectations, it follows that:

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left|\Delta_{i}\right|^{q}\right] \lesssim \frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} \frac{\mathbb{E}\left[\left|U_{i}^{T} U_{j}\right|^{q}\right]}{n^{\delta} f^{q}}+\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left|U_{i}^{T} \overline{\mathbb{V}}_{n} U_{i}\right|^{q / 2}}{n^{\delta / 2} f^{q}}
$$

Now, for Γ_{i}, we may use Rosenthal's inequality so that:

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left|\Gamma_{i}\right|^{q}\right] \leq \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left|U_{i}^{T} \overline{\mathbb{V}}_{n} U_{i}\right|^{q / 2}}{n^{\delta} \delta f^{q}}+\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\left|Z_{i}^{T} \overline{\mathbb{V}}_{n} Z_{i}\right|^{q / 2}\right]}{n^{\delta} \delta f^{q}}+\frac{1}{n} \sum_{i=1}^{n} \frac{\left.\mathbb{E}\left(Z_{i}^{T} \overline{\mathbb{V}}_{n} Z_{i}\right]\right)^{q / 2}}{n^{q / 2} f^{q}}
$$

While omitted in the original proof, in the IID case, the latter terms may be bounded by using an eigendecomposition along with properties of the Gaussian. However, since the Z_{i} do not have variance matrix \mathbb{V}_{n}, we instead oppose the additional condition for L_{q}^{Z}. By the assumptions made in theorem, it follows that $I I \rightarrow 0$.

Finally, for I, we have that:

$$
\begin{aligned}
& P\left(\frac{n \bar{U}_{n}^{T} \bar{U}_{n}-f_{1}}{f} \leq t\right)-P\left(\frac{\sum_{i \neq j} U_{i}^{T} U_{j}}{n f} \leq t\right) \\
\leq & P\left(S_{n}^{X} \leq t+h_{n}\right)-P\left(S_{n}^{U} \leq t+h_{n}\right)+P\left(\left|R_{n}^{X}\right|>h_{n}\right) \\
& +P\left(t \leq V \leq t+2 h_{n}\right)+P\left(\left|S_{n}^{Z}\right|>h_{n}\right)
\end{aligned}
$$

Using bounds from $I I$ and $I I I$ along with anti-concentration properties, we may conclude that $I \rightarrow 0$.

B. 3 Supporting lemmas for CLT

In several of our lemmas, we use the following technique from [4] that facilitates analysis for initializations from a uniform distribution on \mathcal{S}^{d-1} particularly when d is large.

Proposition B. 2 (Trace trick). Suppose that u is drawn from a uniform distribution on \mathcal{S}^{d-1}. Then, for any $A \in \mathbb{R}^{d \times d}$ and $v \in \mathbb{R}^{d}$ satisfying $\|v\|=1$, with probability at least $1-C \delta$, for some $C>0$ independent of A and $0<\delta<1$,

$$
\frac{u^{T} A^{T} A u}{\left(v^{T} u\right)^{2}} \leq \frac{\log (1 / \delta) \operatorname{trace}\left(A A^{T}\right)}{\delta^{2}}
$$

Proof. First, we recall the well-known fact that $u=g /\|g\|$, where $g \sim N\left(0, I_{d}\right)$. Therefore, $\|g\|$ cancels as follows:

$$
\frac{u^{T} A^{T} A u}{\left(v^{T} u\right)^{2}}=\frac{g^{T} A^{T} A g}{\left(v^{T} g\right)^{2}}
$$

Furthermore, observe that $g^{T} A^{T} A g$ may be viewed as a weighted sum of independent $\chi^{2}(1)$ random variables. In particular, by an eigendecomposition argument, for $\eta_{1}, \ldots \eta_{r} \sim \chi^{2}(1)$ and $A=V D V^{T}$,

$$
\begin{aligned}
g^{T}\left(V D V^{T}\right)\left(V D V^{T}\right) g & =g^{T} V D^{2} V^{T} g \\
& \stackrel{d}{=} g^{T} D^{2} g \\
& =\sum_{r=1}^{p} \lambda_{r}^{2} \eta_{r}=\psi, \text { say }
\end{aligned}
$$

where above we used the fact that $V^{T} g \sim N\left(0, I_{d}\right)$. Now observe that $\mathbb{E}[\psi]=\sum_{r=1}^{p} \lambda_{r}^{2}=\|A\|_{F}^{2}$ and that η_{r} is sub-Exponential. Therefore, by by Bernstein's inequality (see for example Theorem 2.8.2 of (7]), for some $K>0, C_{1}>0,0<\delta<1$,

$$
\begin{aligned}
P\left(\psi-\mathbb{E}[\psi]>(\log (1 / \delta)-1)\|A\|_{F}^{2}\right) & \leq \exp \left\{-\min \left(\frac{\log ^{2}(1 / \delta)\|A\|_{\mathcal{S}_{2}}^{4}}{4 K^{2}\|A\|_{\mathcal{S}_{4}}^{4}}, \frac{\log (1 / \delta)\|A\|_{\mathcal{S}_{2}}^{2}}{2 K\|A\|_{\mathcal{S}_{\infty}}^{2}}\right)\right\} \\
& \leq \exp \left\{-\min \left(\frac{\log ^{2}(1 / \delta)}{4 K^{2}}, \frac{\log (1 / \delta)}{2 K}\right)\right\} \leq C_{1} \delta
\end{aligned}
$$

where above $\|\cdot\|_{\mathcal{S}_{p}}$ is the p th Schatten-Norm, defined as $\left(\sum_{r=1}^{d} s_{r}^{p}\right)^{1 / p}$, where s_{r} is the r th singular value and satisfies $\|\cdot\|_{\mathcal{S}_{q}} \leq\|\cdot\|_{\mathcal{S}_{p}}$ for $p \leq q$. Now for the denominator, since $v^{T} g \sim N(0,1)$ and $\left(v^{T} g\right)^{2} \sim \chi^{2}(1)$, Proposition B.3 yields:

$$
P\left(\left(v^{T} g\right)^{2} \leq \delta^{2}\right) \leq \frac{2 \delta}{\sqrt{\pi}}
$$

The result follows.
The following anti-concentration result for weighted χ^{2} distributions is also used in several places.

Proposition B. 3 (Weighted χ^{2} anti-concentration, [8]). Let $a_{1} \geq \cdots \geq a_{p} \geq 0$ such that $\sum_{r=1}^{p} a_{i}^{2}=$ 1 and suppose that $\xi_{1}, \ldots, \xi_{p} \sim \chi^{2}(1)$. Then,

$$
\sup _{t \in \mathbb{R}} P\left(t \leq \sum_{r=1}^{p} a_{r} \xi_{r} \leq t+h\right) \leq \sqrt{\frac{4 h}{\pi}}
$$

We now present a concentration result for matrix products that follow immediately from Corollary 5.4 of [3].

Lemma B. 1 (Expectation bounds for operator norms of of matrix products). Let $\mathcal{B}_{k}=\prod_{j=1}^{k}(I+$ $\left.\eta_{n} X_{j} X_{j}^{T} / n\right)$. We have,

$$
\begin{equation*}
\mathbb{E}\left\|\mathcal{B}_{k}-\mathbb{E} \mathcal{B}_{k}\right\|^{2} \leq \frac{M_{d} e \eta_{n}^{2}(1+2 \log d) k}{n^{2}}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 k} . \tag{S.20}
\end{equation*}
$$

For the expectation, we have, if $\frac{(1+2 \log d) M_{d} \eta_{n}^{2}}{n} \leq 1$:

$$
\begin{equation*}
\mathbb{E}\left\|\mathcal{B}_{k}\right\|^{2} \leq \exp \left(2 \sqrt{2 M_{d} \frac{k \eta_{n}^{2}}{n^{2}}\left(2 M_{d} \frac{k \eta_{n}^{2}}{n^{2}} \vee \log d\right)}\right)\left(1+\eta_{n} \lambda_{1} / n\right)^{2 k} . \tag{S.21}
\end{equation*}
$$

Proof. We invoke Corollary 5.4 in [3] with $\left\|\mathbb{E}\left(I+\eta_{n} / n X_{i} X_{i}^{T}\right)\right\| \leq 1+\eta_{n} \lambda_{1} / n, \sigma_{i}^{2}=M_{d} \frac{\eta_{n}^{2}}{n^{2}}$, and $\nu=M_{d} \frac{k \eta_{n}^{2}}{n^{2}}$. Note that for a random matrix M with Schatten norm $\|M\|_{\mathcal{S}_{p}}, \mathbb{E}\|M\| \leq \sqrt{\mathbb{E}\|M\|_{\mathcal{S}_{p}}^{2}}$ and hence the same argument as in their proof invoking Eq 5.5 and 5.6 works.

