
A Proof of Theorem 1

Theorem 1. Let D = {(y(i)1:t, y
(i)
t+1:t+H)}li=1 be the dataset of exchangeable time-series observations

and their H-step forecasts obtained from the same underlying probability distribution. Let M be the
recurrent neural network predicting H-step forecasts using the direct strategy. For a target coverage
level α ∈ (0, 1), the intervals obtained by the ICP-based conformal forecasting algorithm satisfy

P (∀h ∈ {1, . . . ,H}. yt+h ∈ [ŷt+h − ε̂h, ŷt+h + ε̂h]) ≥ α

Proof. Due to the direct forecasting strategy, every step in the horizon can be treated as a separate
inductive conformal predictor that uses the same underlying model M (with the final predictions
derived from the internal state being independent) and the same dataset D. The independent validity
of each of the H ICPs follows from Proposition 1 in Vovk [51]. Setting the error rate of each of the
H ICPs to (1− α)/H and applying Boole’s inequality we obtain that the combined error rate of the
H-step forecaster is 1− α, as required. �
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B Synthetic data experiments

Table 7: Hyperparameters for the synthetic data experiments.

Parameter Value

Training samples 1000
Calibration samples 1000
Test samples 500
Sequence length T 15
Prediction horizon H 5
Autoregressive mean µx 1
Autoregressive variance σ2

x 2
Periodicity s None
Amplitude u 5

Epochs 1000
Batch size 100
Embedding size 20
Learning rate 0.01
Underlying RNN type LSTM

Target coverage 1− α 90%

B.1 Qualitative results for static and time-dependent noise settings

See Figure 4.

Figure 4: Example prediction intervals for the different uncertainty baselines. From top to bottom: 1)
CF-RNN for the static noise variance setting; 2) CF-RNN for the time-dependent noise variance setting; 3)
MQ-RNN for the time-dependent noise variance setting; 4) DP-RNN for the time-dependent noise variance
setting.
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B.2 Seasonal and varying-length synthetic datasets

We now generate the synthetic time-series consisting of three components: the autoregressive process
determining the trend of the time-series, the seasonal process representing periodic fluctuations in
the time-series values, and the noise process representing the inherent uncertainty of the dataset,
expressed mathematically as:

yt =

t∑
k=0

ak · xk + γt + εt,∀k ∈ {1, . . . , T} (11)

where xt ∼ N (µx, σ
2
x), a = 0.9 is the memory parameter, γt is the stochastic seasonal process

representing periodic fluctuations and εt ∼ N (0, σ2
t ) is the noise process.

The periodic component is defined following the quasi-random walk model in Durbin and Koopman
[55] (Equations (3.7) and (3.8)): we define γt =

∑bs/2c
j=1 γjt where γj,t+1 = γjt cosλj + γ

∗
jt sinλj +

wjt and γ∗j,t+1 = −γjt sinλj + γ∗jt cosλj + w∗jt, s is the period length, λj = 2π/s and wjt, w∗jt ∼
N (0, u) for some amplitude u.5.

To stress-test the conformal prediction model, we challenged it with two datasets of two different
frequencies (2 and 10, for the mean observation length of 20), that 1) consisted of variable-length
time-series, 2) had high noise amplitude (5 compared to 1 in the other synthetic datasets), 3) had each
example start at a random phase of the periodic component.

Table 8: Empirical joint coverage of CF-RNN for the datasets with asynchronous, out-of-phase examples with
dynamic series lengths, averaged across prediction horizons and reported as mean ± std over five random seeds.

Empirical joint coverage

Periodicity CF-RNN Adaptive CFRNN MQ-RNN DP-RNN

2 75.9± 38.0% 75.9± 38.0% 81.2± 1.2% 9.4± 7.8%
10 76.3± 38.1% 76.3± 38.2% 68.8± 2.0% 2.8± 5.7%

Table 9: Mean interval widths (reported as mean ± std over the prediction horizon) as predicted by the CF-RNN
model. The results are reported for five random seeds; empty spaces denote seeds where the training procedure
for the given model was unstable.