Lemma B. 2 (Concentration of the norm for the CLT). For some $C>0$, and any $\epsilon>0,0<\delta<1$,

$$
\begin{aligned}
& P\left(\left|\frac{\left\|B_{n} u_{0}\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right| \geq \epsilon\right) \\
& \leq \frac{d \exp \left(-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)+\frac{\eta_{n}^{2}}{n}\left(\lambda_{1}^{2}+M_{d}\right)\right)+\frac{\eta_{n}^{2}}{n} M_{d} \exp \left(\frac{\eta_{n}^{2}}{n}\right)}{4 \log ^{-1}(1 / \delta) \delta^{2} \epsilon^{2}\left(1+\frac{\eta_{n}^{2} \lambda_{1}^{2}}{n}\right)}+\frac{e^{2} \eta_{n}^{2} M_{d}(1+\log d)}{n \epsilon^{2}}+C \delta
\end{aligned}
$$

Proof. Consider the bound:

$$
\left|\frac{\left\|B_{n} u_{0}\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right| \leq\left|\frac{\left\|B_{n} v_{1} a_{1}\right\|-\left\|a_{1} T_{0} v_{1}\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}\right|+\frac{\left\|B_{n} V_{\perp}\left(V_{\perp}^{T} u_{0}\right)\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}
$$

We will start by bounding the second term.
Using Proposition B.2, observe that, with probability at least $1-C \delta$,

$$
\frac{\|\left(B_{n} V_{\perp} V_{\perp}^{T} g \|^{2}\right.}{\left|v_{1}^{T} g\right|^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \leq \frac{\left.\log (1 / \delta) \operatorname{trace}\left(V_{\perp} B_{n} B_{n} V_{\perp}^{T}\right)\right)}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}}
$$

Let \mathcal{G} denote the good set for which the upper bound above holds. Markov's inequality on the good set, together with Lemma 5.2 of [4] with $\mathcal{V}_{n} \leq M_{d}$ yields that:

$$
P\left(\frac{\left\|B_{n} V_{\perp} V_{\perp}^{T} g\right\|}{\left(1+\eta_{n} \lambda_{1} / n\right)^{n}} \geq \epsilon / 2 \cap \mathcal{G}\right)
$$

$$
\leq \frac{d \exp \left(-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)+\frac{\eta_{n}^{2}}{n}\left(\lambda_{1}^{2}+M_{d}\right)\right)+\frac{\eta_{n}^{2}}{n} M_{d} \exp \left(\frac{\eta_{n}^{2}}{n}\right)}{4 \delta^{2} \log ^{-1}(1 / \delta) \epsilon^{2}\left(1+\frac{\eta_{n}^{2} \lambda_{1}^{2}}{n}\right)}
$$

Now we will bound the first summand. By Lemma B.1] Eq S.20, we have by Markov's inequality,

$$
P\left(\frac{\left\|\left(B_{n}-T_{0}\right)\right\|_{o p}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}>\epsilon / 2\right) \leq \frac{e^{2} M_{d}(1+\log d)}{n \epsilon^{2}}
$$

Combining the two bounds and the probability of \mathcal{G}^{c}, the result follows.

Lemma B. 3 (Negligibility of V_{\perp} for the CLT). Let V_{\perp} denote the matrix of eigenvectors orthogonal to v_{1}. Also let λ_{i} denote the $i^{\text {th }}$ largest eigenvalue of Σ. For some $C>0$, and any $\epsilon>0,0<\delta<1$,

$$
\begin{aligned}
& P\left(\sqrt{\frac{n}{\eta_{n}}} \frac{\left\|V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T} u_{0}\right\|}{\left|a_{1}\right|\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}} \geq \epsilon\right) \\
\leq & \frac{n d \log (1 / \delta) \exp \left\{-2 \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)+\eta_{n}^{2}\left(\lambda_{1}^{2}+M_{d}\right) / n\right\}}{\eta_{n} \epsilon^{2} \delta^{2}}+\frac{e M_{d}^{2}(1+2 \log d) \eta_{n}^{2} \epsilon^{-2} \log (1 / \delta) \delta^{-2}}{n 2\left(\lambda_{1}-\lambda_{2}\right)+\eta_{n}^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}-M_{d}\right)}+C \delta
\end{aligned}
$$

Proof. We consider bounding the squared quantity. We have, with probability at least $1-C \delta$, using Proposition B.2, this quantity is upper bounded by:

$$
\begin{aligned}
& \frac{\left\|\left(V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}\right) g\right\|^{2}}{\left(v_{1}^{T} g\right)^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \\
\leq & \frac{\operatorname{trace}\left(\left(V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T}\right)\left(V_{\perp} V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T}\right)^{T}\right)}{\delta_{n}\left(v_{1}^{T} g\right)^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \\
= & \frac{\operatorname{trace}\left(V_{\perp}^{T} B_{n} V_{\perp} V_{\perp}^{T} B_{n} V_{\perp}\right)}{\delta_{n}^{3}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}}
\end{aligned}
$$

Now we will bound the expectation of the numerator.
We will denote $\eta=\frac{\eta_{n}}{n}$ for simplicity. Let $U_{i}=I+\eta X_{i} X_{i}^{T}$ and $Y_{i}=X_{i} X_{i}^{T}-\Sigma$. We have that:

$$
\begin{align*}
\alpha_{n} & :=\mathbb{E}\left\langle B_{n} V_{\perp} V_{\perp}^{T} B_{n}^{T}, V_{\perp} V_{\perp}^{T}\right\rangle \\
& =\mathbb{E}\left\langle B_{n-1} V_{\perp} V_{\perp}^{T} B_{n-1}^{T}, U_{n} V_{\perp} V_{\perp}^{T} U_{n}^{T}\right\rangle \\
& =\left\langle\mathbb{E} B_{n-1} V_{\perp} V_{\perp}^{T} B_{n-1}^{T}, \mathbb{E} U_{n} V_{\perp} V_{\perp}^{T} U_{n}^{T}\right\rangle \tag{S.22}
\end{align*}
$$

Now we have:

$$
\begin{align*}
\mathbb{E} U_{n} V_{\perp} V_{\perp}^{T} U_{n}^{T} & =\mathbb{E}(I+\eta \Sigma) V_{\perp} V_{\perp}^{T}(I+\eta \Sigma)^{T}+\eta^{2} \mathbb{E} Y_{n} V_{\perp} V_{\perp}^{T} Y_{n}^{T} \\
& \preceq\left(1+2 \eta \lambda_{2}+\lambda_{2}^{2} \eta^{2}\right) V_{\perp} V_{\perp}^{T}+\eta^{2} M_{d}\left(V_{\perp} V_{\perp}^{T}+v_{1} v_{1}^{T}\right) \\
& \preceq\left(1+2 \eta \lambda_{2}+\lambda_{2}^{2} \eta^{2}+\eta^{2} M_{d}^{2}\right) V_{\perp} V_{\perp}^{T}+\eta^{2} M_{d} v_{1} v_{1}^{T} \tag{S.23}
\end{align*}
$$

Finally, using Eqs 5.22 and S.23, we have:

$$
\begin{equation*}
\alpha_{n} \leq\left(1+2 \eta \lambda_{2}+\eta^{2}\left(\lambda_{2}^{2}+M_{d}\right)\right) \alpha_{n-1}+\eta^{2} M_{d}\left\langle\mathbb{E} B_{n-1} V_{\perp} V_{\perp}^{T} B_{n-1}^{T}, v_{1} v_{1}^{T}\right\rangle \tag{S.24}
\end{equation*}
$$

We will use the fact that,

$$
\left\langle(I+\eta \Sigma)^{n-1} V_{\perp} V_{\perp}^{T}(I+\eta \Sigma)^{n-1}, v_{1} v_{1}^{T}\right\rangle=0 .
$$

Thus, for some N such that the condition $\eta_{n}^{2} M_{d}(1+2 \log d) / n \leq 1$ holds for all rows of the triangular array with index $n>N$, we have by Lemma B. 1 ,

$$
\begin{aligned}
& \left\langle\mathbb{E} B_{n-1} V_{\perp} V_{\perp}^{T} B_{n-1}^{T}, v_{1} v_{1}^{T}\right\rangle \\
& =\left\langle\mathbb{E}\left(B_{n-1}-(I+\eta \Sigma)^{n-1}\right) V_{\perp} V_{\perp}^{T}\left(B_{n-1}-(I+\eta \Sigma)^{n-1}\right)^{T}, v_{1} v_{1}^{T}\right\rangle \\
& \leq\left\|\mathbb{E}\left(B_{n-1}-(I+\eta \Sigma)^{n-1}\right) V_{\perp} V_{\perp}^{T}\left(B_{n-1}-(I+\eta \Sigma)^{n-1}\right)^{T}\right\| \\
& \leq \mathbb{E}\left\|B_{n-1}-(I+\eta \Sigma)^{n-1}\right\|^{2} \\
& \leq M_{d} e \eta^{2} n(1+2 \log d)\left(1+\eta_{n} \lambda_{1} / n\right)^{2(n-1)} .
\end{aligned}
$$

Thus, Eq $\widehat{S .24}$ gives:

$$
\begin{aligned}
\alpha_{n} & \leq \underbrace{\left(1+2 \eta \lambda_{2}+\eta^{2}\left(\lambda_{2}^{2}+M_{d}\right)\right)}_{c_{1}} \alpha_{n-1}+\eta^{4} M_{d}^{2} e(1+2 \log d) \underbrace{(n-1)\left(1+\eta \lambda_{1}\right)^{2(n-1)}}_{(n-1) c_{2}^{n-1}} \\
& =c_{1} \alpha_{n-1}+\eta^{4} M_{d}^{2} e(1+2 \log d)(n-1) c_{2}^{n-1} \\
& =c_{1}^{n} \alpha_{0}+\eta^{4} M_{d}^{2} e(1+2 \log d) \sum_{i} c_{1}^{i-1}(n-i) c_{2}^{n-i} \\
& \leq c_{2}^{n}\left(d\left(c_{1} / c_{2}\right)^{n}+\frac{e M_{d}^{2}(1+2 \log d) \eta^{4} n}{c_{2}-c_{1}}\right) \\
& \leq\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}\left(d\left(1-\lambda_{1}^{2} \eta_{n}^{2} / n\right) \exp \left\{-2 \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)+\eta_{n}^{2}\left(\lambda_{1}^{2}+M_{d}\right) / n\right\}\right. \\
& \left.\quad+\frac{e M_{d}^{2}(1+2 \log d) \eta_{n}^{3} / n^{2}}{2\left(\lambda_{1}-\lambda_{2}\right)+\eta_{n}^{2} / n\left(\lambda_{1}^{2}-\lambda_{2}^{2}-M_{d}\right)}\right)
\end{aligned}
$$

where above we used the fact $e^{x}\left(1-\frac{x^{2}}{n}\right) \leq\left(1+\frac{x}{n}\right)^{n} \leq e^{x}$ for $|x| \leq n$ to bound $\left(c_{1} / c_{n}\right)^{n}$.

Lemma B. 4 (Negligibility of higher-order Hoeffding projections for the CLT). Let $\beta_{n}=\frac{\eta_{n}^{2} M_{d}}{n}$ and suppose that $0 \leq \beta_{n} \leq 1$. Then, for some $C>0$ and any $\epsilon>0$,

$$
P\left(\frac{\sqrt{\frac{n}{\eta_{n}}}\left\|V_{\perp} V_{\perp}^{T} \sum_{k>1} T_{k} v_{1}\right\|}{\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}>\epsilon\right) \leq \frac{C \beta_{n} \eta_{n}}{\left(1-\beta_{n}\right) \epsilon^{2}}
$$

Proof. By Markov's inequality, it follows that:

$$
P\left(\frac{\frac{\sqrt{n}}{\eta_{n}}\left\|V_{\perp} V_{\perp}^{T} \sum_{k>1} T_{k} v_{1}\right\|}{\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}>\epsilon\right) \leq \frac{\frac{n}{\eta_{n}^{2}} \mathbb{E}\left[\left\|V_{\perp} V_{\perp}^{T} \sum_{k>1} T_{k} v_{1}\right\|^{2}\right]}{\epsilon^{2}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2 n}}
$$

Now, by submultiplicativity of the operator norm and the fact that $\mathbb{E}\left[\left(P_{S_{1}} T\right)^{T}\left(P_{S_{2}}\right) T\right]=0$ for any two Hayek projections, the numerator is upper bounded by:

$$
\begin{aligned}
\left(\frac{n}{\eta_{n}}\right) \sum_{k=2}^{n}\left(\frac{\eta_{n}}{n}\right)^{2 k} \sum_{|S|=k} \mathbb{E}\left[\left(v^{\prime} A_{S} u_{0}\right)^{2}\right] & \leq\left(\frac{n}{\eta_{n}}\right) \sum_{k=2}^{n} \sum_{|S|=k}\left(\frac{\eta_{n}}{n}\right)^{2 k} \mathbb{E}\left[\left\|A_{S}\right\|_{o p}^{2}\right] \\
& \leq\left(\frac{n}{\eta_{n}}\right) \sum_{k=2}^{n}\left(\frac{\eta_{n}}{n}\right)^{2 k} \sum_{|S|=k}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2(n-k)} M_{d}^{k} \\
& \leq \eta_{n} M_{d}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2 n} \sum_{k=2}^{n}\left(\frac{M_{d} \eta_{n}^{2}}{n}\right)^{k-1} \\
& \leq\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2 n} \frac{\beta_{n} \eta_{n} M_{d}}{1-\beta_{n}}
\end{aligned}
$$

The result follows.

C Consistency of the online bootstrap

In this section, we provide the detailed proof of Bootstrap consistency, i.e Theorem 2.

C. 1 Proof of bootstrap consistency

Proof of Theorem [2. Similar to the CLT, we will establish the negligibility of remainder terms and then use anti-concentration terms to argue that the contribution to the Kolmogorov distance is small. We then show that the bootstrap covariance of the main term approaches the weighted χ^{2} approximation in Theorem 1 with high probability. Let \widehat{v}_{1} denote the leading eigenvector estimated from Oja's algorithm and let \widehat{V}_{\perp} denote its orthogonal complement. Again, we have that:

$$
\begin{aligned}
\frac{n}{\eta_{n}} \sin ^{2}\left(v_{1}^{*}, \hat{v}_{1}\right) & =\frac{n}{\eta_{n}} \frac{\left(B_{n}^{*} u_{0}\right)^{T} \widehat{V}_{\perp} \widehat{V}_{\perp}^{T}\left(B_{n}^{*} u_{0}\right)}{\left\|B_{n}^{*} u_{0}\right\|^{2}} \\
& =\frac{\left(\sqrt{n / \eta_{n}} \widehat{V}_{\perp} \widehat{V}_{\perp}^{T} B_{n}^{*} u_{0}\right)^{T}\left(\sqrt{n / \eta_{n}} \widehat{V}_{\perp} \widehat{V}_{\perp}^{T} B_{n}^{*} u_{0}\right)}{\left\|B_{n}^{*} u_{0}\right\|^{2}}
\end{aligned}
$$

We aim to show that the bootstrap distribution conditional on the data is close to the weighted χ^{2} approximation with high probability; therefore we may work the good set \mathcal{A}_{n}. With the a slight abuse of notation, in the remainder terms below, O_{P} will be on the measure restricted to \mathcal{A}_{n}.

We first approximate the norm using Lemma C.3. Analogous to the CLT, the corresponding remainder is given by:

$$
R_{1}^{*}=\frac{\left\|B_{n}^{*} u_{0}\right\|^{2}}{a_{1}^{2}\left(1+\frac{\eta_{n}}{n} \lambda_{1}\right)^{2 n}}=1-O_{P}\left(\sqrt{d} \exp \left(-\frac{\eta_{n}}{2}\left(\lambda_{1}-\lambda_{2}\right)\right)+\sqrt{\frac{\eta_{n}^{2} M_{d} \log d}{n}}+\frac{\eta_{n} \alpha_{n}}{\sqrt{n}}\right)
$$

Next, we bound the contribution of the higher-order Hoeffding projections. This step is different from the CLT in the sense that we handle both v_{1} and V_{\perp}, using the fact that on the good set, even the Frobenius norm of certain terms are well-behaved. By Lemma C. 4 we have that:

$$
R_{3}^{*}:=\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{\widehat{V}_{\perp} \widehat{V}_{\perp}^{T}\left(B_{n}^{*}-T_{1}^{*}\right) u_{0}}{\left|a_{1}\right|\left(1+\eta_{n} / n \lambda_{1}\right)^{n}}=O_{P}\left(\exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \sqrt{\frac{\alpha_{n}^{4} \eta_{n}^{3}}{n}}\right)
$$

Next, we bound the contribution of V_{\perp} to the Hájek projection using Lemma C.6, as long as $\lambda_{1} M_{d}(\log d)^{2} \frac{\eta_{n}^{2}}{n} \rightarrow 0$,

$$
R_{2}^{*}=\sqrt{\frac{n}{\eta_{n}}} \cdot \frac{\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T} u_{0}}{\left|a_{1}\right|\left(1+\eta_{n} / n \lambda_{1}\right)^{n}}=O_{P}\left(\sqrt{\frac{\alpha_{n} M_{d} \eta_{n}^{2}}{n\left(\lambda_{1}-\lambda_{2}\right)}}\right)
$$

The final remainder term arises from the disparity between the orthogonal complements and the residuals of matrix products from their expectation. By Lemma C.2, with $\Delta_{i}=X_{i} X_{i}^{T}-X_{i-1} X_{i-1}^{T}$,

$$
R_{4}^{*}=\sqrt{\frac{n}{\eta_{n}}}\left\|\frac{\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} v_{1}\left(v_{1}^{T} u_{0}\right)}{\left|v_{1}^{T} u_{0}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-\frac{\eta_{n}}{n} \sum_{i} W_{i} D_{i-1} \Delta_{i} v_{1}\right\|=O_{P}\left(\sqrt{\frac{M_{d} \alpha_{n} \eta_{n}^{3} \log d}{n}}\right)
$$

Now, define:

$$
S_{n}^{*}=\sqrt{\frac{n}{\eta_{n}}} \frac{V_{\perp} V_{\perp}^{T} T_{1}^{*} v_{1}}{\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}
$$

Consider the following bound:

$$
\begin{align*}
& P\left\{\sup _{t \in \mathbb{R}}\left|P^{*}\left(n / \eta_{n} \sin ^{2}\left(v_{1}^{*}, \widehat{v}_{1}\right) \leq t\right)-P\left(Z^{T} Z \leq t\right)\right|>\epsilon\right\} \\
= & P_{\mathcal{A}_{n}}\left\{\sup _{t \in \mathbb{R}}\left|P^{*}\left(R_{1}^{*} \cdot \frac{\left(S_{n}^{*}+R_{2}^{*}+R_{3}^{*}+R_{4}^{*}\right)^{T}\left(S_{n}^{*}+R_{2}^{*}+R_{3}^{*}+R_{4}^{*}\right)}{f} \leq t\right)-P\left(\frac{Z^{T} Z}{f} \leq t\right)\right|>\epsilon\right\} \\
+ & P_{\mathcal{A}_{n}^{c}}\left\{\sup _{t \in \mathbb{R}}\left|P^{*}\left(R_{1}^{*} \cdot \frac{\left(S_{n}^{*}+R_{2}^{*}+R_{3}^{*}+R_{4}^{*}\right)^{T}\left(S_{n}^{*}+R_{2}^{*}+R_{3}^{*}+R_{4}^{*}\right)}{f} \leq t\right)-P\left(\frac{Z^{T} Z}{f} \leq t\right)\right|>\epsilon\right\} \tag{S.25}
\end{align*}
$$

The second term is easily upper-bounded by $P\left(\mathcal{A}_{n}^{c}\right) \rightarrow 0$, so we will bound the first term. To lower bound the Kolmogorov metric, we may follow the same reasoning used in Eqs S.12, S.14, S.15, to deduce, on the good set \mathcal{A}_{n}, we have the lower bound:

$$
\begin{aligned}
& P^{*}\left(\frac{S_{n}^{* T} S_{n}^{*}}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right)-P\left(\frac{Z^{T} Z}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right) \\
& +P\left(\frac{Z^{T} Z}{f} \leq \frac{t}{1+\epsilon_{n}}-\epsilon_{n}\right)-P\left(\frac{Z^{T} Z}{f} \leq t\right)-P^{*}\left(G_{b o o t} \cap \mathcal{A}_{n}\right)=I^{*}+I I^{*}+I I I^{*}
\end{aligned}
$$

where $G_{\text {boot }}$ satisfies $P\left(G_{b o o t}^{c}\right)=0$ and for some $\epsilon_{n} \rightarrow 0$, is defined as:

$$
G_{b o o t}=\left\{\left|R_{1}^{*}-1\right| \leq \epsilon_{n},\left|R_{2}^{*}\right|,\left|R_{3}^{*}\right|,\left|R_{4}^{*}\right| \leq \epsilon_{n}\right\}
$$

For I, we may use Lemma 1 , which establishes that bootstrap version of the covariance matrix, which consists of empirical covariances, is close to the Gaussian approximation, implying, by our Gaussian comparison result Lemma C. 1 :

$$
I^{*}=O_{P}\left(\left(\frac{\mathbb{E}\left[\left\|X_{i} X_{i}^{T}-\Sigma\right\|^{4}\right]}{n\left(\lambda_{1}-\lambda_{2}\right)\|M\|_{F}^{2}}\right)^{1 / 4}\right)
$$

For $I I^{*}$, we may use the anti-concentration result and $P^{*}\left(G_{b o o t} \cap \mathcal{A}_{n}\right) \xrightarrow{P} 0$ by Markov's inequality since the Lemmas hold for the unconditional measure, which is the expectation of the bootstrap measure. We may use analogous reasoning to the CLT for the upper bound and the result follows.