Interval widths

Periodicity CF-RNN Adaptive CF-RNN MQ-RNN DP-RNN

2 80.61± 13.34 81.54± 13.34 105.36± 5.34 3.35± 0.37
10 — — 104.69± 4.45 34.48± 1.26

2 90.16± 12.06 89.83± 12.01 106.17± 4.50 23.88± 0.31
10 136.09± 17.27 136.17± 18.18 105.20± 3.66 3.49± 0.19

2 94.09± 13.45 94.89± 13.69 109.02± 3.99 21.02± 0.27
10 177.77± 8.90 179.17± 9.06 106.15± 4.16 3.43± 0.67

2 160.06± 5.22 160.87± 5.66 106.57± 3.64 25.06± 0.27
10 176.95± 8.44 179.38± 10.17 104.68± 4.82 3.11± 0.16

2 — — 106.08± 3.64 3.43± 0.30
10 118.98± 11.60 118.62± 11.92 104.73± 3.37 3.36± 0.43

We additionally present qualitative results on periodic datasets with different frequencies. Despite
the larger errors in the higher-frequency series in Figure 5, conformal prediction intervals cover the
ground truth in both cases. Prediction interval widths also increase moving further away from the
prediction step and with increasing dataset variance, reflecting increasing uncertainty.

5For implementation details, see also https://www.statsmodels.org/devel/examples/
notebooks/generated/statespace_seasonal.html
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Figure 5: Example prediction intervals for the CF-RNN model and datasets with different periodic components.

C Real-world datasets

MIMIC-III We collect the data of patients on antibiotics from the MIMIC-III dataset [52], and
filter out the sequences of total length at least 5, resulting in 4323 sequences. From these sequences
we pick out the white blood cell (high) count as the feature for the univariate time-series. We split the
sequences randomly into training, calibration and test datasets. We pick the constant time horizon of
2, which is to account for the shortest sequences being of length 5, and use the rest of the sequence as
model input.

EEG The EEG dataset, available at https://archive.ics.uci.edu/ml/datasets/
EEG+Database, was used as the source for the EEG signal time-series. The dataset contains the
data for control and alcoholic subjects responding to a visual stimulus of three types. We used
the medium version of the dataset, involving 10 control and 10 alcoholic subjects, though for the
experiments we only used the control subjects—from the summaries provided, control subject EEG
responses seemed to be more difficult to predict. Each subject had repeated trials for every type
of stimulus, and each trial had a time-series for the 64 channels obtained from their corresponding
sensor. We treated every individual trial and each of the 64 channels as a separate time-series example,
resulting in 19200 sequences in the training set. To keep training efficient, we downsampled the
sequences (normally of length 255) to a total length 50, which we further split into the training
sequence of 40 and prediction horizon 10. The training and test dataset splits are readily provided
in the UCI repository, and for repeated trials we used different subsets for calibration and different
model training seeds.

COVID-19 The data is available at https://coronavirus.data.gov.uk/. We picked
the data of different regions of the same country in order to follow the exchangeability assumption
as closely as possible, while the data from different countries risks having much larger distribution
shifts due to a large variation of factors like government lockdown policies. Given the setup of
the conformal prediction framework, we looked for the data that would have a sufficiently large
number of independent sequences—the lower tier local authority split gives a total number of 380
sequences, which over repeated trials we would randomly split into the test set of 80 sequences and
the the rest between the training and calibration sets. We picked the data of daily new cases over the
course of 150 days starting mid-September 2020 and ending mid-February 2021, which we further
split into the input sequence of 100 examples (ending Christmas 2020) and using the remaining 50
days as the testing sequence. We chose these dates to capture interesting properties of changing
government lockdown policies and so that the two waves are separated between the observed and the
to-be-predicted sequence.

Hyperparameters The training hyperparameters (Table 10) mostly follow those provided in previ-
ous work [21] and are kept the same for new experiments in order to ensure fair comparison between
the baselines. For the CoRNN model, the total training data available was split between the training
and calibration sets, and the other baselines used all available training data to train the underlying
RNN model.
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Table 10: Training hyperparameters for the real-world datasets.

Parameter MIMIC-III EEG COVID-19

Training samples 3823 (2000) 19200 (15360) 300 (200)
Calibration samples 1823 3840 100
Test samples 500 19200 80
Sequence length L [3, 47] 40 100
Prediction horizon S 2 10 50

Epochs 1000
Batch size 150
Embedding size 20
Learning rate 0.01
Dropout probability (for DP-RNN) 0.5
Underlying RNN type LSTM

Target coverage 1− α 90%

D Adaptive CF-RNNs

In standard conformal prediction, once the underlying model is trained on the training dataset and
calibrated on the calibration datasetm, the prediction interval width, 2ε̂, will be the same for every
subsequent example (in case of CF-RNN, the intervals will be horizon-specific, but not vary across
examples). While this gives valid intervals, they are not as efficient, as the widths are determined by
the residuals of the most difficult examples with the largest residuals in the dataset. Normalisation [46],
then, tries to return the interval widths that are example-specific; i.e. if the model knows that the
example is “simple” to forecast, the intervals will be more narrow; if the example is very unusual, the
intervals will be wider.