C. 2 Proof of Lemma 1

Proof. Let $Y_{i}:=X_{i} X_{i}^{T}-\Sigma$. Also let $M_{i}=\mathbb{E}\left[D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i} D_{i-1}\right]$. First note that

$$
\begin{align*}
\mathbb{E}^{*} Z Z^{T}-\overline{\mathbb{V}}_{n} & =\frac{\eta_{n}}{2 n} \sum_{i} D_{i-1}\left(Y_{i}-Y_{i-1}\right) v_{1} v_{1}^{T}\left(Y_{i}-Y_{i-1}\right) D_{i-1} \\
& =\frac{\eta_{n}}{n} \sum_{i} \frac{\left(D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i} D_{i-1}-M_{i}\right)+\left(D_{i-1} Y_{i-1} v_{1} v_{1}^{T} Y_{i-1} D_{i-1}-M_{i}\right)}{2} \\
& +\frac{\eta_{n}}{n} \sum_{i}\left(D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i-1} D_{i-1}+D_{i-1} Y_{i-1} v_{1} v_{1}^{T} Y_{i} D_{i-1}\right) \tag{S.26}
\end{align*}
$$

We first compute trace.

$$
\begin{aligned}
\operatorname{trace}\left(\mathbb{E}^{*} Z Z^{T}-\overline{\mathbb{V}}_{n}\right) & =\frac{\eta_{n}}{2 n} \sum_{i} \underbrace{\left(\left\|D_{i-1} Y_{i} v_{1}\right\|^{2}-\mathbb{E}\left\|D_{i-1} Y_{i} v_{1}\right\|^{2}\right)}_{U_{1, i}} \\
& +\frac{\eta_{n}}{2 n} \sum_{i} \underbrace{\left(\left\|D_{i-1} Y_{i-1} v_{1}\right\|^{2}-\mathbb{E}\left\|D_{i-1} Y_{i}\right\|^{2}\right)}_{U_{2, i}} \\
& +\frac{\eta_{n}}{n} \sum_{i} \underbrace{v_{1} Y_{i} D_{2(i-1)} Y_{i-1} v_{1}}_{U_{3, i}}
\end{aligned}
$$

The last step is true because $D_{i-1}^{2}=D_{2(i-1)}$. We start with the first term.

$$
\begin{aligned}
\mathbb{E} U_{i, 1}^{2} & \leq \mathbb{E}\left\|D_{i-1} Y_{i} v_{1}\right\|^{4} \leq \mathbb{E}\left\|Y_{i}\right\|^{4}\left(\frac{1+\eta_{n} \lambda_{2} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{4(i-1)} \\
\operatorname{Var}\left(\sum_{i} U_{1, i}\right) & \leq \mathbb{E}\left\|Y_{1}\right\|^{4} \sum_{i}\left(\frac{1+\eta_{n} \lambda_{2} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{4(i-1)} \\
& \leq \frac{n}{\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)} \\
& \leq \frac{n}{\eta_{n}} \mathbb{E}\left\|Y_{1}\right\|^{4} \min \left(\frac{1}{\lambda_{1}-\lambda_{2}}, \eta_{n}\right)
\end{aligned}
$$

Finally,

$$
\mathbb{E}\left[U_{3, i}^{2}\right] \leq \mathbb{E}\left(v_{1} Y_{i} D_{2(i-1)} Y_{i-1} v_{1}\right)^{2} \leq M_{d}^{2}\left(\frac{1+\eta_{n} \lambda_{2} / n}{1+\eta_{n} \lambda_{1} / n}\right)^{2(i-1)}
$$

Thus, we have

$$
\frac{\eta_{n}}{2 n} \sum_{i} U_{1, i}=O_{P}\left(\sqrt{\frac{\mathbb{E}\left\|Y_{1}\right\|^{4}}{n\left(\lambda_{1}-\lambda_{2}\right)}}\right)
$$

We also have,

$$
\frac{\eta_{n}}{2 n} \sum_{i} U_{2, i}=O_{P}\left(\sqrt{\frac{\mathbb{E}\left\|Y_{1}\right\|^{4}}{n\left(\lambda_{1}-\lambda_{2}\right)}}\right)
$$

Also note that while $U_{3, i}$ terms are 1-dependent, they are in fact uncorrelated. Thus, we have:

$$
\operatorname{Var}\left(\sum_{i} U_{3, i}\right) \leq \frac{M_{d}^{2} n}{\left(\lambda_{1}-\lambda_{2}\right)},
$$

and,

$$
\operatorname{trace}\left(\mathbb{E}^{*} Z Z^{T}-\overline{\mathbb{V}}_{n}\right)=O_{P}\left(\sqrt{\frac{\mathbb{E}\left\|X_{i} X_{i}^{T}-\Sigma\right\|^{4}}{n\left(\lambda_{1}-\lambda_{2}\right)}}\right)
$$

Now we bound the Frobenius norm. We will start with the expected Frobenius norm of the first term of $\mathrm{Eq} / \mathrm{S.26}$.

$$
\begin{aligned}
A_{1} & =\mathbb{E}\left\|\frac{1}{2 n} \sum_{i=1}^{n} D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i} D_{i-1}-M_{i}\right\|_{F}^{2} \\
& \leq \frac{1}{4 n^{2}} \sum_{i} \mathbb{E}\left\|D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i} D_{i-1}\right\|_{F}^{2} \leq \frac{E\left\|Y_{1}\right\|^{4}}{4 n \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
A_{2} & =\mathbb{E}\left\|\frac{1}{n} \sum_{i} D_{i-1} Y_{i} v_{1} v_{1}^{T} Y_{i-1} D_{i-1}\right\|_{F}^{2} \\
& \leq \frac{1}{n \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)} M_{d}^{2}
\end{aligned}
$$

Thus,

$$
\left\|\mathbb{E}^{*} Z Z^{T}-\overline{\mathbb{V}}_{n}\right\|_{F}=O_{P}\left(\sqrt{\frac{\mathbb{E}\left\|X_{1} X_{1}^{T}-\Sigma\right\|^{4}}{n\left(\lambda_{1}-\lambda_{2}\right)}}\right)
$$

C. 3 The Gaussian comparison lemma

We use the following lemma to compare to Gaussian random variables with mean 0 and different covariance matrices. Our result is related to [2], but our lemma below is easier to implement and does not require that $3\|\Sigma\|^{2} \leq\|\Sigma\|_{F}^{2}$.

Lemma C.1. [Comparison lemma for inner products of Gaussian random variables]
Suppose that $Z \sim N(0, \mathbb{V}), \check{Z} \sim N(0, \check{\mathbb{V}})$, $f=\|\mathbb{V}\|_{F}$, and $\Delta_{1}=\operatorname{tr}(\mathbb{V}-\overleftarrow{\mathbb{V}})$. Then, there exists some constant $K>0$ such that for any $\epsilon>0$,

$$
\sup _{t}\left|P\left(Z^{T} Z \leq t\right)-P\left(\check{Z}^{T} \check{Z} \leq t\right)\right| \lesssim \sqrt{\frac{\left|\Delta_{1}\right|+\epsilon}{f}}+\exp \left\{-\left(\frac{\epsilon^{2}}{K^{2}\|\mathbb{V}-\check{\mathbb{V}}\|_{F}^{2}} \bigwedge \frac{\epsilon}{K\|\mathbb{V}-\check{\mathbb{V}}\|}\right)\right\}
$$

Proof. Let $\lambda_{1} \geq \ldots \geq \lambda_{p}$ denote the eigenvalues $\mathbb{V}, \gamma \geq \ldots \geq \gamma_{p}$ denote the eigenvalues of $\check{\mathbb{V}}$. Recall that $Z^{T} Z \sim \sum_{r=1}^{p} \lambda_{r} \eta_{r}, \check{Z}^{T} \check{Z} \sim \sum_{r=1}^{p} \gamma_{r} \eta_{r}$, where $\eta_{r} \sim \chi^{2}$ (1). It follows that:

$$
\begin{aligned}
& P\left(Z^{T} Z \leq t\right)-P\left(\check{Z}^{T} \check{Z} \leq t\right) \\
= & P\left(\frac{\sum_{r=1}^{p} \lambda_{r} \eta_{r}}{f} \leq \frac{t}{f}\right)-P\left(\frac{\sum_{r=1}^{p} \lambda_{r} \eta_{r}+\sum_{r=1}^{p}\left(\gamma_{r}-\lambda_{r}\right) \eta_{r}-\Delta_{1}}{f} \leq \frac{t-\Delta_{1}}{f}\right) \\
\leq & P\left(\frac{t^{\prime}}{f} \leq \frac{\sum_{r=1}^{p} \lambda_{r} \eta_{r}}{f} \leq \frac{t^{\prime}+\left|\Delta_{1}\right|+\epsilon}{f}\right)+P\left(\left|\sum_{r=1}^{p}\left(\gamma_{r}-\lambda_{r}\right) \eta_{r}-\Delta_{1}\right|>\epsilon\right)
\end{aligned}
$$

Observe that $\sum_{r=1}^{p}\left(\lambda_{r}-\gamma_{r}\right)^{2} \leq\|\mathbb{V}-\check{\mathbb{V}}\|_{F}^{2}$ by Hoffman-Wielandt inequality and $\max _{r}\left|\lambda_{r}-\gamma_{r}\right| \leq$ $\|\mathbb{V}-\overleftarrow{\mathbb{V}}\|_{o p}$ by Weyl's inequality. Since $\chi^{2}(1)$ is sub-Exponential, by Bernstein's inequality (see for example Theorem 2.8.2 of [7]:

$$
P\left(\left|\sum_{r=1}^{p}\left(\gamma_{r}-\lambda_{r}\right) \eta_{r}-\Delta_{1}\right|>\epsilon\right) \leq \exp \left\{-\left(\frac{\epsilon^{2}}{K^{2}\|\mathbb{V}-\check{V}\|_{F}^{2}} \bigwedge \frac{\epsilon}{K\|\mathbb{V}-\check{\mathbb{V}}\|}\right)\right\}
$$

C. 4 Other supporting lemmas for bootstrap consistency

Before presenting our supporting lemmas, we present some events we will use frequently. Let $\mathcal{A}_{\text {sin }}$ denote the set

$$
\begin{equation*}
\mathcal{A}_{\text {sin }}:=\left\{1-\left(v_{1}^{T} \hat{v}_{1}\right)^{2} \leq \frac{\gamma_{\text {sin }}}{\delta_{\text {sin }}}\right\} . \tag{S.27}
\end{equation*}
$$

Using Corollary 1, and the remark thereafter, we have:

$$
\begin{equation*}
P\left(1-\left(v_{1}^{T} \hat{v}_{1}\right)^{2} \geq \frac{\gamma_{\mathrm{sin}}}{\delta_{\mathrm{sin}}}\right) \leq \delta_{\mathrm{sin}} \tag{S.28}
\end{equation*}
$$

where, under the assumptions of Theorem 1,

$$
\begin{equation*}
\gamma_{\mathrm{sin}}=C_{3} \frac{M_{d} \eta_{n}}{n\left(\lambda_{1}-\lambda_{2}\right)} \tag{S.29}
\end{equation*}
$$

Also let,

$$
\begin{equation*}
\mathcal{A}_{n}=\left\{\max _{1 \leq i \leq n}\left\|X_{i}\right\|_{2}^{2} \leq \alpha_{n}\right\} \tag{S.30}
\end{equation*}
$$

Lemma C.2. [Bounding the norm of bootstrap residual from T_{1}^{*}] Let $\Delta_{i}=X_{i} X_{i}^{T}-X_{i-1} X_{i-1}^{T}$ and assume the conditions in Theorem 1. Let $D_{i}=V_{\perp} \Lambda_{\perp}^{i} V_{\perp}^{T}$, where $\Lambda_{\perp}(k, \ell)=\frac{1+\eta_{n} \lambda_{k+1} / n}{1+\eta_{n} \lambda_{1} / n} 1(k=\ell)$. For any $\epsilon, \delta>0$, we have:

$$
\begin{aligned}
& P\left(\left\{\sqrt{\frac{n}{\eta_{n}}}\left\|\frac{\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} v_{1}\left(v_{1}^{T} u_{0}\right)}{\left|v_{1}^{T} u_{0}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-\frac{\eta_{n}}{n} \sum_{i} W_{i} D_{i-1} \Delta_{i} v_{1}\right\| \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \\
& \leq C^{\prime \prime} \frac{\alpha_{n} M_{n} \eta_{n}^{3} \log d}{n \epsilon^{2} \delta}+\delta
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \frac{\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} v_{1}\left(v_{1}^{T} u_{0}\right)}{\left|v_{1}^{T} u_{0}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n-1}} \\
& =\operatorname{sign}\left(v_{1}^{T} u_{0}\right) \frac{\eta_{n}}{n} \sum_{i}^{\sum_{i} W_{i} D_{i-1} \Delta_{i} v_{1}} \\
& +\operatorname{sign}\left(v_{1}^{T} u_{0}\right) \frac{\eta_{n}}{n} \underbrace{\left(\widehat{V}_{\perp} \widehat{V}_{\perp}^{T}-V_{\perp} V_{\perp}^{T}\right) \sum_{i} W_{i} D_{i-1} \Delta_{i} v_{1}}_{r_{1}} \\
& +\operatorname{sign}\left(v_{1}^{T} u_{0}\right) \frac{\eta_{n}}{n}(\underbrace{\sum_{i}^{\sum_{i} W_{i}\left(\frac{R_{1, i-1} \Delta_{i} v_{1}}{\left(1+\lambda_{1} \eta_{n} / n\right)^{i}}\right)}}_{r_{2}} \\
& \quad+\underbrace{\frac{W_{i}\left(I+\eta_{n} \lambda_{1} / n\right)^{i-1} \Delta_{i} R_{i, n} v_{1}}{\left(1+\lambda_{1} \eta_{n} / n\right)^{n-1}}}_{r_{3}}+\underbrace{W_{i} \frac{R_{1, i-1} \Delta_{i} R_{i, n} v_{1}}{\left(1+\lambda_{1} \eta_{n} / n\right)^{n-1}}}_{r_{4}})
\end{aligned}
$$

Define

$$
\begin{equation*}
\mathcal{B}_{1, j}=\prod_{i=1}^{j}\left(I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}\right) \quad \mathcal{B}_{j, n}=\prod_{i=j}^{n}\left(I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}\right) \tag{S.31}
\end{equation*}
$$

When $j=0, \mathcal{B}_{1, j}=I$.
Using Lemma B.1 we have:

$$
\begin{align*}
R_{1, i} & =\mathcal{B}_{1, i}-\left(I+\eta_{n} \Sigma / n\right)^{i} \quad R_{i, n}=\mathcal{B}_{i, n}-\left(I+\eta_{n} \Sigma / n\right)^{n-i} \tag{S.32}\\
\mathbb{E}\left\|R_{1, i-1}\right\|^{2} & \leq e M_{d}(1+2 \log d) \frac{\eta_{n}^{2}}{n^{2}} i\left(1+\eta_{n} \lambda_{1} / n\right)^{2 i} \tag{S.33}\\
\mathbb{E}\left\|R_{i, n}\right\|^{2} & \leq e M_{d}(1+2 \log d) \frac{\eta_{n}^{2}}{n^{2}}(n-i)\left(1+\eta_{n} \lambda_{1} / n\right)^{2(n-i)} \tag{S.34}
\end{align*}
$$

We have, on the good set $\mathcal{A}_{\text {sin }}$,

$$
\mathbb{E}^{*}\left\|r_{1}\right\|^{2} \leq n \alpha_{n} \frac{\gamma_{\mathrm{sin}}}{\delta_{\mathrm{sin}}}
$$

We also have:

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}^{*}\left\|r_{2}\right\|^{2} 1\left(\mathcal{A}_{n}\right)\right] & \leq \frac{\eta_{n}^{2}}{n^{2}} \alpha_{n} \sum_{i} \mathbb{E}\left[\left\|R_{1, i}^{2} 1\left(\mathcal{A}_{n}\right)\right\|^{2}\right] \\
& \leq e M_{d}(1+2 \log d) \alpha_{n} \eta_{n}^{2}
\end{aligned}
$$

The last step is true because $\mathbb{E}\left[\left\|R_{1, i}^{2} 1\left(\mathcal{A}_{n}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\left\|R_{1, i}^{2}\right\|^{2}\right]$. Similarly

$$
\mathbb{E}\left[\mathbb{E}^{*}\left\|r_{3}\right\|^{2} 1\left(\mathcal{A}_{n}\right)\right] \leq e M_{d}(1+2 \log d) \alpha_{n} \eta_{n}^{2}
$$

and

$$
\mathbb{E}\left[\mathbb{E}^{*}\left\|r_{4}\right\|^{2} 1\left(\mathcal{A}_{n}\right)\right] \leq e^{2} M_{d}^{2}(1+2 \log d)^{2} \alpha_{n} \eta_{n}^{4} / n
$$

Finally, we have:

$$
\begin{aligned}
& P\left(\left\{\frac{\eta_{n}}{n}\left\|\sum_{j} r_{j}\right\|^{2} \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \leq P\left(\left\{4 \frac{\eta_{n}}{n} \sum_{j}\left\|r_{j}\right\|^{2} \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \\
& \leq \sum_{i} P\left(\left\{\left\|r_{i}\right\|^{2} \geq \frac{n \epsilon}{16 \eta_{n}}\right\} \cap \mathcal{A}_{n} \cap \mathcal{A}_{\sin }\right)+\delta_{\sin } \\
& \leq C \sum_{i} \mathbb{E}\left[\mathbb{E}^{*}\left\|r_{i}\right\|^{2} 1\left(\mathcal{A}_{n} \cap \mathcal{A}_{\sin }\right)\right] \times \frac{\eta_{n}}{n \epsilon}+\delta_{\sin } \\
& \stackrel{(i)}{\leq} C^{\prime}\left(n \alpha_{n} \frac{\gamma_{\sin }}{\delta_{\sin }}+M_{d} \log d \alpha_{n} \eta_{n}^{2}\right) \times \frac{\eta_{n}}{n \epsilon}+\delta_{\sin } \\
& \stackrel{(i i)}{\leq} C^{\prime \prime} \frac{\alpha_{n} M_{d} \eta_{n}^{3} \log d}{n \epsilon \delta_{\sin }}+\delta_{\sin }
\end{aligned}
$$

Step (i) is true because $M_{d} \log d \eta_{n}^{2} / n \rightarrow 0$. Step (ii) is true because of Eq S.29. Now setting $\delta_{\text {sin }}$ to any $\delta>0$ gives the result.