This is achieved through a modification to the nonconformity score Ri as follows:

Ri =
|y(i) −M(x(i))|
exp(µ(i)) + β

, (12)

where the numerator is as before, and the denominator captures the “difficulty” of the example
through an estimate of the residual error:

µ(i) = log |y(i) −M(x(i))|, (13)

and β is the sensitivity parameter. The estimates µ(i) are obtained through training another model
(often a neural network such as a multilayer perceptron) on the examples in the proper training set
and their log residuals:

{
(x(i), log |y(i) − ŷ(i)|)

}n
i=1

. We learn the logarithms of errors for them to
both have a smaller range across examples, and to enforce the errors to be positive once they are
raised to the exponent as Ri is computed. As the difficulty score µ(i) is example-specific, for the new
example x(l+1) the new interval obtained is

Γα(x(l+1)) = [ŷ(l+1) − ε̂(exp(µ(l+1)) + β), ŷ(l+1) + ε̂(exp(µ(l+1)) + β)]. (14)

This is analogously extended to the forecast horizon-specific set of ε̂h in the conformal time-series
forecasting procedure.

We carry out the experiments on the synthetic datasets discussed in the main paper, to investigate the
effects of the normalised nonconformity scores on the quality of prediction intervals. Since CF-RNN
is designed to work on time-series of different lengths, the normalisation network is also trained on a
recurrent neural network, contrary to the recommendation in literature (see e.g. Papadopoulos and
Haralambous [46]) to use simple predictors. We use the same parameters for the normalisation RNN
as the underlying model M ; we set the sensitivity parameter β = 1.

The results of these experiments are shown in Tables 11 and 12. We observe that, with the simplistic
hyperparameter setting, we achieve the opposite effect from the intended one: while the intervals
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Table 11: Empirical joint coverage of CF-RNN and Adaptive CF-RNN baselines run on autoregressive
synthetic datasets (averaged across prediction horizons); reported as mean ± std over five random seeds
(excluding unstable seeds).

Empirical joint coverage

Noise mode CF-RNN Adaptive CF-RNN

Static
σ2
t = 0.1n

n = 1 92.8 ± 0.8% 93.6 ± 0.4%
n = 2 94.0 ± 0.4% 94.7 ± 1.0%
n = 3 94.6 ± 1.6% 93.6 ± 0.3%
n = 4 94.3 ± 1.4% 94.2 ± 1.3%
n = 5 94.3 ± 1.4% 93.7 ± 1.1%

Time-dependent
σ2
t = 0.1tn

n = 1 92.7 ± 1.3% 93.3 ± 1.2%
n = 2 92.4 ± 0.9% 92.2 ± 1.3%
n = 3 90.9 ± 1.3% 91.3 ± 1.1%
n = 4 90.6 ± 1.2% 91.4 ± 1.0%
n = 5 91.1 ± 0.7% 89.8 ± 1.4%

Table 12: Mean interval widths of CF-RNN and Adaptive CF-RNN baselines run on autoregressive syn-
thetic datasets (reported as mean ± std over the prediction horizon and the five random seeds, excluding those
seeds where results were unstable).

Interval widths

Noise mode CF-RNN Adaptive CF-RNN

Static
σ2
t = 0.1n

n = 1 16.45 ± 3.69 21.05 ± 4.96
n = 2 16.97 ± 3.34 21.90 ± 5.68
n = 3 17.12 ± 3.50 20.81 ± 4.45
n = 4 17.34 ± 3.77 23.29 ± 5.12
n = 5 16.97 ± 3.27 21.56 ± 5.68

Time-dependent
σ2
t = 0.1tn

n = 1 19.80 ± 3.61 24.95 ± 5.28
n = 2 25.74 ± 3.32 30.75 ± 4.46
n = 3 32.70 ± 3.97 40.16 ± 6.68
n = 4 40.74 ± 4.10 48.23 ± 6.32
n = 5 49.00 ± 5.58 53.92 ± 6.71

stay valid, they become less, rather than more, efficient. One reason for this is that the underlying
and normalisation RNNs are both noisy, which makes the residuals difficult to learn. This results in
noisy normalisation estimates that do not help with reducing the interval widths. Another reason,
as discussed in Romano et al. [56], is that the standard normalisation procedure is not adaptive to
heteroscedastic datasets, where the variance of the data depends on the time-step, which is the case
in these synthetic datasets. Making the interval widths more robust to the noisy underlying and
normalising RNNs as well as more adaptive to heteroscedasticity is an interesting problem for future
work.
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