Lemma C. 3 (Concentration of the norm for the bootstrap). Let u_{0} be uniformly distributed on \mathbb{S}^{d-1} and $a_{1}=u_{0}^{\prime} v_{1}$ and $V_{\perp} V_{\perp}^{T}$ is orthogonal complement. Suppose that $\left(\alpha_{n}\right)_{n \geq 1}$ satisfies $0 \leq \frac{\left(\eta_{n} \alpha_{n}\right)^{2}}{n} \leq 1$. Then, for any $\epsilon>0,0<\delta<1$ and some $C>0$,

$$
\begin{aligned}
& P\left(\left\{\left|\frac{\left\|B_{n}^{*} u_{0}\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right| \geq \epsilon_{n}\right\} \bigcap \mathcal{A}_{n}\right) \\
\leq & \frac{d \exp \left(-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)+\frac{\eta_{n}^{2}}{n}\left(\lambda_{1}^{2}+M_{d}\right)\right)+\frac{\eta_{n}^{2}}{n} M_{d} \exp \left(\frac{\eta_{n}^{2}}{n}\right)}{8 \log ^{-1}(1 / \delta) \delta^{2} \epsilon^{2}\left(1+\frac{\eta_{n}^{2} \lambda_{1}^{2}}{n}\right)} \\
& +\frac{e^{2} \eta_{n}^{2} M_{d}(1+\log d)}{2 n \epsilon^{2}}+\frac{C \beta_{n}^{*} \log (1 / \delta)}{\left(1-\beta_{n}^{*}\right) \delta^{2} \epsilon^{2}}+C \delta,
\end{aligned}
$$

where β_{n}^{*} is defined in S.36) and \mathcal{A}_{n} is defined in EqS.30.
Proof. First note that we may reduce the problem as follows:

$$
\begin{aligned}
& P\left(\left\{\left|\frac{\left\|B_{n}^{*} u_{0}\right\|}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right| \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \\
\leq & P\left(\left\{\frac{\left\|B_{n}^{*} u_{0}-B_{n} u_{0}\right\|_{2}}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}+\left|\frac{\left\|B_{n} u_{0}\right\|_{2}}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right|>\epsilon\right\} \cap \mathcal{A}_{n}\right) \\
\leq & \mathbb{E}\left[P^{*}\left(\frac{\left\|B_{n}^{*} u_{0}-B_{n} u_{0}\right\|_{2}}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}>\frac{\epsilon}{2}\right) 1\left(\mathcal{A}_{n}\right)\right]+P\left(\left|\frac{\left\|B_{n} u_{0}\right\|_{2}}{\left|a_{1}\right|\left(1+\eta_{n} \lambda_{1} / n\right)^{n}}-1\right|>\frac{\epsilon}{2}\right)
\end{aligned}
$$

The bound for the second term follows from Lemma B.2. For the first term, we invoke Proposition B. 2 so that, with probability at least $1-C \delta$,

$$
\frac{\left\|\left(B_{n}^{*}-B_{n}\right) g\right\|_{2}^{2}}{\left(v_{1}^{T} g\right)^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \leq \frac{\log (1 / \delta)\left\|B_{n}^{*}-B_{n}\right\|_{F}^{2}}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}}
$$

Now, using the fact that for any two Hayek projections P_{S}^{*} and $P_{T}^{*}, \mathbb{E}\left[\left(P_{S}^{*}\right)^{T} P_{T}^{*}\right]=0$ and for any two matrices $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{o p}$, we have on the high probability set:

$$
\begin{aligned}
& \mathbb{E}^{*}\left\|B_{n}^{*}-B_{n}\right\|_{F}^{2} \\
\leq & \sum_{k=1}^{n} \sum_{|S|=k}\left(\frac{\eta_{n}}{n}\right)^{2 k} \prod_{i=1}^{k}\left\|X_{S[i]} X_{S[i]}^{\prime}-X_{S[i]-1} X_{S[i]-1}^{\prime}\right\|_{F}^{2} \prod_{j=1}^{k+1}\left\|\mathcal{B}_{j, n}^{(S)}\right\|_{o p}^{2},
\end{aligned}
$$

where $\mathcal{B}_{j, n}^{(S)}$ denotes a contiguous block of $I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}$ only. More precisely, suppose $|S|=k$. Let $S[i]$ denote the i th element of S, with $S[0]=0$ and $S[k+1]=n-1$. For each $1 \leq j \leq k+1$ if $S[j]>S[j-1]+1$ define $\mathcal{B}_{j, n}$ as:

$$
\begin{equation*}
\mathcal{B}_{j, n}^{(S)}=\prod_{i=S[j-1]+1}^{S[j]-1}\left(I+\frac{\eta_{n}}{n} X_{i} X_{i}^{T}\right) \tag{S.35}
\end{equation*}
$$

otherwise, set $\mathcal{B}_{j, n}^{(S)}=I$. Now, we may repeat arguments in Lemma C.4 equations S.37, S.38, and (S.39) to conclude that, for some $C>0$,

$$
P\left(\frac{\log (1 / \delta)\left\|B_{n}^{*}-B_{n}\right\|_{F}^{2}}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}}>\epsilon \bigcap \mathcal{A}_{n}\right) \leq \frac{C \log (1 / \delta) \beta_{n}^{*}}{\left(1-\beta_{n}^{*}\right) \delta^{2} \epsilon^{2}}
$$

The result follows.
Lemma C. 4 (Negligibility of higher-order Hoeffding projections for the bootstrap). Suppose α_{n} is defined so that $0 \leq \beta_{n}^{*} \leq 1$, where

$$
\begin{equation*}
\beta_{n}^{*}=\exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \frac{4 \eta_{n}^{2} \alpha_{n}^{2}}{n} \tag{S.36}
\end{equation*}
$$

Then for any $\epsilon>0,0<\delta<1$ and for some $C>0$,

$$
\begin{aligned}
& P\left(\left\{\frac{\sqrt{\frac{n}{\eta_{n}}}\left\|\hat{V}_{\perp} \hat{V}_{\perp}^{T} \sum_{k>1} T_{k}^{*} u_{0}\right\|}{\left|a_{1}\right|\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}>\epsilon_{n}\right\} \cap \mathcal{A}_{n}\right) \\
& \leq \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \frac{\log (1 / \delta)}{\delta^{2}} \frac{\alpha_{n}^{2} \beta_{n}^{*} \eta_{n}}{\left(1-\beta_{n}^{*}\right) \epsilon^{2}}+C \delta,
\end{aligned}
$$

where \mathcal{A}_{n} is defined in EqS.30.

Proof. Using the trace trick in Proposition B. 2 again, we have that, with probability at least $1-C \delta$ for some $C>0$,

$$
\frac{\frac{n}{\eta_{n}}\left\|\hat{V}_{\perp} \hat{V}_{\perp}^{T} \sum_{k>1} T_{k}^{*} g\right\|^{2}}{\left(v_{1}^{T} g\right)^{2}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2 n}} \leq \frac{\frac{n}{\eta_{n}} \log (1 / \delta)\left\|\sum_{k>1} T_{k}\right\|_{F}^{2}}{\delta^{2}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2 n}}
$$

The Hoeffding decomposition (Proposition A.4), together with the fact that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{o p}$ implies:

$$
\begin{align*}
& \mathbb{E}^{*}\left[\left\|\sum_{k>1} T_{k}^{*}\right\|^{2}\right]=\mathbb{E}^{*}\left[\sum_{k>1}\left\|T_{k}^{*}\right\|_{F}^{2}\right] \tag{S.37}\\
\leq & \sum_{k=2}^{n} \sum_{|S|=k}\left(\frac{\eta_{n}}{n}\right)^{2 k} \prod_{i=1}^{k}\left\|X_{S[i]} X_{S[i]}^{T}-X_{S[i]-1} X_{S[i]-1}^{T}\right\|_{F}^{2} \prod_{j=1}^{k+1}\left\|\mathcal{B}_{j, n}^{(S)}\right\|_{o p}^{2}
\end{align*}
$$

Now, that expectation corresponding to a given summand is given by:

$$
\begin{align*}
& \int_{\mathcal{A}_{n}}\left\|X_{S[i]} X_{S[i]}^{T}-X_{S[i]-1} X_{S[i]-1}^{T}\right\|_{F}^{2} \prod_{j=1}^{k+1}\left\|\mathcal{B}_{j, n}^{(S)}\right\|^{2} d P \\
\leq & \int_{\mathcal{A}_{n}} \prod_{i=1}^{k} 4 \alpha_{n}^{2} \prod_{j=1}^{k+1}\left\|\mathcal{B}_{j, n}^{(S)}\right\|^{2} d P \tag{S.38}\\
\leq & \left(4 \alpha_{n}^{2}\right)^{k} \prod_{j=1}^{k+1} \mathbb{E}\left[\left\|\mathcal{B}_{j, n}^{(S)}\right\|^{2}\right]
\end{align*}
$$

where $\mathcal{B}_{j, n}^{(S)}$ is defined in Eq S.35.
To bound $\mathbb{E}\left[\left\|\mathcal{B}_{j, n}^{(S)}\right\|^{2}\right]$, we invoke Lemma B.1 Eq S.21. For some $C>0$ uniformly in S :

$$
\prod_{j=1}^{k+1} \mathbb{E}\left[\left\|\mathcal{B}_{j, n}^{(S)}\right\|^{2}\right] \leq \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right)^{k+1}\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{2(n-k)}
$$

Therefore, by Markov's inequality,

$$
\begin{align*}
& P\left(\left\{\frac{\sqrt{\frac{n}{\eta_{n}}}\left\|\hat{V}_{\perp} \hat{V}_{\perp}^{T} \sum_{k>1} T_{k}^{*} u_{0}\right\|}{\left(1+\frac{\eta_{n} \lambda_{1}}{n}\right)^{n}}>\epsilon_{n}\right\} \cap \mathcal{A}_{n}\right) \\
\leq & \frac{n}{\delta^{3} \epsilon_{n}^{2} \eta_{n}} \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \sum_{k=2}^{n}\left(\frac{4 \eta_{n}^{2} \alpha_{n}^{2}}{n} \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right)\right)^{k} \tag{S.39}\\
\leq & \alpha_{n}^{2} \eta_{n} \delta_{n}^{-3} \epsilon_{n}^{-2} \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \sum_{k=1}^{n}\left(\frac{4 \eta_{n}^{2} \alpha_{n}^{2}}{n} \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right)\right)^{k} \\
\leq & \exp \left(\sqrt{\frac{C M_{d}^{2} \eta_{n}^{2} \log d}{n}}\right) \frac{\alpha_{n}^{2} \beta_{n}^{*} \eta_{n}}{\left(1-\beta_{n}^{*}\right) \epsilon_{n}^{2} \delta_{n}^{3}}
\end{align*}
$$

where the last line follows from a geometric series argument.

Lemma C.5.

$$
\sum_{i=0}^{n}\left(1-\frac{\eta_{n} / n\left(\lambda_{1}-\lambda_{2}\right)}{1+\eta_{n} \lambda_{1} / n}\right)^{2 i} \leq \frac{n}{\eta_{n}} \min \left(\eta_{n}, \frac{1}{\lambda_{1}-\lambda_{2}}\right)
$$

Proof. This follows from the definition of a geometric series.
Lemma C. 6 (Bounding the leading Hoeffding projection for the bootstrap on V_{\perp}). Let $\lambda_{1} M_{d}(\log d)^{2} \frac{\eta_{n}^{2}}{n} \rightarrow$ 0 , and $n d \exp \left(-\eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right) \rightarrow 0$. For any $\epsilon, \delta>0$, and $C_{1}, C_{2} \geq 0$, we have:

$$
P\left(\left\{\sqrt{\frac{n}{\eta_{n}}} \frac{\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T} u_{0}\right\|}{\left(1+\eta_{n} \lambda_{1} / n\right)^{n}\left|v_{1}^{T} u_{0}\right|} \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \leq \frac{C_{1} \alpha_{n} M_{d} \eta_{n}^{2} \log (1 / \delta)}{n\left(\lambda_{1}-\lambda_{2}\right) \delta^{3}} \frac{1}{\epsilon^{2}}+C_{2} \delta
$$

Proof. Using Proposition B.2, with probability at least $1-\delta$,

$$
\begin{align*}
\frac{\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T} u_{0}\right\|^{2}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}\left\|v_{1}^{T} u_{0}\right\|^{2}} & \leq \frac{\log (1 / \delta)\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T}\right\|_{F}^{2}}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \\
& =\frac{\log (1 / \delta) \operatorname{trace}\left(\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T} T_{1}^{*} \widehat{V}_{\perp} \widehat{V}_{\perp}^{T}\right)}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \\
& =\frac{\log (1 / \delta)\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2}}{\delta^{2}\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \tag{S.40}
\end{align*}
$$

First note that,

$$
\left\|V_{\perp} V_{\perp}^{T}-\widehat{V}_{\perp} \widehat{V}_{\perp}^{T}\right\|_{F}^{2}=\left\|v_{1} v_{1}^{T}-\hat{v}_{1} \hat{v}_{1}^{T}\right\|_{F}^{2}=2\left(1-\left(v_{1}^{T} \hat{v}_{1}\right)^{2}\right)
$$

Thus, we have

$$
\begin{align*}
& \mathbb{E}^{*}\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2} \\
& =\frac{\eta_{n}^{2}}{n^{2}} \sum_{i}\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} \mathcal{B}_{1, i-1}\left(X_{i} X_{i}^{T}-X_{i-1} X_{i-1}^{T}\right) \mathcal{B}_{i+1, n} V_{\perp}\right\|_{F}^{2} \\
& \leq 4 \frac{\eta_{n}^{2}}{n^{2}} \sum_{i} \sum_{j=1}^{6}\left\|r_{j, i}\right\|_{F}^{2}, \tag{S.41}
\end{align*}
$$

where $B_{1, i}$ are defined in Eq S.32, and the residual vectors $r_{k, i}$ are defined as follows. Recall the definition of $R_{1, i}$ and $R_{i, n}$ from EqS.32. Now define the following vectors which contribute to the remainder.

$$
\begin{aligned}
r_{1, i} & =\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} R_{1, i-1}\left(Y_{i}-Y_{i-1}\right) R_{i+1, n} V_{\perp} \\
r_{2, i} & =\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} R_{1, i-1}\left(Y_{i}-Y_{i-1}\right)\left(I+\eta_{n} / n \Sigma\right)^{n-i} V_{\perp} \\
r_{3, i} & =V_{\perp} V_{\perp}^{T}\left(I+\eta_{n} / n \Sigma\right)^{n-i}\left(Y_{i}-Y_{i-1}\right) R_{i+1, n} V_{\perp} \\
r_{4, i} & =V_{\perp} V_{\perp}^{T}\left(I+\eta_{n} / n \Sigma\right)^{n-i}\left(Y_{i}-Y_{i-1}\right)\left(I+\eta_{n} / n \Sigma\right)^{n-i} V_{\perp} \\
r_{5, i} & =\left(\widehat{V}_{\perp} \widehat{V}_{\perp}^{T}-V_{\perp} V_{\perp}^{T}\right)\left(I+\eta_{n} / n \Sigma\right)^{n-i}\left(Y_{i}-Y_{i-1}\right) R_{i+1, n} V_{\perp} \\
r_{6, i} & =\left(\widehat{V}_{\perp} \widehat{V}_{\perp}^{T}-V_{\perp} V_{\perp}^{T}\right)\left(I+\eta_{n} / n \Sigma\right)^{n-i}\left(Y_{i}-Y_{i-1}\right)\left(I+\eta_{n} / n \Sigma\right)^{n-i} V_{\perp}
\end{aligned}
$$

First we will bound $\left\|r_{1, i}\right\|_{F}^{2}$. Recall the set \mathcal{A}_{n} where the maximum norm is bounded from S.30.

$$
\begin{align*}
E_{1, i} & :=\int_{\mathcal{A}_{n}}\left\|r_{1, i}\right\|_{F}^{2} d P \leq 2 \alpha_{n} \int_{\mathcal{A}_{n}}\left\|R_{1, i-1}\right\|^{2}\left\|R_{i+1, n}\right\|^{2} d P \\
& \leq 2 \alpha_{n} \int\left\|R_{1, i}\right\|^{2}\left\|R_{i+1, n}\right\|^{2} d P \leq 2 \alpha_{n} \mathbb{E}\left\|R_{1, i}\right\|^{2} \mathbb{E}\left\|R_{i+1, n}\right\|^{2} \tag{S.42}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& E_{2, i}=\int_{\mathcal{A}_{n}}\left\|r_{2, i}\right\|_{F}^{2} d P \leq 2 \alpha_{n}\left(1+\eta_{n} \lambda_{2} / n\right)^{2(n-i)} \mathbb{E}\left\|R_{1, i-1}\right\|^{2} \tag{S.43}\\
& E_{3, i}=\int_{\mathcal{A}_{n}}\left\|r_{3, i}\right\|_{F}^{2} d P \leq 2 \alpha_{n}\left(1+\eta_{n} \lambda_{2} / n\right)^{2(i-1)} \mathbb{E}\left\|R_{i+1, n}\right\|^{2} \tag{S.44}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
E_{4, i}=\int_{\mathcal{A}_{n}}\left\|r_{4, i}\right\|_{F}^{2} d P \leq 2 \alpha_{n}\left(1+\eta_{n} \lambda_{2} / n\right)^{2(n-1)} \tag{S.45}
\end{equation*}
$$

Recall the set $\mathcal{A}_{\text {sin }}$ from Eq .27. With probability at least $1-\delta_{\text {sin }}$,

$$
E_{5, i}=\int_{\mathcal{A}_{n} \cap \mathcal{A}_{\text {sin }}}\left\|r_{5, i}\right\|_{F}^{2} d P \leq 4 \alpha_{n} \frac{\gamma_{\sin }}{\delta_{\sin }}\left(1+\eta_{n} \lambda_{1} / n\right)^{2(i-1)} \mathbb{E}\left\|R_{i+1, n}\right\|^{2}
$$

$$
E_{6, i}=\int_{\mathcal{A}_{n} \cap \mathcal{A}_{\mathrm{sin}}}\left\|r_{6, i}\right\|_{F}^{2} d P \leq 2 \alpha_{n} \frac{\gamma_{\sin }}{\delta_{\sin }}\left(1+\eta_{n} \lambda_{1} / n\right)^{2(i-1)}\left(1+\eta_{n} \lambda_{2} / n\right)^{2(n-i)}
$$

Observe that, using EqS.32, we have,

$$
\begin{aligned}
& \mathcal{E}_{1}:=\sum_{i} E_{1, i} \leq \frac{2 \alpha_{n} e^{2} M_{d}^{2}(1+2 \log d)^{2} \eta_{n}^{4}}{n}\left(1+\eta_{n} \lambda_{1} / n\right)^{2(n-1)} \\
& \mathcal{E}_{2}:=\sum_{i}\left(E_{2, i}+E_{3, i}\right) \leq \frac{4 \alpha_{n} e M_{d}(1+2 \log d) \eta_{n}^{3}}{n} \min \left(\eta_{n}, \frac{1}{\lambda_{1}-\lambda_{2}}\right)\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n-1} \\
& \mathcal{E}_{3}:=\sum_{i} E_{4, i} \leq 2 \alpha_{n} n\left(1+\eta_{n} \lambda_{2} / n\right)^{2 n}
\end{aligned}
$$

With probability at least $1-\delta_{\text {sin }}$, we have

$$
\begin{aligned}
& \mathcal{E}_{4}:=\sum_{i} E_{5, i} \leq 4 \alpha_{n} \frac{\gamma_{\sin }}{\delta_{\sin }} e M_{d}(1+2 \log d) \eta_{n}^{2}\left(1+\eta_{n} \lambda_{1}\right)^{2(n-1)} \\
& \mathcal{E}_{5} \\
& :=\sum_{i} E_{6, i} \leq 2 \alpha_{n} \frac{\gamma_{\sin }}{\delta_{\sin }} \frac{n}{\eta_{n}} \min \left(\eta_{n}, \frac{1}{\lambda_{1}-\lambda_{2}}\right)\left(1+\eta_{n} \lambda_{1}\right)^{2(n-1)}
\end{aligned}
$$

If $\lambda_{1} M_{d}(\log d)^{2} \frac{\eta_{n}^{2}}{n} \rightarrow 0$, then $\mathcal{E}_{4} \leq C_{1} \mathcal{E}_{5}$ for some positive constant C_{1}. If $n d \exp \left(-2 \eta_{n}\left(\lambda_{1}-\lambda_{2}\right)\right) \rightarrow 0$, then $\mathcal{E}_{3} \leq C_{2} \mathcal{E}_{5}$.

Thus, under these conditions,

$$
\mathcal{E}_{1}, \mathcal{E}_{2} \leq C_{4} \mathcal{E}_{5}
$$

With probability at least $1-\delta_{\sin }$, for some positive constant C^{\prime},

$$
\frac{\sum_{i=1}^{5} \mathcal{E}_{i}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \leq C^{\prime} \alpha_{n} \frac{\gamma_{\mathrm{sin}}}{\delta_{\sin }}
$$

Finally, using Eq S.41 we get:

$$
\begin{equation*}
\frac{\int_{\mathcal{A}_{\sin } \cap \mathcal{A}_{n}} \mathbb{E}^{*}\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2} d P}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \leq C^{\prime \prime} \alpha_{n} \frac{\eta_{n}^{2}}{n} \frac{\gamma_{\sin }}{\delta_{\sin }} \tag{S.46}
\end{equation*}
$$

Let \mathcal{A}_{1} denote the set where $\mathrm{Eq} \mathrm{S.40}$ holds.

$$
\begin{aligned}
& P\left(\left\{\frac{n}{\eta_{n}} \frac{\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp} V_{\perp}^{T} u_{0}\right\|^{2}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}\left(v_{1}^{T} u_{0}\right)^{2}} \geq \epsilon\right\} \cap \mathcal{A}_{n}\right) \\
& \leq P\left(\left\{\frac{\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \geq \frac{\epsilon \delta^{2}}{\log (1 / \delta)} \frac{\eta_{n}}{n}\right\} \cap \mathcal{A}_{n} \cap \mathcal{A}_{1}\right)+2 \delta \\
& \leq P\left(\left\{\frac{\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \geq \frac{\epsilon \delta^{2}}{\log (1 / \delta)} \frac{\eta_{n}}{n}\right\} \cap \mathcal{A}_{n} \cap \mathcal{A}_{1} \cap \mathcal{A}_{\text {sin }}\right)+2 \delta+\delta_{\text {sin }}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathbb{E}\left[\frac{\mathbb{E}^{*}\left\|\widehat{V}_{\perp} \widehat{V}_{\perp}^{T} T_{1}^{*} V_{\perp}\right\|_{F}^{2}}{\left(1+\eta_{n} \lambda_{1} / n\right)^{2 n}} \times \frac{\log (1 / \delta) n}{\epsilon \delta^{2} \eta_{n}} 1\left(\mathcal{A}_{n} \cap \mathcal{A}_{1} \cap \mathcal{A}_{\sin }\right)\right]+2 \delta+\delta_{\sin } \\
& \stackrel{(i)}{\leq} \frac{C^{\prime \prime} \alpha_{n} \eta_{n} \log (1 / \delta)}{\delta_{\sin } \delta^{2}} \frac{\gamma_{\sin }}{\epsilon}+2 \delta+\delta_{\sin } \\
& \stackrel{(i i)}{\leq} \frac{C^{\prime \prime \prime} \alpha_{n} M_{d} \eta_{n}^{2} \log (1 / \delta)}{n\left(\lambda_{1}-\lambda_{2}\right) \delta_{\sin } \delta^{2}} \frac{1}{\epsilon}+2 \delta+\delta_{\sin }
\end{aligned}
$$

Step (i) follows from Eq S.46. Step (ii) follows from the definition of $\gamma_{\text {sin }}$ in Eq S.29. Now setting $\gamma_{\text {sin }}=\delta$, we get the result.

D Proof of Proposition 1

Proof of Proposition 1. Since $\left\|X_{1 j}\right\|_{\psi_{2}} \leq \nu_{j}$ it follows that $\left\|X_{1 j}^{2}\right\|_{\psi_{1}} \leq \nu_{j}^{2}$. Observe that $\left(X_{1 j}^{2}-\right.$ $\left.\mathbb{E} X_{1 j}^{2}\right) / \nu_{j}^{2}$ is sub-Exponential with parameter at most 1 since $\left\|\left(X_{1 j}^{2}-\mathbb{E}\left[X_{1 j}^{2}\right]\right) / \nu_{j}^{2}\right\|_{\psi_{1}} \leq\left\|X_{1 j}^{2}\right\|_{\psi_{1}} / \nu_{j}^{2}=$ 1. By multivariate Holder inequality with $p_{j}=\sum_{j=1}^{d} \nu_{j}^{2} / \nu_{j}^{2}$ and property (e) of Proposition 2.7.1 of [7], for $|\lambda|<1 /\left(\sum_{i=1}^{d} \nu_{i}^{2}\right)$:

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{j=1}^{d}\left(X_{1 j}^{2}-\mathbb{E}\left[X_{1 j}^{2}\right]\right)\right)\right] & \leq \prod_{j=1}^{d} \mathbb{E}\left[\exp \left(\lambda\left(X_{1 j}^{2}-\mathbb{E}\left[X_{1 j}^{2}\right]\right)\right)^{\frac{\sum_{i=1}^{d} \nu_{i}^{2}}{\nu_{j}^{2}}}\right]^{\frac{\nu_{j}^{2}}{\sum_{i=1}^{d} \nu_{i}^{2}}} \\
& =\prod_{j=1}^{d} \mathbb{E}\left[\exp \left(\frac{\lambda\left(\sum_{i=1}^{d} \nu_{i}^{2}\right)\left(X_{1 j}^{2}-\mathbb{E}\left[X_{1 j}^{2}\right]\right)}{\nu_{j}^{2}}\right)\right]^{\frac{\nu_{j}^{2}}{\sum_{i=1}^{d} \nu_{i}^{2}}} \\
& \leq \prod_{j=1}^{d} \exp \left(\frac{K \lambda^{2}\left(\sum_{i=1}^{d} \nu_{i}^{2}\right)^{2} \nu_{j}^{2}}{\sum_{i=1}^{d} \nu_{i}^{2}}\right) \\
& =\exp \left\{K \lambda^{2}\left(\sum_{i=1}^{d} \nu_{i}^{2}\right)^{2}\right\}
\end{aligned}
$$

Therefore, $\left\|\sum_{i=1}^{d} X_{1 i}^{2}\right\|_{\psi_{1}} \leq \sum_{i=1}^{d} \nu_{i}^{2}$. Since a subexponential random variable T satisfy the tail condition:

$$
P(T-\mathbb{E}[T]>t) \leq \exp (-t / K \nu)
$$

for another universal constant $K>0$, the second claim follows by a union bound and noting that $\mathbb{E}\left[\left\|X_{1}\right\|_{2}^{2}\right] \leq \sum_{i=1}^{d} \nu_{i}^{2}<C_{2}$ since absolute summability implies square summability.

References

[1] Bentkus, V., Götze, F., and van Zwet, W. R. (1997). An Edgeworth expansion for symmetric statistics. The Annals of Statistics, 25(2):851-896. 4
[2] Götze, F., Naumov, A., Spokoiny, V., and Ulyanov, V. (2019). Large ball probabilities, Gaussian comparison and anti-concentration. Bernoulli, 25(4A):2538-2563. 23
[3] Huang, D., Niles-Weed, J., Tropp, J. A., and Ward, R. (2020). Matrix concentration for products. 17
[4] Jain, P., Jin, C., Kakade, S., Netrapalli, P., and Sidford, A. (2016). Streaming PCA: Matching matrix bernstein and near-optimal finite sample guarantees for Oja's algorithm. In Proceedings of The 29th Conference on Learning Theory (COLT). 16, 17
[5] Stein, E. M. and Shakarchi, R. (2009). Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, Princeton,NJ. 2, 3
[6] van der Vaart, A. (2000). Asymptotic statistics. Cambridge University Press. 1, 2, 3
[7] Vershynin, R. (2018). High-Dimensional Probability. Cambridge University Press, Cambridge, UK. 16, 24, 32
[8] Xu, M., Zhang, D., and Wu, W. B. (2019). Pearson's chi-squared statistics: approximation theory and beyond. Biometrika, 106(3):716-723. 1, 7, 13, 14, 17

[^0]: ${ }^{1}$ The math generalizes to Hilbert spaces due to the Hilbert projection theorem but we specialize to these cases for concreteness.

